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Preface

Static program analysis is the art of reasoning about the behavior of computer
programs without actually running them. This is useful not only in optimizing
compilers for producing efficient code but also for automatic error detection
and other tools that can help programmers. A static program analyzer is a pro-
gram that reasons about the behavior of other programs. For anyone interested
in programming, what can be more fun than writing programs that analyze
programs?

As known from Turing and Rice, all nontrivial properties of the behavior
of programs written in common programming languages are mathematically
undecidable. This means that automated reasoning of software generally must
involve approximation. It is also well known that testing, i.e. concretely running
programs and inspecting the output, may reveal errors but generally cannot
show their absence. In contrast, static program analysis can – with the right kind
of approximations – check all possible executions of the programs and provide
guarantees about their properties. One of the key challenges when developing
such analyses is how to ensure high precision and efficiency to be practically
useful. For example, nobody will use an analysis designed for bug finding if
it reports many false positives or if it is too slow to fit into real-world software
development processes.

These notes present principles and applications of static analysis of pro-
grams. We cover basic type analysis, lattice theory, control flow graphs, dataflow
analysis, fixed-point algorithms, widening and narrowing, path sensitivity, rela-
tional analysis, interprocedural analysis, context sensitivity, control flow analysis,
several flavors of pointer analysis, and key concepts of semantics-based abstract
interpretation. A tiny imperative programming language with pointers and
first-class functions is subjected to numerous different static analyses illustrating
the techniques that are presented.

We take a constraint-based approach to static analysis where suitable constraint
systems conceptually divide the analysis task into a front-end that generates
constraints from program code and a back-end that solves the constraints to
produce the analysis results. This approach enables separating the analysis
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vi Preface

specification, which determines its precision, from the algorithmic aspects that
are important for its performance. In practice when implementing analyses, we
often solve the constraints on-the-fly, as they are generated, without representing
them explicitly.

We focus on analyses that are fully automatic (i.e., not involving program-
mer guidance, for example in the form of loop invariants or type annotations)
and conservative (sound but incomplete), and we only consider Turing com-
plete languages (like most programming languages used in ordinary software
development).

The analyses that we cover are expressed using different kinds of constraint
systems, each with their own constraint solvers:

• term unification constraints, with an almost-linear union-find algorithm,

• conditional subset constraints, with a cubic-time algorithm, and

• monotone constraints over lattices, with variations of fixed-point solvers.

The style of presentation is intended to be precise but not overly formal.
The readers are assumed to be familiar with advanced programming language
concepts and the basics of compiler construction and computability theory.

The notes are accompanied by a web site that provides lecture slides, an
implementation (in Scala) of most of the algorithms we cover, and additional
exercises:

https://cs.au.dk/˜amoeller/spa/

https://cs.au.dk/~amoeller/spa/


Chapter 1

Introduction

Static program analysis aims to automatically answer questions about the possi-
ble behaviors of programs. In this chapter, we explain why this can be useful
and interesting, and we discuss the basic characteristics of analysis tools.

1.1 Applications of Static Program Analysis

Static program analysis has been used since the early 1960’s in optimizing com-
pilers. More recently, it has proven useful also for bug finding and verification
tools, and in IDEs to support program development. In the following, we give
some examples of the kinds of questions about program behavior that arise in
these different applications.

Analysis for program optimization Optimizing compilers (including just-in-
time compilers in interpreters) need to know many different properties of the
program being compiled, in order to generate efficient code. A few examples of
such properties are:

• Does the program contain dead code, or more specifically, is function f
unreachable from main? If so, the code size can be reduced.

• Is the value of some expression inside a loop the same in every iteration?
If so, the expression can be moved outside the loop to avoid redundant
computations.

• Does the value of variable x depend on the program input? If not, it could
be precomputed at compile time.

• What are the lower and upper bounds of the integer variable x? The answer
may guide the choice of runtime representation of the variable.

• Do p and q point to disjoint data structures in memory? That may enable
parallel processing.
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Analysis for program correctness The most successful analysis tools that
have been designed to detect errors (or verify absence of errors) target generic
correctness properties that apply to most or all programs written in specific
programming languages. In unsafe languages like C, such errors sometimes lead
to critical security vulnerabilities. In more safe languages like Java, such errors
are typically less severe, but they can still cause program crashes. Examples of
such properties are:

• Does there exist an input that leads to a null pointer dereference, division-
by-zero, or arithmetic overflow?

• Are all variables initialized before they are read?
• Are arrays always accessed within their bounds?
• Can there be dangling references, i.e., use of pointers to memory that has

been freed?
• Does the program terminate on every input? Even in reactive systems such

as operating systems, the individual software components, for example
device driver routines, are expected to always terminate.

Other correctness properties depend on specifications provided by the program-
mer for the individual programs (or libraries), for example:

• Are all assertions guaranteed to succeed? Assertions express program
specific correctness properties that are supposed to hold in all executions.

• Is function hasNext always called before function next, and is open always
called before read? Many libraries have such so-called typestate correctness
properties.

• Does the program throw an ActivityNotFoundException or a
SQLiteException for some input?

With web and mobile software, information flow correctness properties have
become extremely important:

• Can input values from untrusted users flow unchecked to file system
operations? This would be a violation of integrity.

• Can secret information become publicly observable? Such situations are
violations of confidentiality.

The increased use of concurrency (parallel or distributed computing) and event-
driven execution models gives rise to more questions about program behavior:

• Are data races possible? Many errors in multi-threaded programs are
caused by two threads using a shared resource without proper synchro-
nization.

• Can the program (or parts of the program) deadlock? This is often a
concern for multi-threaded programs that use locks for synchronization.
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Analysis for program development Modern IDEs perform various kinds of
program analysis to support debugging, refactoring, and program understand-
ing. This involves questions, such as:

• Which functions may possibly be called on line 117, or conversely, where
can function f possibly be called from? Function inlining and other refac-
torings rely on such information.

• At which program points could x be assigned its current value? Can the
value of variable x affect the value of variable y? Such questions often arise
when programmers are trying to understand large codebases and during
debugging when investigating why a certain bug appears.

• What types of values can variable x have? This kind of question often
arises with programming languages where type annotations are optional
or entirely absent, for example OCaml, JavaScript, or Python.

1.2 Approximative Answers

Regarding correctness, programmers routinely use testing to gain confidence
that their programs work as intended, but as famously stated by Dijkstra [Dij70]:
“Program testing can be used to show the presence of bugs, but never to show their
absence.” Ideally we want guarantees about what our programs may do for all
possible inputs, and we want these guarantees to be provided automatically, that
is, by programs. A program analyzer is such a program that takes other programs
as input and decides whether or not they have a certain property.

Reasoning about the behavior of programs can be extremely difficult, even
for small programs. As an example, does the following program code terminate
on every integer input n (assuming arbitrary-precision integers)?

while (n > 1) {

if (n % 2 == 0) // if n is even, divide it by two

n = n / 2;

else // if n is odd, multiply by three and add one

n = 3 * n + 1;

}

In 1937, Collatz conjectured that the answer is “yes”. As of 2020, the conjecture
has been checked for all inputs up to 268, but nobody has been able to prove it
for all inputs [Roo19].

Even straight-line programs can be difficult to reason about. Does the fol-
lowing program output true for some integer inputs?

x = input; y = input; z = input;

output x*x*x + y*y*y + z*z*z == 42;
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This was an open problem since 1954 until 2019 when the answer was found
after over a million hours of computing [BS19].

Rice’s theorem [Ric53] is a general result from 1953 which informally states
that all interesting questions about the input/output behavior of programs
(written in Turing-complete programming languages1) are undecidable. This is
easily seen for any special case. Assume for example the existence of an analyzer
that decides if a variable in a program has a constant value in any execution. In
other words, the analyzer is a program A that takes as input a program T , one
of T ’s variables x, and some value k, and decides whether or not x’s value is
always equal to k whenever T is executed.

A

Is the value of variable x
always equal to k when
T is executed?

(T, x, k)

yes

no

We could then exploit this analyzer to also decide the halting problem by
using as input the following program where TM(j) simulates the j’th Turing
machine on empty input:

x = 17; if (TM(j)) x = 18;

Here x has a constant value 17 if and only if the j’th Turing machine does not
halt on empty input. If the hypothetical constant-value analyzer A exists, then
we have a decision procedure for the halting problem, which is known to be
impossible [Tur37].

At first, this seems like a discouraging result, however, this theoretical result
does not prevent approximative answers. While it is impossible to build an
analysis that would correctly decide a property for any analyzed program, it is
often possible to build analysis tools that give useful answers for most realistic
programs. As the ideal analyzer does not exist, there is always room for building
more precise approximations (which is colloquially called the full employment
theorem for static program analysis designers).

Approximative answers may be useful for finding bugs in programs, which
may be viewed as a weak form of program verification. As a case in point,
consider programming with pointers in the C language. This is fraught with
dangers such as null dereferences, dangling pointers, leaking memory, and
unintended aliases. Ordinary compilers offer little protection frompointer errors.
Consider the following small program which may perform every kind of error:

int main(int argc, char *argv[]) {

if (argc == 42) {

char *p,*q;

p = NULL;

printf("%s",p);

1From this point on, we only consider Turing complete languages.
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q = (char *)malloc(100);

p = q;

free(q);

*p = ’x’;

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;

strcat(p,q);

assert(argc > 87);

}

}

Standard compiler tools such as gcc -Wall detect no errors in this program.
Finding the errors by testing might miss the errors (for this program, no errors
are encountered unless we happen to have a test case that runs the program
with exactly 42 arguments). However, if we had even approximative answers
to questions about null values, pointer targets, and branch conditions then
many of the above errors could be caught statically, without actually running
the program.

Exercise 1.1: Describe all the pointer-related errors in the above program.

Ideally, the approximations we use are conservative (or safe), meaning that all
errors lean to the same side, which is determined by our intended application.
As an example, approximating the memory usage of programs is conservative if
the estimates are never lower than what is actually possible when the programs
are executed. Conservative approximations are closely related to the concept
of soundness of program analyzers. We say that a program analyzer is sound if
it never gives incorrect results (but it may answer maybe). Thus, the notion of
soundness depends on the intended application of the analysis output, which
may cause some confusion. For example, a verification tool is typically called
sound if it never misses any errors of the kinds it has been designed to detect, but
it is allowed to produce spurious warnings (also called false positives), whereas
an automated testing tool is called sound if all reported errors are genuine, but
it may miss errors.

Program analyses that are used for optimizations typically require soundness.
If given false information, the optimization may change the semantics of the
program. Conversely, if given trivial information, then the optimization fails to
do anything.

Consider again the problem of determining if a variable has a constant value.
If our intended application is to perform constant propagation optimization,
then the analysis may only answer yes if the variable really is a constant and
must answer maybe if the variable may or may not be a constant. The trivial
solution is of course to answermaybe all the time, sowe are facing the engineering
challenge of answering yes as often as possible while obtaining a reasonable
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analysis performance.

A

Is the value of variable x
always equal to k when
T is executed?

(T, x, k)
yes, definitely!

maybe, don’t know

In the following chapters we focus on techniques for computing approxima-
tions that are conservative with respect to the semantics of the programming
language. The theory of semantics-based abstract interpretation presented in
Chapter 12 provides a solid mathematical framework for reasoning about ana-
lysis soundness and precision. Although soundness is a laudable goal in analysis
design, modern analyzers for real programming languages often cut corners by
sacrificing soundness to obtain better precision and performance, for example
when modeling reflection in Java [LSS+15].

1.3 Undecidability of Program Correctness

(This section requires familiarity with the concept of universal Turing machines;
it is not a prerequisite for the following chapters.)

The reduction from the halting problem presented above shows that some
static analysis problems are undecidable. However, halting is often the least of
the concerns programmers have about whether their programs work correctly.
For example, if we wish to ensure that the programs we write cannot crash with
null pointer errors, we may be willing to assume that the programs do not also
have problems with infinite loops.

Using a diagonalization argument we can show a very strong result: It is
impossible to build a static program analysis that can decide whether a given
programmay fail when executed. Moreover, this result holds even if the analysis
is only required to work for programs that halt on all inputs. In other words, the
halting problem is not the only obstacle; approximation is inevitably necessary.

If we model programs as deterministic Turing machines, program failure
can be modeled using a special fail state.2 That is, on a given input, a Turing
machine will eventually halt in its accept state (intuitively returning “yes”), in
its reject state (intuitively returning “no”), in its fail state (meaning that the
correctness condition has been violated), or the machine diverges (i.e., never
halts). A Turing machine is correct if its fail state is unreachable.

We can show the undecidability result using an elegant proof by contradic-
tion. Assume P is a program that can decide whether or not any given total
Turing machine is correct. (If the input to P is not a total Turing machine, P ’s
output is unspecified – we only require it to correctly analyze Turing machines
that always halt.) Let us say that P halts in its accept state if and only if the

2Technically, we here restrict ourselves to safety properties; liveness properties can be addressed
similarly using other models of computability.
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given Turing machine is correct, and it halts in the reject state otherwise. Our
goal is to show that P cannot exist.

If P exists, then we can also build another Turing machine, let us call itM ,
that takes as input the encoding e(T ) of a Turing machine T and then builds the
encoding e(ST ) of yet another Turing machine ST , which behaves as follows:
ST is essentially a universal Turing machine that is specialized to simulate T on
input e(T ). Let w denote the input to ST . Now ST is constructed such that it
simulates T on input e(T ) for at most |w|moves. If the simulation ends in T ’s
accept state, then ST goes to its fail state. It is obviously possible to create ST in
such away that this is the onlyway it can reach its fail state. If the simulation does
not end in T ’s accept state (that is, |w|moves have been made, or the simulation
reaches T ’s reject or fail state), then ST goes to its accept state or its reject state
(which one we choose does not matter). This completes the explanation of how
ST works relative to T and w. Note that ST never diverges, and it reaches its fail
state if and only if T accepts input e(T ) after at most |w| moves. After building
e(ST ),M passes it to our hypothetical program analyzer P . Assuming that P
works as promised, it ends in accept if ST is correct, in which case we also letM
halt in its accept state, and in reject otherwise, in which caseM similarly halts
in its reject state.

M

e(T ) construct e(ST )
from e(T )

e(ST ) P

accept accept

reject reject

We now ask: DoesM accept input e(M)? That is, what happens if we run
M with T = M? If M does accept input e(M), it must be the case that P
accepts input e(ST ), which in turn means that ST is correct, so its fail state is
unreachable. In other words, for any input w, no matter its length, ST does
not reach its fail state. This in turn means that T does not accept input e(T ).
However, we have T = M , so this contradicts our assumption that M accepts
input e(M). Conversely, ifM rejects input e(M), then P rejects input e(ST ), so
the fail state of ST is reachable for some input v. This means that there must
exist some w such that the fail state of ST is reached in |w| steps on input v, so
T must accept input e(T ), and again we have a contradiction. By construction
M halts in either accept or reject on any input, but neither is possible for input
e(M). In conclusion, the ideal program correctness analyzer P cannot exist.

Exercise 1.2: In the above proof, the hypothetical program analyzer P is only
required to correctly analyze programs that always halt. Show how the proof
can be simplified if we want to prove the following weaker property: There
exists no Turing machine P that can decide whether or not the fail state is
reachable in a given Turing machine. (Note that the given Turing machine is
now not assumed to be total.)





Chapter 2

A Tiny Imperative
Programming Language

We use a tiny imperative programming language, called TIP, throughout the
following chapters. It is designed to have a minimal syntax and yet to contain all
the constructions that make static analyses interesting and challenging. Different
language features are relevant for the different static analysis concepts, so in
each chapter we focus on a suitable fragment of the language.

2.1 The Syntax of TIP

In this section we present the formal syntax of the TIP language, expressed
as a context-free grammar. TIP programs interact with the world simply by
reading input from a stream of integers (for example obtained from the user’s
keyboard) andwriting output as another stream of integers (to the user’s screen).
The language lacks many features known from commonly used programming
languages, for example, global variables, nested functions, objects, and type an-
notations. We will consider some of those features in exercises in later chapters.

Basic Expressions
The basic expressions all denote integer values:

Int → 0 | 1 | -1 | 2 | -2 | . . .
Id → x | y | z | . . .
Exp→ Int

| Id
| Exp + Exp | Exp - Exp | Exp * Exp | Exp / Exp | Exp > Exp | Exp == Exp
| ( Exp )
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| input

Expressions Exp include integer literals Int and variables (identifiers) Id. The
input expression reads an integer from the input stream. The comparison
operators yield 0 for false and 1 for true. Function calls, pointer operations, and
record operations will be added later.

Statements
The simple statements Stm are familiar:

Stm → Id = Exp ;
| output Exp ;
| Stm Stm
|
| if ( Exp ) { Stm }

[
else { Stm }

]?
| while ( Exp ) { Stm }

We use the notation
[
. . .

]? to indicate optional parts. In the conditions we
interpret 0 as false and all other values as true. The output statement writes an
integer value to the output stream.

Functions
A function declaration F contains a function name, a list of parameters, local
variable declarations, a body statement, and a return expression:

Fun → Id ( Id , . . ., Id ) {
[
var Id , . . ., Id ;

]? Stm return Exp; }
Function names and parameters are identifiers, like variables. The var block
declares a collection of uninitialized local variables. Function calls are an extra
kind of expression:

Exp → . . . | Id ( Exp,. . .,Exp )

We sometimes treat var blocks and return instructions as statements.

Functions as Values
We also allow functions as first-class values. The name of a function can be used
as a kind of variable that refers to the function, and such function values can be
assigned to ordinary variables, passed as arguments to functions, and returned
from functions.

We add a generalized form of function calls (sometimes called computed or
indirect function calls, in contrast to the simple direct calls described earlier):

Exp → . . . | Exp ( Exp , . . ., Exp )



2.1 THE SYNTAX OF TIP 11

Unlike simple function calls, the function being called is now an expression
that evaluates to a function value. Function values allow us to illustrate the
main challenges that arise with methods in object-oriented languages and with
higher-order functions in functional languages.

The following example program contains three functions:

twice(f, x) {

return f(f(x));

}

inc(y) {

return y+1;

}

main(z) {

return twice(inc, z);

}

In the main function, the inc function is passed as argument to the twice func-
tion, which calls the given function twice.

Pointers
To be able to build data structures and dynamically allocate memory, we intro-
duce pointers:

Exp→ . . .
| alloc Exp
| & Id
| * Exp
| null

The first expression allocates a new cell in the heap initialized with the value of
the given expression and results in a pointer to the cell. The second expression
creates a pointer to a program variable, and the third expression dereferences
a pointer value (this is also called a load operation). In order to assign values
through pointers we allow another form of assignment (called a store operation):

Stm → . . . | * Exp = Exp;

In such an assignment, if the expression on the left-hand-side evaluates to a
pointer to a cell, then the value of the right-hand-side expression is stored in
that cell. Pointers and integers are distinct values, and pointer arithmetic is not
possible.

The following example illustrates the various pointer operations:

x = alloc null;

y = &x;

*x = 42;

z = **y;
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The first line allocates a cell initially holding the value null, after the second line
y points to the variable x, the third line assigns the value 42 to the cell allocated
in the first line (thereby overwriting the null value), and the fourth line reads
the new value of that cell via two pointer dereferences.

Records
A record is a collection of fields, each having a name and a value. The syntax for
creating records and for reading field values looks as follows:

Exp → . . .
| { Id : Exp , . . ., Id : Exp }
| Exp . Id

Here is an example:

x = {f: 1, g: 2};

y = x.f;

The first line creates a record with two fields: one with name f and value 1, and
one with name g and value 2. The second line reads the value of the f field.

To update the values of record fields we allow two other forms of assign-
ment, for writing directly to a record held by variable or indirectly via a pointer,
respectively:

Stm → . . .
| Id . Id = Exp ;
| ( * Exp ) . Id = Exp;

Consider this example:

x = {f: 1, g: 2};

y = &x;

x.f = 3;

(*y).g = 4;

Here, x holds a record, y holds a pointer to the same record, and the two last
assignments update the values of the fields f and g of the record.

Records are passed by value, so, for example, if x holds a record then a simple
assignment z = x; copies the record to z. For simplicity, the values of record
fields cannot themselves be records (but they can be, for example, pointers to
records).

Programs
A complete program is just a collection of functions:

Prog → Fun . . . Fun
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(We sometimes also refer to indivial functions or statements as programs.) For
a complete program, the function named main is the one that initiates execution.
Its arguments are supplied in sequence from the beginning of the input stream,
and the value that it returns is appended to the output stream.

We often use meta-variables I ∈ Int, X ∈ Id, E ∈ Exp, S ∈ Stm, F ∈ Fun, P ∈
Prog, sometimes with subscripts, ranging over the different syntactic categories.

To keep the presentation short, we deliberately have not specified all details
of the TIP language, neither the syntax nor the semantics.

Exercise 2.1: Identify some of the under-specified parts of the TIP language,
and propose meaningful choices to make it more well-defined.

In Chapter 12 we formally define semantics for a part of TIP.

2.2 Example Programs

The following TIP programs all compute the factorial of a given integer. The
first one is iterative:

iterate(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

The second program is recursive:

recurse(n) {

var f;

if (n==0) { f=1; }

else { f=n*recurse(n-1); }

return f;

}

The third program is unnecessarily complicated:

foo(p,x) {

var f,q;

if (*p==0) { f=1; }

else {

q = alloc 0;

*q = (*p)-1;

f=(*p)*(x(q,x));
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}

return f;

}

main() {

var n;

n = input;

return foo(&n,foo);

}

More example programs can be found in the Scala implementation of TIP.

2.3 Normalization

A rich and flexible syntax is useful when writing programs, but when describing
and implementing static analyses, it is often convenient to work with a syntacti-
cally simpler language. For this reason we sometimes normalize programs by
transforming them into equivalent but syntactically simpler ones. A particu-
larly useful normalization is to flatten nested pointer expressions, such that
pointer dereferences are always of the form *Id rather than the more general
*Exp, and similarly, function calls are always of the form Id(Id,. . .,Id) rather
than Exp(Exp,. . .,Exp). It may also be useful to flatten arithmetic expressions,
arguments to direct calls, branch conditions, and return expressions.

As an example,

x = f(y+3)*5;

can be normalized to

t1 = y+3;

t2 = f(t1);

x = t2*5;

where t1 and t2 are fresh variables, whereby each statement performs only one
operation.

Exercise 2.2: Argue that any TIP program can be normalized so that all
expressions, with the exception of right-hand side expressions of assignments,
are variables. (This is sometimes called A-normal form [FSDF93].)

Exercise 2.3: Show how the following statement can be normalized:
x = (**f)(g()+h());
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Exercise 2.4: Assume we want to normalize pointer operations such that
load operations are restricted to statements of the form Id = * Id ; and store
operations are restricted to statements of the form *Id = Id ;. Explain how the
statement **x=**y; can be normalized to this restricted syntax.

TIP uses lexical scoping, however, we make the notationally simplifying as-
sumption that all declared variable and function names are unique in a program,
i.e. that no identifiers is declared more than once.

Exercise 2.5: Argue that any TIP program can be normalized so that all
declared identifiers are unique.

For real programming languages, we often use variations of the intermediate
representations of compilers or virtual machines as foundation for implementing
analyzers, rather than using the high-level source code.

2.4 Abstract Syntax Trees

Abstract syntax trees (ASTs) as known from compiler construction provide
a representation of programs that is suitable for flow-insensitive analyses, for
example, type analysis (Chapter 3), control flow analysis (Chapter 10), and
pointer analysis (Chapter 11). Such analyses ignore the execution order of
statements in a function or block, whichmakes ASTs a convenient representation.
As an example, the AST for the iterate program can be illustrated as follows.

*

f n

f

var

n

f

return

f = ...>

n 0

while

−

n 1

n = ...

f = ...

1

ite

With this representation, it is easy to extract the set of statements and their
structure for each function in the program.
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2.5 Control Flow Graphs

For flow-sensitive analysis, in particular dataflow analysis (Chapter 5), where
statement order matters it is more convenient to view the program as a control
flow graph, which is a different representation of the program code. This idea
goes back to the very first program analyzers in optimizing compilers [All70].

We first consider the subset of the TIP language consisting of a single function
body without pointers. Control flow graphs for programs comprising multiple
functions are treated in Chapters 8 and 10.

A control flow graph (CFG) is a directed graph, in which nodes correspond
to statements and edges represent possible flow of control. For convenience, and
without loss of generality, we can assume a CFG to always have a single point of
entry, denoted entry, and a single point of exit, denoted exit. We may think of
these as no-op statements.

If v is a node in a CFG then pred(v) denotes the set of predecessor nodes and
succ(v) the set of successor nodes.

For programs that are fully normalized (cf. Section 2.3), each node corre-
sponds to only one operation.

For now, we only consider simple statements, for which CFGs may be con-
structed in an inductive manner. The CFGs for assignments, output, return
statements, and declarations look as follows:

EreturnEoutputX = E var X

For the sequence S1 S2, we eliminate the exit node of S1 and the entry node of
S2 and glue the statements together:

S

S

1

2

Similarly, the other control structures are modeled by inductive graph construc-
tions (sometimes with branch edges labeled with true and false):
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E

S S1 2

E

S

truetrue

E

S

true falsefalse
false

Using this systematic approach, the iterative factorial function results in the
following CFG:

return f

true

var f

f=1

n>0

f=f*n

n=n−1

false

Exercise 2.6: Draw the AST and the CFG for the rec program from Section 2.2.

Exercise 2.7: If TIP were to be extended with a do-while construct (as in
do { x=x-1; } while(x>0)), what would the corresponding control flow
graphs look like?





Chapter 3

Type Analysis

The TIP programming language does not have explicit type declarations, but of
course the various operations are intended to be applied only to certain kinds of
values. Specifically, the following restrictions seem reasonable:

• arithmetic operations and comparisons apply only to integers;

• conditions in control structures must be integers;

• only integers can be input and output of the main function;

• only functions can be called, and with correct number of arguments;

• the unary * operator only applies to pointers (or null);

• field accesses are only performed on records, not on other types of values;
and

• the fields being accessed are guaranteed to be present in the records.

We assume that their violation results in runtime errors. Thus, for a given
program we would like to know that these requirements hold during execution.
Since this is a nontrivial question, we immediately know (Section 1.3) that it is
undecidable.

We resort to a conservative approximation: typability. A program is typable if
it satisfies a collection of type constraints that is systematically derived, typically
from the program AST. The type constraints are constructed in such a way
that the above requirements are guaranteed to hold during execution, but the
converse is not true. Thus, our type analysis will be conservative and reject some
programs that in fact will not violate any requirements during execution.

In most mainstream programming languages with static type checking, the
programmer must provide type annotations for all declared variables and func-
tions. Type annotations serve as useful documentation, and they also make it
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easier to design and implement type systems. TIP does not have type annota-
tions, so our type analysis must infer all the types, based on how the variables
and functions are being used in the program.

Exercise 3.1: Type checking also in mainstream languages like Java may reject
programs that cannot encounter runtime type errors. Give an example of
such a program. To make the exercise nontrivial, every instruction in your
program should be reachable by some input.

Exercise 3.2: Even popular programming languages may have static type
systems that are unsound. Inform yourself about Java’s covariant typing of
arrays. Construct an example Java program that passes all of javac’s type
checks but generates a runtime error due to this covariant typing. (Note that,
because you do receive runtime errors, Java’s dynamic type system is sound,
which is important to avert malicious attacks.)

The type analysis presented in this chapter is a variant of the Damas-Hindley-
Milner technique [Hin69, Mil78, Dam84], which forms the basis of the type
systems of many programming languages, including ML, OCaml, and Haskell.
Our constraint-based approach is inspired by Wand [Wan87]. To simplify the
presentation, we postpone treatment of records until Section 3.4, and we discuss
other possible extensions in Section 3.5.

The initial values of local variables are undefined in TIP programs, however,
for this type analysis we assume that all the variables are initialized before they
are used. In other words, this analysis is sound only for programs that never read
from uninitialized variables. (A separate analysis that is designed specifically to
check whether that property is satisfied is presented in Section 5.9.)

3.1 Types

We first define a language of types that will describe possible values:

Type → int
| Type
| ( Type , . . . , Type )→ Type

These type terms describe respectively integers, pointers, and functions. As
an example, we can assign the type (int)→int to the iterate function from
Section 2.2 and the type int to the first parameter p of the foo function. Each
kind of term is characterized by a term constructor with some arity. For example,
is a term constructor with arity 1 as it has one sub-term, and the arity of a

function type constructor (. . . )→ . . . is the number of function parameters plus
one for the return type.

The grammar would normally generate finite types, but for recursive func-
tions and data structures we need regular types. Those are defined as regular
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trees defined over the above constructors. (A possibly infinite tree is regular if it
contains only finitely many different subtrees.)

For example, we need infinite types to describe the type of the foo function
from Section 2.2, since the second parameter x may refer to the foo function
itself:

( int,( int,( int,( int,...)→int)→int)→int)→int

To express such recursive types concisely, we add the µ operator and type
variables to the language of types:

Type → . . .
| µ TypeVar . Type
| TypeVar

TypeVar → t | u | . . .

We use meta-variables τ ∈ Type and α ∈ TypeVar, often with subscripts, ranging
over types and type variables. A type of the form µα.τ is considered identical to
the type τ [µα.τ/α].1 With this extra notation, the type of the foo function can
be expressed like this:

µt.( int,t)→int

Exercise 3.3: Explain how regular types can be represented by finite automata
so that two types are equal if their automata accept the same language. Show
an automaton that represents the type µt.( int,t)→int.

We allow free type variables (i.e., type variables that are not bound by an
enclosing µ). Such type variables are implicitly universally quantified, meaning
that they represent any type. Consider for example the following function:

store(a,b) {

*b = a;

return 0;

}

It has type (t, t)→int where t is a free type variable meaning that it can be any
type, which corresponds to the polymorphic behavior of the function. Note
that such type variables are not necessarily entirely unconstrained: the type of a
may be anything, but it must match the type of whatever b points to. The more
restricted type (int, int)→int is also a valid type for the store function, but we
are usually interested in the most general solutions.

Exercise 3.4: What are the types of rec, f, and n in the recursive factorial
program from Section 2.2?

1Think of a term µα.τ as a quantifier that binds the type variable α in the sub-term τ . An
occurrence of α in a term τ is free if it is not bound by an enclosing µα. The notation τ1[τ2/α]
denotes a copy of τ1 where all free occurrences of α have been substituted by τ2.
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Exercise 3.5: Write a TIP program that contains a function with type
((int)→int)→(int,int)→int.

Type variables are not only useful for expressing recursive types; we also use
them in the following section to express systems of type constraints.

3.2 Type Constraints

For a given program we generate a constraint system and define the program
to be typable when the constraints are solvable. In our case we only need to
consider equality constraints over regular type terms with variables. This class
of constraints can be efficiently solved using a unification algorithm.

For each local variable, function parameter, and function name X we intro-
duce a type variable [[X]], and for each occurrence of a non-identifier expression
E a type variable [[E]]. Here, E refers to a concrete node in the abstract syntax tree
– not to the syntax it corresponds to. This makes our notation slightly ambiguous
but simpler than a pedantically correct description. (To avoid ambiguity, one
could, for example, use the notation [[E]]v where v is a unique ID of the syntax
tree node.) Assuming that all declared identifiers are unique (see Exercise 2.5),
there is no need to use different type variables for different occurrences of the
same identifier.

The constraints are systematically defined for each expression, statement,
and function in the given program:

I: [[I]] = int
E1 op E2: [[E1]] = [[E2]] = [[E1 op E2]] = int
E1==E2: [[E1]] = [[E2]] ∧ [[E1==E2]] = int
input: [[input]] = int
X = E: [[X]] = [[E]]

output E: [[E]] = int
if (E) S: [[E]] = int

if (E) S1 else S2: [[E]] = int
while (E) S: [[E]] = int

X(X1,. . .,Xn){ . . .return E; }: [[X]] = ([[X1]],. . . ,[[Xn]])→[[E]]
E(E1,. . .,En): [[E]] = ([[E1]],. . . ,[[En]])→[[E(E1,. . . ,En)]]

alloc E: [[alloc E]] = [[E]]
&X: [[&X]] = [[X]]
null: [[null]] = α
*E: [[E]] = [[*E]]

*E1 = E2: [[E1]] = [[E2]]

The notation ‘op’ here represents any of the binary operators, except ==which
has its own rule. In the rule for null, α denotes a fresh type variable. (The
purpose of this analysis is not to detect potential null pointer errors, so this
simple model of null suffices.) Note that program variables and var blocks do
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not yield any constraints and that parenthesized expression are not present in
the abstract syntax.

For the program

short() {

var x, y, z;

x = input;

y = alloc x;

*y = x;

z = *y;

return z;

}

we obtain the following constraints:

[[short]] = ()→[[z]]
[[input]] = int
[[x]] = [[input]]
[[alloc x]] = [[x]]
[[y]] = [[alloc x]]
[[y]] = [[x]]
[[z]] = [[*y]]
[[y]] = [[*y]]

Most of the constraint rules are straightforward. For example, for any syntac-
tic occurrence of E1==E2 in the program being analyzed, the two sub-expressions
E1 and E2 must have the same type, and the result is always of type integer.

Exercise 3.6: Explain each of the above type constraint rules, most importantly
those involving functions and pointers.

For a complete program, we add constraints to ensure that the types of the
parameters and the return value of the main function are int:

main(X1,. . .,Xn){ . . .return E; }: [[X1]] = . . . [[Xn]] = [[E]] = int

In this way, a given program (or fragment of a program) gives rise to a
collection of equality constraints on type terms with variables, and the collection
of constraints can be built by a simple traversal of the AST of the program being
analyzed. The order by which the AST is traversed is irrelevant.

All term constructors furthermore satisfy the general term equality axiom:

c(τ1, . . . , τn) = c′(τ ′1, . . . , τ
′
n) =⇒ τi = τ ′i for each i

where c and c′ are term constructors and each τi and τ ′i is a sub-term. In the
previous example two of the constraints are [[y]] = [[x]] and [[y]] = [[*y]], so by the
term equality axiom we also have [[x]] = [[*y]].
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Furthermore, as one would expect for an equality relation, we have reflexi-
tivity, symmetry, and transitivity:

τ1 = τ1

τ1 = τ2 =⇒ τ2 = τ1

τ1 = τ2 ∧ τ2 = τ3 =⇒ τ1 = τ3

for all terms τ1, τ2, and τ3.
A solution assigns a type to each type variable, such that all equality con-

straints are satisfied.2 The correctness claim for the type analysis is that the
existence of a solution implies that the specified runtime errors cannot occur
during execution. A solution for the identifiers in the short program is the
following:

[[short]] = ()→int
[[x]] = int
[[y]] = int
[[z]] = int

Exercise 3.7: Assume y = alloc x in the short function is changed to
y = 42. Show that the resulting constraints are unsolvable.

Exercise 3.8: Give a reasonable definition of what it means for one solution to
be “more general” than another. (See page 21 for an example of two types
where one is more general than the other.)

Exercise 3.9: This exercise demonstrates the importance of the term equality
axiom. First explain what the following TIP code does when it is executed:

var x,y;

x = alloc 1;

y = alloc (alloc 2);

x = y;

Then generate the type constraints for the code, and apply the unification
algorithm (by hand).

Exercise 3.10: Extend TIP with procedures, which, unlike functions, do not
return anything. Show how to extend the language of types and the type
constraint rules accordingly.
2We can define precisely what we mean by “solution” as follows. A substitution is a mapping σ

from type variables to types. Applying a substitution σ to a type τ , denoted τσ, means replacing
each free type variable α in τ by σ(α). A solution to a set of type constraints is a substitution σ where
τ1σ is identical to τ2σ for each of the type constraints τ1 = τ2.
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3.3 Solving Constraints with Unification

If solutions exist, then they can be computed in almost linear time using a
unification algorithm for regular terms as explained below. Since the constraints
may also be extracted in linear time, the whole type analysis is quite efficient.

The unification algorithm we use is based on the familiar union-find data
structure (also called a disjoint-set data structure) from 1964 for representing
and manipulating equivalence relations [GF64]. This data structure consists of a
directed graph of nodes that each have exactly one edge to its parent node (which
may be the node itself in which case it is called a root). Two nodes are equivalent
if they have a common ancestor, and each root is the canonical representative of its
equivalence class. Three operations are provided:3

• MakeSet(x): adds a new node x that initially is its own parent.

• Find(x): finds the canonical representative of x by traversing the path
to the root, performing path compression on the way (meaning that the
parent of each node on the traversed path is set to the canonical represen-
tative).

• Union(x,y): finds the canonical representatives of x and y, and makes one
parent of the other unless they are already equivalent.

In pseudo-code:

procedureMakeSet(x)
x.parent := x

end procedure

procedure Find(x)
if x.parent ̸= x then

x.parent := Find(x.parent)
end if
return x.parent

end procedure

procedure Union(x, y)
xr := Find(x)
yr := Find(y)
if xr ̸= yr then

xr.parent := yr

end if
end procedure

3We here consider a simple version of union-find without union-by-rank; for a description of the
full version with almost-linear worst case time complexity see a textbook on data structures.
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The unification algorithm uses union-find by associating a node with each
term (including sub-terms) in the constraint system. For each term τ we initially
invokeMakeSet(τ). Note that each term at this point is either a type variable
or a proper type (i.e. integer, pointer, or function); µ terms are only produced
for presenting solutions to constraints, as explained below. For each constraint
τ1 = τ2 we invoke Unify(τ1, τ2), which unifies the two terms if possible and
enforces the general term equality axiom by unifiying sub-terms recursively:

procedure Unify(τ1,τ2)
τ r1 := Find(τ1)
τ r2 := Find(τ2)
if τ r1 ̸= τ r2 then

if τ r1 and τ r2 are both type variables then
Union(τ r1 , τ r2 )

else if τ r1 is a type variable and τ r2 is a proper type then
Union(τ r1 , τ r2 )

else if τ r1 is a proper type and τ r2 is a type variable then
Union(τ r2 , τ r1 )

else if τ r1 and τ r2 are proper types with same type constructor then
Union(τ r1 , τ r2 )
for each pair of sub-terms τ ′1 and τ ′2 of τ r1 and τ r2 , respectively do

Unify(τ ′1, τ ′2)
end for

else
unification failure

end if
end if

end procedure

Unification fails if attempting to unify two terms with different constructors
(where function type constructors are considered different if they have different
arity).

Note that the Union(x, y) operation is asymmetric: it always picks the
canonical representative of the resulting equivalence class as the one from the
second argument y. Also, Unify is carefully constructed such that the second
argument toUnion can only be a type variable if the first argument is also a type
variable. This means that proper types (i.e., terms that are not type variables)
take precedence over type variables for becoming canonical representatives, so
that it always suffices to consider only the canonical representative instead of all
terms in the equivalence class.

Reading the solution after all constraints have been processed is then easy.
For each program variable or expression that has an associated type variable,
simply invoke Find to find the canonical representative of its equivalence class.
If the canonical representative has sub-terms (for example, in the term τ we say
that τ is a sub-term), find the solution recursively for each sub-term. The only
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complication arises if this recursion through the sub-terms leads to an infinite
type, in which case we introduce a µ term accordingly.

Exercise 3.11: Argue that the unification algorithm works correctly, in the
sense that it finds a solution to the given constraints if one exists. Additionally,
argue that if multiple solutions exist, the algorithm finds the uniquely most
general one (cf. Exercise 3.8).

(The most general solution, when one exists, for a program expression is also
called the principal type of the expression.)

The unification solver only needs to process each constraint once. This means
that although we conceptually first generate the constraints and then solve them,
in an implementation we might as well interleave the two phases and solve the
constraints on-the-fly, as they are being generated.

The complicated factorial program from Section 2.2 generates the following
constraints (duplicates omitted):

[[foo]] = ([[p]],[[x]])→[[f]] [[*p==0]] = int
[[*p]] = int [[f]] = [[1]]
[[1]] = int [[0]] = int
[[p]] = [[*p]] [[q]] = [[alloc 0]]
[[alloc 0]] = [[0]] [[q]] = [[(*p)-1]]
[[q]] = [[*q]] [[*p]] = int
[[f]] = [[(*p)*(x(q,x))]] [[(*p)*(x(q,x))]] = int
[[x(q,x)]] = int [[x]] = ([[q]],[[x]])→[[x(q,x)]]
[[input]] = int [[main]] = ()→[[foo(&n,foo)]]
[[n]] = [[input]] [[&n]] = [[n]]
[[foo]] = ([[&n]],[[foo]])→[[foo(&n,foo)]] [[*p]] = [[0]]
[[(*p)-1]] = int [[foo(&n,foo)]] = int

These constraints have a solution, where most variables are assigned int, except
these:
[[p]] = int
[[q]] = int
[[alloc 0]] = int
[[x]] = µt.( int,t)→int
[[foo]] = µt.( int,t)→int
[[&n]] = int
[[main]] = ()→int

As mentioned in Section 3.1, recursive types are needed for the foo function and
the x parameter. Since a solution exists, we conclude that our program is type
correct.

Exercise 3.12: Check (by hand or using the Scala implementation) that the
constraints and the solution shown above are correct for the complicated
factorial program.
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Exercise 3.13: Consider this fragment of the example program shown earlier:

x = input;

*y = x;

z = *y;

Explain step-by-step how the unification algorithm finds the solution, includ-
ing how the union-find data structure looks in each step.

Recursive types are also required when analyzing TIP programs that manip-
ulate data structures. The example program

var p;

p = alloc null;

*p = p;

creates these constraints:

[[null]] = t
[[alloc null]] = [[null]]
[[p]] = [[alloc null]]
[[p]] = [[p]]

which for [[p]] has the solution [[p]] = µt. t that can be unfolded to [[p]] = . . . .

Exercise 3.14: Show what the union-find data structure looks like for the
above example program.

Exercise 3.15: Generate and solve the constraints for the iterate example
program from Section 2.2.
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Exercise 3.16: Generate and solve the type constraints for this program:

map(l,f,z) {

var r;

if (l==null) r=z;

else r=f(map(*l,f,z));

return r;

}

foo(i) {

return i+1;

}

main() {

var h,t,n;

t = null;

n = 42;

while (n>0) {

n = n-1;

h = alloc null;

*h = t;

t = h;

}

return map(h,foo,0);

}

What is the output from running the program?
(Try to find the solutionsmanually; you can then use the Scala implementation
to check that they are correct.)

3.4 Record Types

To extend the type analysis to also work for programs that use records, we first
extend the language of types with record types:

Type → . . . | { Id : Type , . . . , Id : Type }

For example, the record type {a:int,b:int} describes records that have two fields,
a and b, both with integer values. Record types with different sets of field names
are considered as different term constructors.

Our goal is to be able to check conservatively whether the different kinds of
errors listed in the beginning of the chapter may appear in the program being
analyzed. This means that we need to distinguish records from other kinds of
values. Specifically, we want the analysis to check that field accesses are only
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performed on records, not on other types of values, and that the fields being
accessed are present.

As a first attempt, the type constraints for record construction and field
lookup can be expressed as follows, inspired by our treatment of pointers and
dereferences. (Field write operations are handled in Exercise 3.19.)

{ X1:E1,. . ., Xn:En }: [[{ X1:E1,. . ., Xn:En }]] = {X1:[[E1]], . . . ,Xn:[[En]]}
E.X: [[E]] = { . . . ,X:[[E.X]], . . . }

Intuitively, the constraint rule for field lookup says that the type of Emust be
a record type that contains a field named X with the same type as E.X. The
right-hand-side of this constraint rule is, however, not directly expressible in our
language of types. One way to remedy this, without requiring any modifications
of our unification algorithm, is to require that every record type contains all
record fields that exist in the program, and add a special type, ⋄, representing
absent fields:

Type → . . . | ⋄

Let F = {f1, f2, . . . , fm} be the set of all field names. We then use the following
two constraint rules instead of the ones above.

{ X1:E1,. . ., Xn:En }: [[{ X1:E1,. . ., Xn:En }]] = {f1:γ1, . . . ,fm:γm}

where γi =

{
[[Ej ]] if fi = Xj for some j ∈ {1, . . . , n}
⋄ otherwise

for each i = 1, 2, . . . ,m

E.X: [[E]] = {f1:γ1, . . . ,fm:γm} ∧ [[E.X]] ̸= ⋄

where γi =

{
[[E.X]] if fi = X
αi otherwise

for each i = 1, 2, . . . ,m

Each αi denotes a fresh type variable. The constraints of the form [[E.X]] ̸= ⋄ can
easily be checked separately after the unification process has been completed.

Exercise 3.17: Explain why it is easier to check the constraints of the form
[[E.X]] ̸= ⋄ after instead of during the unification process (i.e., as soon as the
other constraints related to field access operations are processed).

As an example, the two statements

x = {b: 42, c: 87};

y = x.a;

generate the following constraints, assuming that a, b, and c are the only fields
in the program.
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[[x]] = [[{b: 42, c: 87}]]
[[{b: 42, c: 87}]] = {a:⋄, b:[[42]], c:[[87]]}
[[42]] = int
[[87]] = int
[[y]] = [[x.a]]
[[x]] = {a:[[x.a]], b:x1, c:x2}
[[x.a]] ̸= ⋄

The unconstrained type variables x1 and x2 in the solution for [[x]] reflect the
fact that the fields b and c are irrelevant for the field lookup x.a. Similarly, ⋄
appears in the solution for [[{b: 42, c: 87}]], because the a field is absent in
that record.

Exercise 3.18: Generate and solve the type constraints for the following pro-
gram:

var a,b,c,d;

a = {f:3, g:17};

b = a.f;

c = {f:alloc 5, h:15};

d = c.f;

What happens if you change c.f to c.g in the last line?

Exercise 3.19: Specify suitable type constraint rules for both forms of field
write statements, X1.X2=E; and (*E1).X=E2;. Then generate and solve the
type constraints for the following program:

var a,b,c;

a = {f:null, g:17};

b = alloc {g:42, h:87};

a.f = b;

(*b).g = 117;

c = (*(a.f)).g;

Exercise 3.20: As mentioned in Section 2.1, the values of record fields in TIP
programs cannot themselves be records. How can we extend the type analysis
to check whether a given program satisfies this property?



32 3 TYPE ANALYSIS

Exercise 3.21: Assume we extend the TIP language with array operations.
Array values are constructed using a new form of expressions (not to be
confused with the syntax for records):

Exp → . . . | { Exp , . . .,Exp }

and individual elements are read and written as follows:

Exp → . . . | Exp [ Exp ]
Stm → . . . | Exp [ Exp ] = Exp ;

For example, the following statements construct an array containing two
integers, then overwrites the first one, and finally reads both entries:

a = { 17, 87 };

a[0] = 42;

x = a[0] + a[1]; // x is now 129

Unlike records, arrays are constructed in the heap and passed by reference, so
in the first line, the contents of the array are not copied, and a is like a pointer
to the array containing the two integers.

The type system is extended accordingly with an array type constructor:

Type → . . . | Type []

As an example, the type int[][] denotes arrays of arrays of integers.

Give appropriate type constraints for array operations. Then use the type
analysis to check that the following program is typable and infer the type of
each program variable:

var x,y,z,t;

x = {2,4,8,16,32,64};

y = x[x[3]];

z = {{},x};

t = z[1];

t[2] = y;
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Exercise 3.22: As mentioned in Chapter 2, TIP does not have booleans as a
separate type of values at runtime, but simply represents false as 0 and true as
any other integer. Nevertheless, it can be useful to have a static type analysis
that rejects expressions like (x > y) * 17 and branches like if (x * 42 -
y), since programmers rarely intend to use results of comparisons in integer
computations, or use results of integer computations as branch conditions.
As a first step, let us extend our language of types with a new type, bool:

Type → . . . | bool

How can we now change the type rules from page 22 such that the resulting
type analysis rejects meaningless expressions like those above, but still accepts
programs that programmers likely want to write in practice?
(See also Exercise 5.35, which is about a different approach to obtain such
type information.)

Exercise 3.23: Discuss how TIP could be extended with strings and operations
on strings, and how the type analysis could be extended accordingly to check,
for example, that the string operations are only applied to strings and not to
other types of values.

3.5 Limitations of the Type Analysis

The type analysis is of course only approximate, which means that certain
programs will be unfairly rejected. A simple example is this:

f() {

var x;

x = alloc 17;

x = 42;

return x + 87;

}

This program has no type errors at runtime, but it is rejected by our type checker
because the analysis is flow-insensitive: the order of execution of the program
instructions is abstracted away by the analysis, so intuitively it does not know
that xmust be an integer at the return expression. In the following chapters we
shall see how to perform flow-sensitive analysis that does distinguish between
the different program points.

Another limitation, which is even more significant from a practical point of
view, is the current treatment of polymorphic types. In fact, polymorphic types
are not very useful in their current form. Consider this example program:

f(x) {
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return *x;

}

main() {

return f(alloc 1) + *(f(alloc(alloc 2));

}

It never causes an error at runtime but is not typable since it among others
generates constraints equivalent to

int = [[x]] = int

which are clearly unsolvable. For this program, we could analyze the f function
first, resulting in this polymorphic type:

[[f]] = ( x)→ x

When analyzing the main function, at each call to fwe could then instantiate the
polymorphic type according to the type of the argument: At the first call, the
argument has type int so in this casewe treat f as having the type ( int)→int, and
at the second call, the argument has type int so here we treat f as having the
type ( int)→ int. The key property of the program that enables this technique is
the observation that the polymorphic function is not recursive. This idea is called
let-polymorphism (and this is essentially how Damas-Hindley-Milner-style type
analysis actually works in ML and related languages). In Section 8.2 we shall see
a closely related program analysismechanism called context sensitivity. The price
of the increased precision of let-polymorphism in type analysis is that the worst-
case complexity increases from almost-linear to exponential [KTU90, Mai90].

Even with let-polymorphism, infinitely many other examples will inevitably
remain rejected. An example:

polyrec(g,x) {

var r;

if (x==0) { r=g; } else { r=polyrec(2,0); }

return r+1;

}

main() {

return polyrec(null,1);

}

With functions that are both polymorphic and recursive, type analysis becomes
undecidable in the general case [Hen93, KTU93].

Exercise 3.24: Explain the runtime behavior of the polyrec program, and
why it is unfairly rejected by our type analysis, and why let-polymorphism
does not help.
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Yet another limitation of the type system presented in this chapter is that it
ignoresmany other kinds of runtime errors, such as dereference of null pointers,
reading of uninitialized variables, division by zero, and the more subtle escaping
stack cell demonstrated by this program:

baz() {

var x;

return &x;

}

main() {

var p;

p = baz();

*p = 1;

return *p;

}

The problem in this program is that *p denotes a stack cell that has “escaped”
from the baz function. As we shall see in Section 11.7, such problems can instead
be handled by other kinds of static analysis.





Chapter 4

Lattice Theory

The technique for static analysis that we will study next is based on the mathe-
matical theory of lattices, which we briefly review in this chapter. The connection
between lattices and program analysis was established in the seminal work by
Kildall, Kam and Ullman [Kil73, KU77].

4.1 Motivating Example: Sign Analysis

As amotivating example, assume that wewish to design an analysis that can find
out the possible signs of the integer values of variables and expressions in a given
program. In concrete executions, values can be arbitrary integers. In contrast,
our analysis considers an abstraction of the integer values by grouping them into
the three categories, or abstract values: positive (+), negative (-), and zero (0).
Similar to the analysis we considered in Chapter 3, we circumvent undecidability
by introducing approximation. That is, the analysis must be prepared to handle
uncertain information, in this case situations where it does not know the sign
of some expression, so we add a special abstract value (⊤) representing “don’t
know”. We must also decide what information we are interested in for the cases
where the sign of some expression is, for example, positive in some executions
but not in others. For this example, let us assume we are interested in definite
information, that is, the analysis should only report + for a given expression
if it is certain that this expression will evaluate to a positive number in every
execution of that expression and ⊤ otherwise. In addition, it turns out to be
beneficial to also introduce an abstract value ⊥ for expressions whose values
are not numbers (but instead, say, pointers) or have no value in any execution
because they are unreachable from the program entry.

Consider this program:

var a,b,c;
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a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

Here, the analysis could conclude that a and b are positive numbers in all possible
executions at the end of the program. The sign of c is either positive or negative
depending on the concrete execution, so the analysis must report ⊤ for that
variable.

For this analysis we have an abstract domain consisting of the five abstract
values {+, -, 0,⊤,⊥}, which we can organize as follows with the least precise
information at the top and the most precise information at the bottom:

- 0 +

⊤

⊥

The ordering reflects the fact that⊥ represents the empty set of integer values
and ⊤ represents the set of all integer values. Note that ⊤may arise for different
reasons: (1) In the example above, there exist executions where c is positive and
executions where c is negative, so, for this choice of abstract domain, ⊤ is the
only sound option. (2) Due to undecidability, imperfect precision is inevitable,
so no matter how we design the analysis there will be programs where, for
example, some variable can only have a positive value in any execution but the
analysis is not able to show that it could not also have a negative value (recall
the TM(j) example from Chapter 1).

The five-element abstract domain shown above is an example of a so-called
complete lattice. We continue the development of the sign analysis in Section 5.1,
but we first need the mathematical foundation in place.

4.2 Lattices

A partial order is a set S equipped with a binary relation ⊑ where the following
conditions are satisfied:

• reflexivity: ∀x ∈ S : x ⊑ x

• transitivity: ∀x, y, z ∈ S : x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z

• anti-symmetry: ∀x, y ∈ S : x ⊑ y ∧ y ⊑ x =⇒ x = y
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The abstract domain shown in Section 4.1 is an example of a partial order, where
S = {-, 0, +,⊤,⊥} and ⊑ specifies the ordering of the elements, for example,
⊥ ⊑ + and + ⊑ ⊤.

When x ⊑ y we say that y is a safe approximation of x, or that x is at least as
precise as y. Formally, a partial order is a pair (S,⊑), but we often use the same
name for the partial order and its underlying set S. Also, we sometimes write
y ⊒ x (“y is greater than or equal x”) instead of x ⊑ y (“x is less than or equal
y”).

Let X ⊆ S. We say that y ∈ S is an upper bound for X , written X ⊑ y, if we
have ∀x ∈ X : x ⊑ y. Similarly, y ∈ S is a lower bound for X , written y ⊑ X , if
∀x ∈ X : y ⊑ x. A least upper bound, written

⊔
X , is defined by:

X ⊑
⊔

X ∧ ∀y ∈ S : X ⊑ y =⇒
⊔

X ⊑ y

Dually, a greatest lower bound, written ⊔X , is defined by:

⊔X ⊑ X ∧ ∀y ∈ S : y ⊑ X =⇒ y ⊑ ⊔X
For pairs of elements, we sometimes use the infix notation x ⊔ y (called the join
of x and y) instead of

⊔
{x, y} and x ⊓ y (called the meet of x and y) instead of⊔{x, y}.

We also sometimes use the subscript notation, for example writing
⊔

a∈A f(a)
instead of

⊔
{f(a) | a ∈ A}.

The least upper bound operation plays an important role in program analysis.
As we shall see in Chapter 5, we use least upper bound when combining abstract
information from multiple sources, for example when control flow merges after
the branches of if statements.

Exercise 4.1: Let X ⊆ S. Prove that if
⊔

X exists, then it must be unique.
(A similar argument shows that the same property holds for greatest lower
bounds: if ⊔X exists, then it must be unique.)

Exercise 4.2: Prove that if x ⊔ y exists then x ⊑ y ⇐⇒ x ⊔ y = y, and
conversely, if x ⊓ y exists then x ⊑ y ⇐⇒ x ⊓ y = x.

A lattice is a partial order (S,⊑) in which x⊔ y and x⊓ y exist for all x, y ∈ S.
A complete lattice is a partial order (S,⊑) in which

⊔
X and ⊔X exist for all

X ⊆ S. Trivially, every complete lattice is a lattice. Most lattices we encounter
in program analysis are complete lattices.

Exercise 4.3: Argue that the abstract domain presented in Section 4.1 is a
complete lattice.

Exercise 4.4: Prove that if (S,⊑) is a nonempty finite lattice (i.e., a lattice
where S is nonempty and finite), then (S,⊑) is also a complete lattice.
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Exercise 4.5: Give an example of a nonempty lattice that is not a complete
lattice.

Any finite partial order may be illustrated by a Hasse diagram in which
the elements are nodes and the order relation is the transitive closure of edges
leading from lower to higher nodes. With this notation, all of the following
partial orders are also lattices:

whereas these partial orders are not lattices:

Exercise 4.6: Why do these two diagrams not define lattices?

It follows from the following exercise that to show that a partial order is
a complete lattice, it suffices to argue that a least upper bound exists for each
subset of its elements; the presence of greatest lower bounds then comes for free
(and the dual property also holds).

Exercise 4.7: Prove that if S is a partially ordered set, then every subset of S
has a least upper bound if and only if every subset of S has a greatest lower
bound. (Hint: ⊔X =

⊔
{y ∈ S | y ⊑ X}.)

Every complete lattice has a unique largest element denoted ⊤ (pronounced
top) and a unique smallest element denoted ⊥ (pronounced bottom).

Exercise 4.8: Assume S is a partial order where
⊔

S and ⊔S exist. Prove that⊔
S and ⊔S are the unique largest element and the unique smallest element,

respectively, in S. In other words, we have ⊤ =
⊔
S and ⊥ = ⊔S.

Exercise 4.9: Assume S is a partial order where
⊔
S, ⊔S, ⊔ ∅ and ⊔∅ exist.

Prove that
⊔
S = ⊔∅ and that ⊔S =

⊔
∅. (Together with Exercise 4.8 we

then have ⊤ = ⊔∅ and ⊥ =
⊔
∅.)
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The height of a lattice is defined to be the length of the longest path from ⊥
to ⊤. As an example, the height of the sign analysis lattice from Section 4.1 is 2.
For some lattices the height is infinite (see Section 6.1).

4.3 Constructing Lattices

Every set A = {a1, a2, . . . } defines a complete lattice (P(A),⊆), where ⊥ = ∅,
⊤ = A, x ⊔ y = x ∪ y, and x ⊓ y = x ∩ y. We call this the powerset lattice for A.
For a set with four elements, {0, 1, 2, 3}, the powerset lattice looks like this:

∅

{0} {1} {2} {3}

{0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3}

{0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}

{0, 1, 2, 3}

The above powerset lattice has height 4. In general, the lattice (P(A),⊆) has
height |A|. We use powerset lattices in Chapter 5 to represent sets of variables
or expressions.

The reverse powerset lattice for a set A is the complete lattice (P(A),⊇).

Exercise 4.10: Draw the Hasse diagram of the reverse powerset lattice for the
set {foo, bar, baz}.

If A = {a1, a2, . . . } is a set, then flat(A) illustrated by

a1 a2 · · ·

⊤

⊥

is a complete lattice with height 2. As an example, the set Sign = {+, -, 0,⊤,⊥}
with the ordering described in Section 4.1 forms a complete lattice that can also
be expressed as flat({+, 0, -}).
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If L1, L2, . . . , Ln are complete lattices, then so is the product:

L1 × L2 × . . .× Ln = {(x1, x2, . . . , xn) | xi ∈ Li}

where the order ⊑ is defined componentwise:1

(x1, x2, . . . , xn) ⊑ (x′
1, x

′
2, . . . , x

′
n) ⇐⇒ ∀i = 1, 2, . . . , n : xi ⊑ x′

i

Products of n identical lattices may be written concisely asLn = L× L× . . .× L︸ ︷︷ ︸
n

.

Exercise 4.11: Show that the ⊔ and ⊓ operators for a product lattice L1 ×
L2 × . . .× Ln can be computed componentwise (i.e. in terms of the ⊔ and ⊓
operators from L1, L2, . . . , Lk).

Exercise 4.12: Show that height(L1× . . .×Ln) = height(L1)+ . . .+height(Ln).

IfA is a set andL is a complete lattice, thenwe obtain a complete lattice called
a map lattice consisting of the set of functions from A to L, ordered pointwise:2

A → L =
{
[a1 7→ x1, a2 7→ x2, . . .]

∣∣ A = {a1, a2, . . .} ∧ x1, x2, . . . ∈ L
}

f ⊑ g ⇐⇒ ∀ai ∈ A : f(ai) ⊑ g(ai)where f, g ∈ A → L

We have already seen that the set Sign = {+, -, 0,⊤,⊥} with the ordering
described in Section 4.1 forms a complete lattice that we use for describing
abstract values in the sign analysis. An example of a map lattice is StateSign =
Var → Sign where Var is the set of variable names occurring in the program
that we wish to analyze. Elements of this lattice describe abstract states that
provide abstract values for all variables. An example of a product lattice is
ProgramSign = StateSignn where n is the number of nodes in the CFG of the
program. We shall use this lattice, which can describe abstract states for all nodes
of the program CFG, in Section 5.1 for building a flow-sensitive sign analysis.
This example also illustrates that the lattices we use may depend on the program
being analyzed: the sign analysis depends on the set of variables that occur in
the program and also on its CFG nodes.

Exercise 4.13: Show that the ⊔ and ⊓ operators for a map lattice A → L can
be computed pointwise (i.e. in terms of the ⊔ and ⊓ operators from L).

Exercise 4.14: Show that if A is finite and L has finite height then the height
of the map lattice A → L is height(A → L) = |A| · height(L).

1We often abuse notation by using the same symbol ⊑ for many different order relations, in this
case from the n+ 1 different lattices, but it should always be clear from the context which lattice it
belongs to. The same applies to the other operators ⊒, ⊔, ⊓ and the top/bottom symbols ⊤, ⊥.

2The notation [a1 7→ x1, a2 7→ x2, . . .] means the function that maps a1 to x1, a2 to x2, etc.
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If L1 and L2 are lattices, then a function f : L1 → L2 is a homomorphism
if ∀x, y ∈ L1 : f(x ⊔ y) = f(x) ⊔ f(y) ∧ f(x ⊓ y) = f(x) ⊓ f(y). A bijective
homomorphism is called an isomorphism. Two lattices are isomorphic if there
exists an isomorphism from one to the other.

Exercise 4.15: Argue that every product lattice Ln is isomorphic to a map
lattice A → L for some choice of A, and vice versa.

Note that by Exercise 4.15 the lattice StateSignn is isomorphic to Node →
StateSign where Node is the set of CFG nodes, so which of the two variants we
use when describing the sign analysis is only a matter of preferences.

If L is a complete lattice, then so is lift(L), which is a copy of L but with a
new bottom element:
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It has height(lift(L)) = height(L) + 1 if L has finite height. One use of lifted
lattices is for defining the lattice used in interval analysis (Section 6.1), another
is for representing reachability information (Section 8.2).

4.4 Equations, Monotonicity, and Fixed Points

Continuing the sign analysis from Section 4.1, what are the signs of the variables
at each line of the following simple program?

var a,b; // 1

a = 42; // 2

b = a + input; // 3

a = a - b; // 4

We can derive a system of equality constraints (equations) with one constraint
variable for each program variable and line number from the program:3

a1 = ⊤
b1 = ⊤
a2 = +

3We use the term constraint variable to denote variables that appear in mathematical constraint
systems, to avoid confusion with program variables that appear in TIP programs.
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b2 = b1
a3 = a2
b3 = a2 + ⊤
a4 = a3 - b3
b4 = b3

For example, a2 denotes the abstract value of a at the program point immediately
after line 2. The operators + and - here work on abstract values, which we return
to in Section 5.1. In this constraint system, the constraint variables have values
from the abstract value lattice Sign defined in Section 4.3. We can alternatively
derive the following equivalent constraint systemwhere each constraint variable
instead has a value from the abstract state lattice StateSign from Section 4.3:4

x1 = [a 7→ ⊤, b 7→ ⊤]
x2 = x1[a 7→ +]
x3 = x2[b 7→ x2(a) + ⊤]
x4 = x3[a 7→ x3(a) - x3(b)]

Here, each constraint variable models the abstract state at a program point;
for example, x1 models the abstract state at the program point immediately
after line 1. Notice that each equation only depends on preceding ones for this
example program, so in this case the solution can be found by simple substitution.
However, mutually recursive equations may appear, for example for programs
that contain loops (see Section 5.1).

Also notice that it is important for the analysis of this simple program that the
order of statements is taken into account, which is called flow-sensitive analysis.
Specifically, when a is read in line 3, the value comes from the assignment to a
in line 2, not from the one in line 4.

Exercise 4.16: Give a solution to the constraint system above (that is, values
for x1, . . . , x4 that satisfy the four equations).

Exercise 4.17: Why is the unification solver from Chapter 3 not suitable for
this kind of constraints?

We now show how to solve such constraint systems in a general setting.

A function f : L1 → L2 where L1 and L2 are lattices is monotone (or order-
preserving) when ∀x, y ∈ L1 : x ⊑ y =⇒ f(x) ⊑ f(y). As the lattice order when
used in program analysis represents precision of information, the intuition of
monotonicity is that “more precise input does not result in less precise output”.

4The notation f [a1 7→ xn, . . . , an 7→ xn] means the function that maps ai to xi, for each
i = 1, . . . , n and for all other inputs gives the same output as the function f .
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Exercise 4.18: A function f : L → L where L is a lattice is extensive when
∀x ∈ L : x ⊑ f(x). Assume L is the powerset lattice P({0, 1, 2, 3, 4}) Give
examples of different functions L → L that are, respectively,
(a) extensive and monotone,

(b) extensive but not monotone,

(c) not extensive but monotone, and

(d) not extensive and not monotone.

Exercise 4.19: Prove that every constant function is monotone.

Exercise 4.20: A function f : L1 → L2 where L1 and L2 are lattices is distribu-
tive when ∀x, y ∈ L1 : f(x) ⊔ f(y) = f(x ⊔ y).
(a) Show that every distributive function is also monotone.

(b) Show that not every monotone function is also distributive.

Exercise 4.21: Prove that a function f : L1 → L2 where L1 and L2 are lattices
is monotone if and only if ∀x, y ∈ L1 : f(x) ⊔ f(y) ⊑ f(x ⊔ y).

Exercise 4.22: Prove that function composition preserves monotonicity. That
is, if f : L1 → L2 and g : L2 → L3 are monotone, then so is their composition
g ◦ f , which is defined by (g ◦ f)(x) = g(f(x)).

The definition of monotonicity generalizes naturally to functions with multi-
ple arguments: for example, a function with two arguments f : L1 × L2 → L3

where L1, L2, and L3 are lattices is monotone when ∀x1, y1 ∈ L1, x2 ∈ L2 : x1 ⊑
y1 =⇒ f(x1, x2) ⊑ f(y1, x2) and ∀x1 ∈ L1, x2, y2 ∈ L2 : x2 ⊑ y2 =⇒
f(x1, x2) ⊑ f(x1, y2).

Exercise 4.23: The operators ⊔ and ⊓ can be viewed as functions. For example,
x1 ⊔ x2 takes as input x1, x2 ∈ L and returns an element from L as output.
Show that ⊔ and ⊓ are monotone.

Exercise 4.24: Let f : Ln → Ln be a function n arguments over a lattice L.
We can view such a function in different ways: either as function with n
arguments from L, or as a function with single argument from the product
lattice Ln. Argue that this does not matter for the definition of monotonicity.
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Exercise 4.25: Show that set difference, X\Y , as a function with two argu-
ments over a powerset lattice is monotone in the first argument X but not in
the second argument Y .

Exercise 4.26: Recall that f [a 7→ x] denotes the function that is identical to
f except that it maps a to x. Assume f : L1 → (A → L2) and g : L1 → L2

are monotone functions where L1 and L2 are lattices and A is a set, and let
a ∈ A. (Note that the codomain of f is a map lattice.) Show that the function
h : L1 → (A → L2) defined by h(x) = f(x)[a 7→ g(x)] is monotone.

Also show that the following claim is wrong: The map update operation
preserves monotonicity in the sense that if f : L → L is monotone then so is
f [a 7→ x] for any lattice L and a, x ∈ L.

We say that x ∈ L is a fixed point for f if f(x) = x. A least fixed point x for f
is a fixed point for f where x ⊑ y for every fixed point y for f .

Let L be a complete lattice. An equation system5 over L is of the form

x1 = f1(x1, . . . , xn)
x2 = f2(x1, . . . , xn)
...
xn = fn(x1, . . . , xn)

where x1, . . . , xn are variables and f1, . . . , fn : L
n → L are functions which we

call constraint functions. A solution to an equation system provides a value from
L for each variable such that all equations are satisfied.

We can combine the n functions into one, f : Ln → Ln,

f(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
in which case the equation system looks like

x = f(x)

where x ∈ Ln. This clearly shows that a solution to an equation system is the
same as a fixed point of its functions. As we aim for the most precise solutions,
we want least fixed points.

Exercise 4.27: Show that f is monotone if and only if each f1, . . . , fn is mono-
tone, where f is defined from f1, . . . , fn as above.

As an example, for the equation system from earlier in this section

x1 = [a 7→ ⊤, b 7→ ⊤]
x2 = x1[a 7→ +]
5We also use the broader concept of constraint systems. An equation system is a constraint system

where all constraint are equalities. On page 49 we discuss other forms of constraints.
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x3 = x2[b 7→ x2(a) + ⊤]
x4 = x3[a 7→ x3(a) - x3(b)]

we have four constraint variables, x1, . . . , x4 with constraint functions f1, . . . , f4
defined as follows:

f1(x1, . . . , x4) = [a 7→ ⊤, b 7→ ⊤]
f2(x1, . . . , x4) = x1[a 7→ +]
f3(x1, . . . , x4) = x2[b 7→ x2(a) + ⊤]
f4(x1, . . . , x4) = x3[a 7→ x3(a) - x3(b)]

Exercise 4.28: Show that the four constraint functions f1, . . . , f4 are monotone.
(Hint: see Exercise 4.26.)

As mentioned earlier, for this simple equation system it is trivial to find
a solution by substitution, however, that method is inadequate for equation
systems that arise when analyzing programs more generally.

Exercise 4.29: Argue that your solution from Exercise 4.16 is the least fixed
point of the function f defined by
f(x1, . . . , x4) =

(
f1(x1, . . . , x4), . . . , f4(x1, . . . , x4)

)
.

The central result we need is the following fixed-point theorem due to
Kleene [Kle52]:6

In a complete lattice Lwith finite height, every monotone function
f : L → L has a unique least fixed point denoted lfp(f) defined as:

lfp(f) =
⊔
i≥0

f i(⊥)

(Note that when applying this theorem to the specific equation system shown
above, f is a function over the product lattice Ln.)

The proof of this theorem is quite simple. Observe that ⊥ ⊑ f(⊥) since ⊥
is the least element. Since f is monotone, it follows that f(⊥) ⊑ f2(⊥) and by
induction that f i(⊥) ⊑ f i+1(⊥) for any i. Thus, we have an increasing chain:

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ . . .

Since L is assumed to have finite height, we must for some k have that fk(⊥) =
fk+1(⊥), i.e. fk(⊥) is a fixed point for f . By Exercise 4.2, fk(⊥)must be the least
upper bound of all elements in the chain, so lfp(f) = fk(⊥). Assume now that
x is another fixed point. Since ⊥ ⊑ x it follows that f(⊥) ⊑ f(x) = x, since f is

6The ordinary Kleene fixed-point theorem requires f to be continuous (see page 168), on the
other hand it does not require L to be a complete lattice but it can be any complete partial order
(possibly with infinite height); see also Exercise 12.8.
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monotone, and by induction we get that lfp(f) = fk(⊥) ⊑ x. Hence, lfp(f) is a
least fixed point, and by anti-symmetry of ⊑ it is also unique.

The theorem is a powerful result: It tells us not only that equation systems
over complete lattices always have solutions, provided that the lattices have
finite height and the constraint functions are monotone, but also that uniquely
most precise solutions always exist. Furthermore, the careful reader may have
noticed that the theorem provides an algorithm for computing the least fixed
point: simply compute the increasing chain ⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ . . . until the
fixed point is reached. In pseudo-code, this so-called naive fixed-point algorithm
looks as follows.

procedure NaiveFixedPointAlgorithm(f)
x := ⊥
while x ̸= f(x) do

x := f(x)
end while
return x

end procedure

(Instead of computing f(x) both in the loop condition and in the loop body, a
trivial improvement is to just compute it once in each iteration and see if the
result changes.) The computation of a fixed point can be illustrated as a walk
up the lattice starting at ⊥:
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This algorithm is called “naive” because it does not exploit the special structures
that are common in analysis lattices. We shall see various less naive fixed-point
algorithms in Section 5.3.

The least fixed point is the most precise possible solution to the equation
system, but the equation system is (for a sound analysis) merely a conservative
approximation of the actual program behavior (again, recall the TM(j) example
from Chapter 1). This means that the semantically most precise possible (while
still correct) answer is generally below the least fixed point in the lattice. We shall
see examples of this in Chapter 5 and study the connection to semantics in more
detail in Chapter 12.
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Exercise 4.30: Explain step-by-step how the naive fixed-point algorithm com-
putes the solution to the equation system from Exercise 4.16.

The time complexity of computing a fixed point with this algorithm depends
on

• the height of the lattice, since this provides a bound for the number of
iterations of the algorithm, and

• the cost of computing f(x) and testing equality, which are performed in
each iteration.

We shall investigate other properties of this algorithm and more sophisticated
variants in Section 5.3.

Exercise 4.31: Does the fixed-point theorem also hold without the assumption
that f is monotone? If yes, give a proof; if no, give a counterexample.

Exercise 4.32: Does the fixed-point theorem also hold without the assumption
that the lattice has finite height? If yes, give a proof; if no, give a counterex-
ample. (Hint: see [CC79a].)

We can similarly solve systems of inequations of the form

x1 ⊒ f1(x1, . . . , xn)
x2 ⊒ f2(x1, . . . , xn)
...
xn ⊒ fn(x1, . . . , xn)

by observing that the relation x ⊒ y is equivalent to x = x ⊔ y (see Exercise 4.2).
Thus, solutions are preserved by rewriting the system into

x1 = x1 ⊔ f1(x1, . . . , xn)
x2 = x2 ⊔ f2(x1, . . . , xn)
...
xn = xn ⊔ fn(x1, . . . , xn)

which is just a system of equations with monotone functions as before (see
Exercises 4.22 and 4.23). Conversely, constraints of the form

x1 ⊑ f1(x1, . . . , xn)
x2 ⊑ f2(x1, . . . , xn)
...
xn ⊑ fn(x1, . . . , xn)

can be rewritten into
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x1 = x1 ⊓ f1(x1, . . . , xn)
x2 = x2 ⊓ f2(x1, . . . , xn)
...
xn = xn ⊓ fn(x1, . . . , xn)

by observing that the relation x ⊑ y is equivalent to x = x ⊓ y.
In case we have multiple inequations for each variable, those can also easily

be reorganized, for example

x1 ⊒ f1a(x1, . . . , xn)
x1 ⊒ f1b(x1, . . . , xn)

can be rewritten into

x1 = x1 ⊔ f1a(x1, . . . , xn) ⊔ f1b(x1, . . . , xn)

which again preserves the solutions.



Chapter 5

Dataflow Analysis with
Monotone Frameworks

Classical dataflow analysis starts with a CFG and a complete lattice with finite
height. The lattice describes abstract informationwewish to infer for the different
CFG nodes. It may be fixed for all programs, or it may be parameterized based
on the given program. To every node v in the CFG, we assign a constraint
variable1 [[v]] ranging over the elements of the lattice. For each node we then
define a dataflow constraint that relates the value of the variable of the node to
those of other nodes (typically the neighbors), depending on what construction
in the programming language the node represents. If all the constraints for the
given program happen to be equations or inequations withmonotone right-hand
sides, then we can use the fixed-point algorithm from Section 4.4 to compute
the analysis result as the unique least solution.

The combination of a complete lattice and a space of monotone functions
is called a monotone framework [KU77]. For a given program to be analyzed, a
monotone framework can be instantiated by specifying the CFG and the rules
for assigning dataflow constraints to its nodes.

An analysis is sound if all solutions to the constraints correspond to correct
information about the program. The solutionsmay bemore or less imprecise, but
computing the least solution will give the highest degree of precision possible.
We return to the topic of analysis correctness and precision in Chapter 12.

Throughout this chapter we use the subset of TIP without function calls,
pointers, and records; those language features are studied in Chapters 10 and 11
and in Exercise 5.10.

1As for type analysis, wewill ambiguously use the notation [[S]] for [[v]] ifS is the syntax associated
with node v. The meaning will always be clear from the context.
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5.1 Sign Analysis, Revisited

Continuing the example from Section 4.1, our goal is to determine the sign
(positive, zero, negative) of all expressions in the given programs. We start with
the tiny lattice Sign for describing abstract values:

- 0 +

⊤

⊥

We want an abstract value for each program variable, so we define the map
lattice

State = Var → Sign

where Var is the set of variables occurring in the given program. Each element
of this lattice can be thought of as an abstract state, hence its name. For each CFG
node v we assign a constraint variable [[v]] denoting an abstract state that gives
the sign values for all variables at the program point immediately after v. The
lattice Staten, where n is the number of CFG nodes, then models information
for all the CFG nodes.

The dataflow constraints model the effects of program execution on the
abstract states. For simplicity, we here focus on a subset of TIP that does not
contain pointers or records, so integers are the only type of values we need to
consider.

First, we define an auxiliary function JOIN (v) that combines the abstract
states from the predecessors of a node v:

JOIN (v) =
⊔

w∈pred(v)

[[w]]

Note that JOIN (v) is a function of all the constraint variables [[v1]], . . . , [[vn]] for
the program. For example, with the following CFG, we have JOIN ([[a=c+2]]) =
[[c=b]] ⊔ [[c=-5]].

true false

b > 5

c=b c=−5

a=c+2
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Themost interesting constraint rule for this analysis is the one for assignment
statements, that is, nodes v of the form X = E:

X = E: [[v]] = JOIN (v)[X 7→ eval(JOIN (v),E)]

This constraint rule models the fact that the abstract state after an assignment
X = E is equal to the abstract state immediately before the assignment, except
that the abstract value of X is the result of abstractly evaluating the expression
E. The eval function performs an abstract evaluation of expression E relative to
an abstract state σ:

eval(σ,X) = σ(X)
eval(σ, I) = sign(I)
eval(σ, input) = ⊤
eval(σ,E1 opE2) = ôp(eval(σ,E1), eval(σ,E2))

The function sign gives the sign of an integer constant, and ôp is an abstract
evaluation of the given operator,2 defined by the following tables:

+̂ ⊥ 0 - + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 - + ⊤
- ⊥ - - ⊤ ⊤
+ ⊥ + ⊤ + ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

-̂ ⊥ 0 - + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 + - ⊤
- ⊥ - ⊤ - ⊤
+ ⊥ + + ⊤ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

*̂ ⊥ 0 - + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 0 0 0

- ⊥ 0 + - ⊤
+ ⊥ 0 - + ⊤
⊤ ⊥ 0 ⊤ ⊤ ⊤

/̂ ⊥ 0 - + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ ⊥ 0 0 ⊤
- ⊥ ⊥ ⊤ ⊤ ⊤
+ ⊥ ⊥ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊤ ⊤ ⊤

>̂ ⊥ 0 - + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 + 0 ⊤
- ⊥ 0 ⊤ 0 ⊤
+ ⊥ + + ⊤ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

=̂= ⊥ 0 - + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ + 0 0 ⊤
- ⊥ 0 ⊤ 0 ⊤
+ ⊥ 0 0 ⊤ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

Variable declarations are modeled as follows (recall that freshly declared
local variables are uninitialized, so they can have any value).

var X1, . . . ,Xn: [[v]] = JOIN (v)[X1 7→ ⊤, . . . ,Xn 7→ ⊤]

2Unlike in Section 4.4, to avoid confusion we now distinguish between concrete operators and
their abstract counterparts using the ·̂ · · notation.
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For the subset of TIP we have chosen to focus on, no other kinds of CFG
nodes affect the values of variables, so for the remaining nodes we have this
trivial constraint rule:

[[v]] = JOIN (v)

Exercise 5.1: In the CFGswe consider in this chapter (for TIPwithout function
calls), entry nodes have no predecessors.

(a) Argue that the constraint rule [[v]] = JOIN (v) for such nodes is equiva-
lent to defining [[v]] = ⊥.

(b) Argue that removing all equations of the form [[v]] = ⊥ from an equation
system does not change its least solution.

A program with n CFG nodes, v1, . . . , vn, is thus represented by n equations,

[[v1]] = afv1([[v1]], . . . , [[vn]])
[[v2]] = afv2([[v1]], . . . , [[vn]])
...
[[vn]] = afvn([[v1]], . . . , [[vn]])

where afv : Staten → State for each CFG node v.
The lattice and constraints form a monotone framework. To see that all the

right-hand sides of our constraints correspond tomonotone functions, notice that
they are all composed (see Exercise 4.22) from the ⊔ operator (see Exercise 4.23),
map updates (see Exercise 4.26), and the eval function. The sign function is
constant (see Exercise 4.19). Monotonicity of the abstract operators used by eval
can be verified by a tedious manual inspection. For a lattice with n elements,
monotonicity of an n× n table can be verified automatically in time O(n3).

Exercise 5.2: Describe an algorithm for checking monotonicity of an operator
given by an n× n table. Can you do better than O(n3) time?

Exercise 5.3: Check that the above tables indeed define monotone operators
on the Sign lattice.

Exercise 5.4: Argue that these tables are the most precise possible for the
Sign lattice, given that soundness must be preserved. (An informal argument
suffices for now; we shall see a more formal approach to stating and proving
this property in Section 12.4.)
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Exercise 5.5: The table for the abstract evaluation of == is unsound if we
consider the full TIP language instead of the subset without pointers, function
calls, and records. Why? And how could it be fixed?

Using the fixed-point algorithm from Section 4.4, we can now obtain the ana-
lysis result for the given program by computing lfp(af ) where af (x1, . . . , xn) =(
afv1(x1, . . . , xn), . . . , afvn(x1, . . . , xn)

)
.

Recall the example program from Section 4.1:

var a,b,c;

a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

Its CFG looks as follows, with nodes {v1, . . . , v8}:

a = 42

input

b = 87

var a,b,c

c=a+b c=a−b

v

v

v

v

v

v v

v

2

1

3

4

5

6 7

8

true false

Exercise 5.6: Generate the equation system for this example program. Then
solve the equations using the fixed-point algorithm from Section 4.4.

(Notice that the least upper bound operation is exactly what we need tomodel
the merging of information at v8!)
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Exercise 5.7: Write a small TIP program where the sign analysis leads to an
equation system with mutually recursive constraints. Then explain step-by-
step how the fixed-point algorithm from Section 4.4 computes the solution.

We lose some information in the above analysis, since for example the expres-
sions (2>0)==1 and x-x are analyzed as ⊤, which seems unnecessarily coarse.
(These are examples where the least fixed point of the analysis equation system
is not identical to the semantically best possible answer.) Also, + divided by
+ results in ⊤ rather than + since e.g. 1/2 is rounded down to zero. To handle
some of these situations more precisely, we could enrich the sign lattice with
element 1 (the constant 1), 0+ (positive or zero), and 0- (negative or zero) to
keep track of more precise abstract values:

⊤

0- 0+

- +0

1

⊥

and consequently describe the abstract operators by 8× 8 tables.

Exercise 5.8: Define the six operators on the extended Sign lattice (shown
above) by means of 8 × 8 tables. Check that they are monotone. Does this
new lattice improve precision for the expressions (2>0)==1, x-x, and 1/2?

Exercise 5.9: Show how the eval function could be improved to make the sign
analysis able to show that the final value of z cannot be a negative number in
the following program:

var x,y,z;

x = input;

y = x*x;

z = (x-x+1)*y;
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Exercise 5.10: Explain how to extend the sign analysis to handle TIP programs
that use records (see Chapter 2).

One approach, called field insensitive analysis, simply mixes together the
different fields of each record. Another approach, field sensitive analysis,
instead uses a more elaborate lattice that keeps different abstract values for
the different field names.

The results of a sign analysis could in theory be used to eliminate division-
by-zero errors by rejecting programs in which denominator expressions have
sign 0 or ⊤. However, the resulting analysis will probably unfairly reject too
many programs to be practical. Other more powerful analysis techniques, such
as interval analysis (Section 6.1) and path sensitivity (Chapter 7) would be more
useful for detecting such errors.

Notice that in this analysis we use the
⊔

operation (in the definition of JOIN ),
but we never use the ⊔operation. In fact, when implementing analyses with
monotone frameworks, it is common that ⊔is ignored entirely even though it
mathematically exists.

5.2 Constant Propagation Analysis

Ananalysis related to sign analysis is constant propagation analysis, wherewe for
every program point want to determine the variables that have a constant value.
The analysis is structured just like the sign analysis, except for two modifications.
First, the Sign lattice is replaced by flat(Z)where Z is the set of all integers:3

· · · −2 −1 0 1 2 · · ·

⊤

⊥

Second, the abstraction of operators op ∈ {+, -, *, /, >, ==} is modified accord-
ingly:

a ôp b =


⊥ if a = ⊥ or b = ⊥
⊤ otherwise, if a = ⊤ or b = ⊤
a op b if a ∈ Z and b ∈ Z

Exercise 5.11: Argue that this definition of ôp leads to a sound analysis. (An
informal argument suffices; we shall see a more formal approach to proving
soundness in Section 12.3.)

3For simplicity, we assume that TIP integer values are unbounded.
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Using constant propagation analysis, an optimizing compiler could transform
the program

var x,y,z;

x = 27;

y = input;

z = 2*x+y;

if (x < 0) { y = z-3; } else { y = 12; }

output y;

into

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y = z-3; } else { y = 12; }

output y;

which, following a reaching definitions analysis and dead code elimination (see
Section 5.7), can be reduced to this shorter and more efficient program:

var y;

y = input;

output 12;

This kind of optimization was among the first uses of static program ana-
lysis [Kil73].

Exercise 5.12: Assume that TIP computes with (arbitrary-precision) real
numbers instead of integers. Design an analysis that finds out which variables
at each program point in a given program only have integer values.

5.3 Fixed-Point Algorithms

In summary, dataflow analysis works as follows. For a CFG with nodes Node =
{v1, v2, . . . , vn}wework in the complete latticeLn whereL is a lattice thatmodels
abstract states. Assuming that node vi generates the dataflow equation [[vi]] =
fi([[v1]], . . . , [[vn]]), we construct the combined function f : Ln → Ln by defining
f(x1, . . . , xn) =

(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
. Applying the fixed-point

algorithm, NaiveFixedPointAlgorithm(f) (see page 48), then gives us the
desired solution for [[v1]], . . . , [[vn]].

Exercise 4.30 (page 49) demonstrates why the algorithm is called “naive”. In
each iteration it applies all the constraint functions, f1, . . . , f4, and much of that
computation is redundant. For example, f2 (see page 47) depends only on x1,
but the value of x1 is unchanged in most iterations.
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As a step toward more efficient algorithms, the round-robin algorithm ex-
ploits the fact that our lattice has the structure Ln and that f is composed from
f1, . . . , fn:

procedure RoundRobin(f1, . . . , fn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
while (x1, . . . , xn) ̸= f(x1, . . . , xn) do

for i := 1 . . . n do
xi := fi(x1, . . . , xn)

end for
end while
return (x1, . . . , xn)

end procedure

(Similar to the naive fixed-point algorithm, it is trivial to avoid computing each
fi(x1, . . . , xn) twice in every iteration.) Notice that one iteration of the while-
loop in this algorithm does not in general give the same result as one iteration
of the naive fixed-point algorithm: when computing fi(x1, . . . , xn), the values
of x1, . . . , xi−1 have been updated by the preceding iterations of the inner loop
(while the values of xi, . . . , xn come from the previous iteration of the outer
loop or are still ⊥, like in the naive fixed-point algorithm). Nevertheless, the
algorithm always terminates and produces the same result as the naive fixed-
point algorithm. Each iteration of the while-loop takes the same time as for the
naive fixed-point algorithm, but the number of iterations required to reach the
fixed point may be lower.

Exercise 5.13: Prove that the round-robin algorithm computes the least fixed
point of f . (Hint: see the proof of the fixed-point theorem, and consider
the ascending chain that arises from the sequence of xi := fi(x1, . . . , xn)
operations.)

Exercise 5.14: Continuing Exercise 4.30, how many iterations are required by
the naive fixed-point algorithm and the round-robin algorithm, respectively,
to reach the fixed point?

We can do better than round-robin. First, the order of the iterations i := 1 . . . n
is clearly irrelevant for the correctness of the algorithm (see your proof from
Exercise 5.13). Second, we still apply all constraint functions in each iteration
of the repeat-until loop. What matters for correctness is, which should be clear
from your solution to Exercise 5.13, that the constraint functions are applied
until the fixed point is reached for all of them. This observation leads to the
chaotic-iteration algorithm [Cou77, Kil73]:

procedure ChaoticIteration(f1, . . . , fn)
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(x1, . . . , xn) := (⊥, . . . ,⊥)
while (x1, . . . , xn) ̸= f(x1, . . . , xn) do

choose i ∈ {1, . . . , n} such that xi ̸= fi(x1, . . . , xn)
xi := fi(x1, . . . , xn)

end while
return (x1, . . . , xn)

end procedure

This is not a practical algorithm, because its efficiency and termination depend
on how i is chosen in each iteration. Additionally, naively computing the loop
condition may now be more expensive than executing the loop body. However,
if it terminates, the algorithm produces the right result.

Exercise 5.15: Prove that the chaotic-iteration algorithm computes the least
fixed point of f , if it terminates. (Hint: see your solution to Exercise 5.13.)

The algorithm we describe next is a practical variant of chaotic-iteration.

In the general case, every constraint variable [[vi]] may depend on all other
variables. Most often, however, an actual instance of fi will only read the values
of a few other variables, as in the examples from Exercise 4.28 and Exercise 5.6.
We represent this information as a map

dep : Node → P(Node)

which for each node v tells us the subset of other nodes for which [[v]] occurs in
a nontrivial manner on the right-hand side of their dataflow equations. That is,
dep(v) is the set of nodes whose information may depend on the information of
v. We also define its inverse: dep−1(v) = {w | v ∈ dep(w)}.

For the example from Exercise 5.6, we have, in particular, dep(v5) = {v6, v7}.
This means that whenever [[v5]] changes its value during the fixed-point compu-
tation, only f6 and f7 may need to be recomputed.

Armed with this information, we can present a simple work-list algorithm:

procedure SimpleWorkListAlgorithm(f1, . . . , fn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
W := {v1, . . . , vn}
whileW ̸= ∅ do

vi := W.removeNext()
y := fi(x1, . . . , xn)
if y ̸= xi then

xi := y
for each vj ∈ dep(vi) do

W.add(vj)
end for

end if
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end while
return (x1, . . . , xn)

end procedure

The setW is here called the work-list with operations ‘add’ and ‘removeNext’
for adding and (nondeterministically) removing an item. The work-list initially
contains all nodes, so each fi is applied at least once. It is easy to see that the
work-list algorithm terminates on any input: In each iteration, we either move
up in the Ln lattice, or the size of the work-list decreases. As usual, we can
only move up in the lattice finitely many times as it has finite height, and the
while-loop terminates when the work-list is empty. Correctness follows from
observing that each iteration of the algorithm has the same effect on (x1, . . . , xn)
as one iteration of the chaotic-iteration algorithm for some nondeterministic
choice of i.

Exercise 5.16: Argue that a sound, but probably not very useful choice for the
dep map is one that always returns the set of all CFG nodes.

Exercise 5.17: As stated above, we can choose dep(v5) = {v6, v7} for the
example equation system from Exercise 5.6. Argue that a good strategy for the
sign analysis is to define dep = succ. (We return to this topic in Section 5.8.)

Exercise 5.18: Explain step-by-step how the work-list algorithm computes the
solution to the equation system from Exercise 5.6. (Since the ‘removeNext’
operation is nondeterministic, there are many correct answers!)

Exercise 5.19: When reasoning about worst-case complexity of analyses that
are based on work-list algorithms, it is sometimes useful if one can bound the
number of predecessors |pred(v)| or successors |succ(v)| for all nodes v.

(a) Describe a family of TIP functions where the maximum number of
successors |succ(v)| for the nodes v in each function grows linearly in
the number of CFG nodes.

(b) Now let us modify the CFG construction slightly, such that a dummy
“no-op” node is inserted at the merge point after the two branches of
each if block. This will increase the number of CFG nodes by at most a
constant factor. Argue that we now have |pred(v)| ≤ 2 and |succ(v)| ≤ 2
for all nodes v.

Assuming that |dep(v)| and |dep−1(v)| are bounded by a constant for all
nodes v, the worst-case time complexity of the simple work-list algorithm can
be expressed as

O(n · h · k)
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where n is the number of CFG nodes in the program being analyzed, h is the
height of the lattice L for abstract states, and k is the worst-case time required to
compute a constraint function fi(x1, . . . , xn).

Exercise 5.20: Prove the above statement about the worst-case time complexity
of the simple work-list algorithm. (It is reasonable to assume that the work-list
operations ‘add’ and ‘removeNext’ take constant time.)

Exercise 5.21: Another useful observation when reasoning about worst-case
complexity of dataflow analyses is that normalizing a program (see Sec-
tion 2.3) may increase the number of CFG nodes by more than a constant
factor, but represented as an AST or as textual source code, the size of the
program increases by at most a constant factor. Explain why this claim is
correct.

Exercise 5.22: Estimate the worst-case time complexity of the sign analysis
with the simple work-list algorithm, using the formula above. (As this for-
mula applies to any dataflow analysis implemented with the simple work-list
algorithm, the actual worst-case complexity of this specific analysis may be
asymptotically better!)

Further algorithmic improvements are possible. Itmay be beneficial to handle
in separate turns the strongly connected components of the graph induced by the
dep map, and the worklist set could be changed into a priority queue allowing
us to exploit domain-specific knowledge about a particular dataflow problem.
Also, for some analyses, the dependence information can be made more precise
by allowing dep to consider the current value of (x1, . . . , xn) in addition to the
node v.

5.4 Live Variables Analysis

A variable is live at a program point if there exists an execution where its value
is read later in the execution without it being written to in between. Clearly
undecidable, this property can be approximated by a static analysis called live
variables analysis (or liveness analysis). The typical use of live variables analysis
is optimization: there is no need to store the value of a variable that is not live.
For this reason, we want the analysis to be conservative in the direction where
the answer “not live” can be trusted and “live” is the safe but useless answer.

We use a powerset lattice where the elements are the variables occurring in
the given program. This is an example of a parameterized lattice, that is, one that
depends on the specific program being analyzed. For the example program

var x,y,z;

x = input;
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while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice modeling abstract states is thus:4

State = (P({x,y,z}),⊆)

The corresponding CFG looks as follows:

z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

x = input x>1 y = x/2 y>3

var x,y,z

For every CFG node v we introduce a constraint variable [[v]] denoting the subset
of program variables that are live at the program point before that node. The
analysis will be conservative, since the computed set may be too large. We use
the auxiliary definition

JOIN (v) =
⋃

w∈succ(v)

[[w]]

Unlike the JOIN function from sign analysis, this one combines abstract states
from the successors instead of the predecessors. We have defined the order
relation as ⊑=⊆, so ⊔ = ∪.

As in sign analysis, the most interesting constraint rule is the one for assign-
ments:

4A word of caution: For historical reasons, some textbooks and research papers, e.g. [Hec77,
ALSU06], describe dataflow analyses using the lattices “upside down”. This makes no difference
whatsoever to the analysis results (because of the lattice dualities discussed in Chapter 4), but it can
be confusing.
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X = E: [[v]] = JOIN (v) \ {X} ∪ vars(E)

This rule models the fact that the set of live variables before the assignment is
the same as the set after the assignment, except for the variable being written to
and the variables that are needed to evaluate the right-hand-side expression.

Exercise 5.23: Explain why the constraint rule for assignments, as defined
above, is sound.

Branch conditions and output statements are modelled as follows:

if (E):
while (E):
output E:

 [[v]] = JOIN (v) ∪ vars(E)

where vars(E) denotes the set of variables occurring in E. For variable declara-
tions and exit nodes:

var X1, . . . ,Xn: [[v]] = JOIN (v) \ {X1, . . . ,Xn}

[[exit]] = ∅

For all other nodes:
[[v]] = JOIN (v)

Exercise 5.24: Argue that the right-hand sides of the constraints define mono-
tone functions.

The example program yields these constraints:

[[entry]] = [[var x,y,z]]
[[var x,y,z]] = [[x=input]] \ {x, y, z}
[[x=input]] = [[x>1]] \ {x}
[[x>1]] = ([[y=x/2]] ∪ [[output x]]) ∪ {x}
[[y=x/2]] = ([[y>3]] \ {y}) ∪ {x}
[[y>3]] = [[x=x-y]] ∪ [[z=x-4]] ∪ {y}
[[x=x-y]] = ([[z=x-4]] \ {x}) ∪ {x,y}
[[z=x-4]] = ([[z>0]] \ {z}) ∪ {x}
[[z>0]] = [[x=x/2]] ∪ [[z=z-1]] ∪ {z}
[[x=x/2]] = ([[z=z-1]] \ {x}) ∪ {x}
[[z=z-1]] = ([[x>1]] \ {z}) ∪ {z}
[[output x]] = [[exit]] ∪ {x}
[[exit]] = ∅

whose least solution is:

[[entry]] = ∅
[[var x,y,z]] = ∅
[[x=input]] = ∅
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[[x>1]] = {x}
[[y=x/2]] = {x}
[[y>3]] = {x, y}
[[x=x-y]] = {x, y}
[[z=x-4]] = {x}
[[z>0]] = {x, z}
[[x=x/2]] = {x, z}
[[z=z-1]] = {x, z}
[[output x]] = {x}
[[exit]] = ∅

From this information a clever compiler could deduce that y and z are never live
at the same time, and that the value written in the assignment z=z-1 is never
read. Thus, the program may safely be optimized into the following one, which
saves the cost of one assignment and could result in better register allocation:

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

Exercise 5.25: Consider the following program:

main() {

var x,y,z;

x = input;

y = input;

z = x;

return y;

}

Show for each program point the set of live variables, as computed by our
live variables analysis. (Do not forget the entry and exit points.)

Exercise 5.26: An analysis is distributive if all its constraint functions are
distributive according to the definition from Exercise 4.20. Show that live
variables analysis is distributive.
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Exercise 5.27: As Exercise 5.25 demonstrates, live variables analysis is not
ideal for locating code that can safely be removed, if building an optimizing
compiler. Let us define that a variable is useless at a given program point if it
is dead (i.e. not live) or its value is only used to compute values of useless
variables. A variable is strongly live if it is not useless.

(a) Show how the live variables analysis can be modified to compute
strongly live variables.

(b) Show for each program point in the program from Exercise 5.25 the set
of strongly live variables, as computed by your new analysis.

We can estimate the worst-case time complexity of the live variables analysis,
with for example the naive fixed-point algorithm from Section 4.4. We first
observe that if the program has n CFG nodes and b variables, then the lattice
P(Var)n has height b ·n, which bounds the number of iterations we can perform.
Each lattice element can be represented as a bitvector of length b · n. Using the
observation from Exercise 5.19 we can ensure that |succ(v)| ≤ 2 for any node v.
For each iteration we therefore have to perform O(n) intersection, difference, or
equality operations on sets of size b, which can be done in time O(b · n). Thus,
we reach a time complexity of O(b2 · n2).

Exercise 5.28: Can you obtain an asymptotically better bound on the worst-
case time complexity of live variables analysis with the naive fixed-point
algorithm, if exploiting properties of the structures of TIP CFGs and the
analysis constraints?

Exercise 5.29: Recall from Section 5.3 that the work-list algorithm relies on
a function dep(v) for avoiding recomputation of constraint functions that
are guaranteed not to change outputs. What would be a good strategy for
defining dep(v) in general for live variables analysis of any given program?

Exercise 5.30: Estimate the worst-case time complexity of the live variables
analysis with the simple work-list algorithm, by using the formula from
page 61.

5.5 Available Expressions Analysis

A nontrivial expression in a program is available at a program point if its current
value has already been computed earlier in the execution. Such information is
useful for program optimization. The set of available expressions for all program
points can be approximated using a dataflow analysis. The lattice we use has as
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elements all expressions occurring in the program. To be useful for program
optimization purposes, an expression may be included at a given program point
only if it is definitely available no matter how the computation arrived at that
program point, so we choose the lattice to be ordered by reverse subset inclusion.

For the program

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

we have four different nontrivial expressions, so our lattice for abstract states is

State = (P({a+b, a*b, y>a+b, a+1}),⊇)

which looks like this:

∅

{a+b} {a*b} {y>a+b} {a+1}

{a+b, a*b} {a+b, y>a+b} {a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1}{a*b, y>a+b, a+1}

{a+b, a*b, y>a+b, a+1}

The top element of our lattice is ∅, which corresponds to the trivial information
that no expressions are known to be available. The CFG for the above program
looks as follows:
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z = a+b

y > a+b

a = a+1

x = a+b

y = a*b

var x,y,z,a,b

false

true

As usual in dataflow analysis, for each CFG node v we introduce a constraint
variable [[v]] ranging over State . Our intention is that it should contain the subset
of expressions that are guaranteed always to be available at the program point
after that node. For example, the expression a+b is available at the condition in
the loop, but it is not available at the final assignment in the loop. Our analysis
will be conservative in the sense that the computed sets may be too small but
never too large.

Next we define the dataflow constraints. The intuition is that an expression
is available at a node v if it is available from all incoming edges or is computed
by v, unless its value is destroyed by an assignment statement.

The JOIN function uses ∩ (because the lattice order is now ⊇) and pred
(because availability of expressions depends on information from the past):

JOIN (v) =
⋂

w∈pred(v)

[[w]]

Assignments are modeled as follows:

X = E: [[v]] = (JOIN (v) ∪ exps(E))↓X

Here, the function ↓X removes all expressions that contain the variable X, and
exps collects all nontrivial expressions:

exps(X) = ∅
exps(I) = ∅
exps(input) = ∅
exps(E1 op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2)
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No expressions are available at entry nodes:

[[entry]] = ∅

Branch conditions and output statements accumulate more available expres-
sions:

if (E):
while (E):
output E:

 [[v]] = JOIN (v) ∪ exps(E)

For all other kinds of nodes, the collected sets of expressions are simply propa-
gated from the predecessors:

[[v]] = JOIN (v)

Again, the right-hand sides of all constraints are monotone functions.

Exercise 5.31: Explain informally why the constraints are monotone and the
analysis is sound.

For the example program, we generate the following constraints:

[[entry]] = ∅
[[var x,y,z,a,b]] = [[entry]]
[[z=a+b]] = exps(a+b) ↓z
[[y=a*b]] = ([[z=a+b]] ∪ exps(a*b)) ↓y
[[y>a+b]] = ([[y=a*b]] ∩ [[x=a+b]]) ∪ exps(y>a+b)
[[a=a+1]] = ([[y>a+b]] ∪ exps(a+1))↓a
[[x=a+b]] = ([[a=a+1]] ∪ exps(a+b))↓x
[[exit]] = [[y>a+b]]

Using one of our fixed-point algorithms, we obtain the minimal solution:

[[entry]] = ∅
[[var x,y,z,a,b]] = ∅
[[z=a+b]] = {a+b}
[[y=a*b]] = {a+b, a*b}
[[y>a+b]] = {a+b, y>a+b}
[[a=a+1]] = ∅
[[x=a+b]] = {a+b}
[[exit]] = {a+b, y>a+b}

The expressions available at the program point before a node v can be computed
from this solution as JOIN (v). In particular, the solution confirms our previous
observations about a+b. With this knowledge, an optimizing compiler could
systematically transform the program into a (slightly) more efficient version:

var x,y,z,a,b,aplusb;

aplusb = a+b;



70 5 DATAFLOW ANALYSIS WITH MONOTONE FRAMEWORKS

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

Exercise 5.32: Estimate the worst-case time complexity of available expres-
sions analysis, assuming that the naive fixed-point algorithm is used.

5.6 Very Busy Expressions Analysis

An expression is very busy if it will definitely be evaluated again before its value
changes. To approximate this property, we can use the same lattice and auxiliary
functions as for available expressions analysis. For every CFG node v the variable
[[v]] denotes the set of expressions that at the program point before the node
definitely are busy.

An expression is very busy if it is evaluated in the current node or will be
evaluated in all future executions unless an assignment changes its value. For
this reason, the JOIN is defined by

JOIN (v) =
⋂

w∈succ(v)

[[w]]

and assignments are modeled using the following constraint rule:

X = E: [[v]] = JOIN (v)↓ X ∪ exps(E)

No expressions are very busy at exit nodes:

[[exit]] = ∅

The rules for the remaining nodes, include branch conditions and output state-
ments, are the same as for available expressions analysis.

On the example program:

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x>0) {

output a*b-x;

x = x-1;

}

output a*b;
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the analysis reveals that a*b is very busy inside the loop. The compiler can
perform code hoisting and move the computation to the earliest program point
where it is very busy. This would transform the program into this more efficient
version:

var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x>0) {

output atimesb-x;

x = x-1;

}

output atimesb;

5.7 Reaching Definitions Analysis

The reaching definitions for a given program point are those assignments that
may have defined the current values of variables. For this analysis we need a
powerset lattice of all assignments (represented as CFG nodes) occurring in the
program. For the example program from before:

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice modeling abstract states becomes:

State = (P({x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1}),⊆)

For every CFG node v the variable [[v]] denotes the set of assignments that may
define values of variables at the program point after the node. We define

JOIN (v) =
⋃

w∈pred(v)

[[w]]

For assignments the constraint is:

X = E: [[v]] = JOIN (v)↓X ∪ {X = E}
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where this time the ↓X function removes all assignments to the variable X. For
all other nodes we define:

[[v]] = JOIN (v)

This analysis can be used to construct a def-use graph, which is like a CFG except
that edges go from definitions (i.e. assignments) to possible uses. Here is the
def-use graph for the example program:

x = input

x>1

y = x/2

y>3

z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

The def-use graph is a further abstraction of the program and is the basis of
widely used optimizations such as dead code elimination and code motion.

Exercise 5.33: Show that the def-use graph is always a subgraph of the transi-
tive closure of the CFG.

5.8 Forward, Backward, May, and Must

As illustrated in the previous sections, a dataflow analysis is specified by pro-
viding the lattice and the constraint rules. Some patterns are emerging from the
examples, which makes it possible to classify dataflow analyses in various ways.

A forward analysis is one that for each program point computes information
about the past behavior. Examples of this are sign analysis and available expres-
sions analysis. They can be characterized by the right-hand sides of constraints
only depending on predecessors of the CFG node. Thus, the analysis essentially
starts at the entry node and propagates information forward in the CFG. For
such analyses, the JOIN function is defined using pred , and dep (if using the
work-list algorithm) can be defined by succ.
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A backward analysis is one that for each program point computes information
about the future behavior. Examples of this are live variables analysis and very
busy expressions analysis. They can be characterized by the right-hand sides of
constraints only depending on successors of the CFG node. Thus, the analysis
starts at the exit node and moves backward in the CFG. For such analyses, the
JOIN function is defined using succ, and dep can be defined by pred .

The distinction between forward and backward applies to any flow-sensitive
analysis. For analyses that are based on a powerset lattice, we can also distin-
guish between may and must analysis.

A may analysis is one that describes information that may possibly be true
and, thus, computes an over-approximation. Examples of this are live variables
analysis and reaching definitions analysis. They can be characterized by the
lattice order being⊆ and constraint functions that use the ∪ operator to combine
information.

Conversely, a must analysis is one that describes information that must defi-
nitely be true and, thus, computes an under-approximation. Examples of this
are available expressions analysis and very busy expressions analysis. They can
be characterized by the use of ⊇ as lattice order and constraint functions that
use ∩ to combine information.

Thus, our four examples that are based on powerset lattices show every
possible combination, as illustrated by this diagram:

Forward Backward
May Reaching Definitions Live Variables
Must Available Expressions Very Busy Expressions

These classifications are mostly botanical, but awareness of them may provide
inspiration for constructing new analyses.

Exercise 5.34: Which among the following analyses are distributive, if any?
(a) Available expressions analysis.

(b) Very busy expressions analysis.

(c) Reaching definitions analysis.

(d) Sign analysis.

(e) Constant propagation analysis.
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Exercise 5.35: Let us design a flow-sensitive type analysis for TIP. (This exercise
can be seen as an alternative to the approach in Exercise 3.22.) In the simple
version of TIP we focus on in this chapter, we only have integer values at run-
time, but for the analysis we can treat the results of the comparison operators
> and == as a separate type: boolean. The results of the arithmetic operators +,
-, *, / can similarly be treated as type integer. As lattice for abstract states we
choose

State = Var → P({integer, boolean})

such that the analysis can keep track of the possible types for every variable.

(a) Specify constraint rules for the analysis.

(b) After analyzing a given program, how can we check using the com-
puted abstract states whether the branch conditions in if and while
statements are guaranteed to be booleans? Similarly, how can we check
that the arguments to the arithmetic operators +, -, *, / are guaranteed
to be integers? As an example, for the following program two warnings
should be emitted:

main(a,b) {

var x,y;

x = a+b;

if (x) { // warning: using integer as branch condition

output 17;

}

y = a>b;

return y+3; // warning: using boolean in addition

}
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Exercise 5.36: Assume we want to build an optimizing compiler for TIP
(without pointers, function calls, and records). As part of this, we want to
safely approximate the possible values for each variable to be able to pick
appropriate runtime representations: bool (can represent only the two integer
values 0 and 1), byte (8 bit signed integers), char (16 bit unsigned integers),
int (32 bit signed integers), or bigint (any integer). Naturally, we do not want
to waste space, so we prefer, for example, bit to int if we can guarantee that
the value of the variable can only be 0 or 1.

As an extra feature, we introduce a cast operation in TIP: an expression
of the form (T)Ewhere T is one of the five types and E is an expression. At
runtime, a cast expression evaluates to the same value as E, except that it
aborts program execution if the value does not fit into T.

(a) Define a suitable lattice for describing abstract states.

(b) Specify the constraint rules for your analysis.

(c) Write a small but nontrivial TIP program that gives rise to several dif-
ferent types, and argue briefly what result your analysis will produce
for that program.

5.9 Initialized Variables Analysis

Let us try to define an analysis that ensures that variables are initialized (i.e.
written to) before they are read. (A similar analysis is performed by Java com-
pilers to check that every local variable has a definitely assigned value when
any access of its value occurs.) This can be achieved by computing for every
program point the set of variables that are guaranteed to be initialized. We need
definite information, which implies a must analysis. Consequently, we choose
as abstract state lattice the powerset of variables occurring in the given program,
ordered by the superset relation. Initialization is a property of the past, so we
need a forward analysis. This means that our constraints are phrased in terms
of predecessors and intersections. On this basis, the constraint rules more or
less give themselves.

Exercise 5.37: What is the JOIN function for initialized variables analysis?

Exercise 5.38: Specify the constraint rule for assignments.

No other statements than assignments affect which variables are initialized,
so the constraint rule for all other kinds of nodes is the same as, for example, in
sign analysis (see page 54).

Using the results from initialized variables analysis, a programming error
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detection tool could now check for every use of a variable that it is contained
in the computed set of initialized variables, and emit a warning otherwise. A
warning would be emitted for this trivial example program:

main() {

var x;

return x;

}

Exercise 5.39: Write a TIP program where such an error detection tool would
emit a spurious warning. That is, in your program there are no reads from
uninitialized variables in any execution but the initialized variables analysis
is too imprecise to show it.

Exercise 5.40: An alternative way to formulate initialized variables analysis
would be to use the following map lattice instead of the powerset lattice:

State = Var → Init

where Init is a lattice with two elements {Initialized,NotIninitialized}.

(a) How should we order the two elements? That is, which one is ⊤ and
which one is ⊥?

(b) How should the constraint rule for assignments be modified to fit with
this alternative lattice?

5.10 Transfer Functions

Observe that in all the analyses presented in this chapter, all constraint functions
are of the form

[[v]] = tv(JOIN (v))

for some function tv : L → L where L is the lattice modeling abstract states
and JOIN (v) =

⊔
w∈dep−1(v) [[w]]. The function tv is called the transfer function

for the CFG node v and specifies how the analysis models the statement at
v as an abstract state transformer. For a forward analysis, which is the most
common kind of dataflow analysis, the input to the transfer function represents
the abstract state at the program point immediately before the statement, and its
output represents the abstract state at the program point immediately after the
statement (and conversely for a backward analysis). When specifying constraints
for a dataflow analyses, it thus suffices to provide the transfer functions for all
CFG nodes. As an example, in sign analysis where L = Var → Sign , the
transfer function for assignment nodes X = E is:

tX=E(s) = s[X 7→ eval(s,E)]
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In the simple work-list algorithm, JOIN (v) =
⊔

w∈dep−1(v) [[w]] is computed
in each iteration of the while-loop. However, often [[w]] has not changed since last
time v was processed, so much of that computation may be redundant. (When
we introduce inter-procedural analysis in Chapter 8, we shall see that dep−1(v)
may become large.) We now present another work-list algorithm based on trans-
fer functions that avoids some of that redundancy. With this algorithm, for a
forward analysis each variable xi denotes the abstract state for the program point
before the corresponding CFG node vi, in contrast to the other fixed-point solvers
we have seen previously where xi denotes the abstract state for the program
point after vi (and conversely for a backward analysis).

procedure PropagationWorkListAlgorithm(t1, . . . , tn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
W := {v1, . . . , vn}
whileW ̸= ∅ do

vi := W.removeNext()
y := tvi(xi)
for each vj ∈ dep(vi) do

z := xj ⊔ y
if xj ̸= z then

xj := z
W.add(vj)

end if
end for

end while
return (x1, . . . , xn)

end procedure

Compared to the simple work-list algorithm, this variant typically avoids many
redundant least-upper-bound computations. In each iteration of the while-loop,
the transfer function of the current node vi is applied, and the resulting abstract
state is propagated (hence the name of the algorithm) to all dependencies. Those
that change are added to the work-list. We thereby have tv([[v]]) ⊑ [[w]] for all
nodes v, w where w ∈ succ(v).

Exercise 5.41: Prove that PropagationWorkListAlgorithm computes the
same solution as the other fixed-point solvers. (Hint: recall the discussion
from page 49 about solving systems of inequations.)





Chapter 6

Widening

A central limitation of the monotone frameworks approach presented in Chap-
ter 5 is the requirement that the lattices have finite height. In this chapter we
describe a technique calledwidening that overcomes that limitation (and a related
technique called narrowing), introduced by Cousot and Cousot [CC77].

6.1 Interval Analysis

An interval analysis computes for every integer variable a lower and an upper
bound for its possible values. Intervals are interesting analysis results, since
sound answers can be used for optimizations and bug detection related to array
bounds checking, numerical overflows, and integer representations.

This example involves a lattice of infinite height, and we must use a special
technique described in Section 6.2 to to ensure convergence toward a fixed point.

The lattice describing a single abstract value is defined as

Interval = lift({[l, h] | l, h ∈ N ∧ l ≤ h})

where
N = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}

is the set of integers extended with infinite endpoints and the order on intervals
is defined by inclusion:

[l1, h1] ⊑ [l2, h2] ⇐⇒ l2 ≤ l1 ∧ h1 ≤ h2

This lattice looks as follows:
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[−2,−2] [−1,−1] [0,0] [1,1] [2,2]

[1,2][0,1][−1,0]

[−  ,−2]

[−  ,−1]

[−  ,0]

[−2,0] [−1,1] [0,2]

[2,  ]

[1,  ]

[−2,2]

[−2,1] [−1,2]

[−  ,  ]

8 8

8

8

8

8

8

8

[0,  ]

[−2,−1]

This lattice does not have finite height, since it contains for example the following
infinite chain:

[0, 0] ⊑ [0, 1] ⊑ [0, 2] ⊑ [0, 3] ⊑ [0, 4] ⊑ [0, 5] . . .

This carries over to the lattice for abstract states:

State = Var → Interval

Before we specify the constraint rules, we define a function eval that performs
an abstract evaluation of expressions:

eval(σ,X) = σ(X)
eval(σ, I) = [I, I]
eval(σ, input) = [−∞,∞]
eval(σ,E1 opE2) = ôp(eval(σ,E1), eval(σ,E2))

The abstract operators are all defined by:

ôp([l1, h1], [l2, h2]) = [ min
x∈[l1,h1],y∈[l2,h2]

x op y, max
x∈[l1,h1],y∈[l2,h2]

x op y]

For example, +̂([1, 10], [−5, 7]) = [1− 5, 10 + 7] = [−4, 17].

Exercise 6.1: Explain informally why the definition of eval given above is
a conservative approximation compared to evaluating TIP expressions con-
cretely. Give an example of how the definition of eval could be modified to
make the analysis more precise (and still sound).
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Exercise 6.2: This general definition of ôp looks simple in math, but it is non-
trivial to implement it efficiently. Write pseudo-code for an implementation of
the abstract greater-than operator >̂. (To be usable in practice, the execution
time of your implementation should be less than linear in the input numbers!)
It is acceptable to sacrifice optimal precision, but see how precise you can
make it.

In Chapter 12 we provide a more formal treatment of the topics of soundness
and precision.

The JOIN function is the usual one for forward analyses:

JOIN (v) =
⊔

w∈pred(v)

[[w]]

We can now specify the constraint rule for assignments:
X = E: [[v]] = JOIN (v)[X 7→ eval(JOIN (v), E)]

For all other nodes the constraint is the trivial one:

[[v]] = JOIN (v)

Exercise 6.3: Argue that the constraint functions are monotone.

In the preceding chapter, we defined the analysis result for each analysis as
the least solution to the analysis constraints for the given program. Kleene’s
fixed-point theorem (Section 4.4, page 47) tells us that this is well-defined: a
unique least solution always exists for such analyses. However, as the interval
analysis defined in this section uses an infinite-height lattice, that fixed-point
theorem does not apply, so the careful reader may wonder, do the interval
analysis constraints actually have a least solution for any given program? The
answer is affirmative.

One way to see that the least fixed point exists is to use a stronger variant of
the fixed-point theorem that relies on transfinite iteration sequences and holds
without the finite-height assumption [CC79a]; see also Exercise 4.32. Another
approach is to use a different fixed-point theorem, known as Tarski’s fixed-point
theorem [Tar55]:1

In a complete lattice L, every monotone function f : L → L has a
unique least fixed point given by lfp(f) = ⊔{x ∈ L | f(x) ⊑ x}.

The proof is reasonably simple. Let D = {x ∈ L | f(x) ⊑ x} and d = ⊔D.
We first show that d is a fixed point of f , i.e., f(d) = d. Assume x ∈ D. Then

1Notice that Tarski’s theorem does not require the lattice to have finite height; however, Kleene’s
fixed-point theorem (page 47) has the advantage (for finite-height lattices) that it is constructive
in the sense that it directly leads to an algorithm for computing the least fixed point. The theorem
presented here is a corollary of Tarski’s more general theorem that the set of fixed points of f forms
a complete lattice, but we do not need that more general property here.



82 6 WIDENING

d ⊑ x because d is a lower bound ofD. Bymonotonicity of f wehave f(d) ⊑ f(x),
and f(x) ⊑ x because x ∈ D. Thus, f(d) ⊑ x, so f(d) is also a lower bound of
D. Since d is the greatest lower bound of D we have f(d) ⊑ d. By monotonicity
of f we then have f(f(d)) ⊑ f(d). Therefore f(d) ∈ D, and since d is a lower
bound of D, we have d ⊑ f(d). By anti-symmetry of ⊑we get f(d) = d. To see
that d is the unique least fixed point of f , assume d′ is some fixed point of f , i.e.,
f(d′) = d′. Then d′ ∈ D, and since d is a lower bound of D, we get d ⊑ d′, and,
as usual, by anti-symmetry of ⊑ the least fixed point is unique.

Since the constraint functions for the interval analysis are monotone by
Exercise 6.3, this theorem directly tells us that the least fixed point exists, thus
the constraints for interval analysis always have a well-defined most precise
solution. Nevertheless, we cannot in general compute the least fixed point using
the fixed-point algorithms from Sections 4.4 and 5.3: For some programs, the
fixed-point algorithms may never terminate, as the sequence of approximants

f i(⊥) for i = 0, 1, . . .

may not converge. A powerful technique to address this kind of problem is
introduced in the next section.

Exercise 6.4: Give an example of a TIP program where the fixed-point algo-
rithms from Sections 4.4 and 5.3 do not terminate for the interval analysis
presented above.

6.2 Widening and Narrowing

To obtain convergence of the interval analysis presented in Section 6.1 we shall
use a technique called widening. This technique generally works for any analysis
that can be expressed using monotone equation systems, but it is typically used
in flow-sensitive analyses with infinite-height lattices.

Let f : L → L denote the function from the fixed-point theorem and the naive
fixed-point algorithm (Section 4.4). A particularly simple form of widening,
which sometimes suffices in practice, introduces a function ω : L → L so that
the sequence

(ω ◦ f)i(⊥) for i = 0, 1, . . .

is guaranteed to converge on a fixed point that is larger than or equal to each
approximant f i(⊥) of the naive fixed-point algorithm and thus represents sound
information about the program. To ensure this property, it suffices thatω ismono-
tone and extensive (see Exercise 4.18), and that the image ω(L) = {ω(x) | x ∈ L}
has finite height. The fixed-point algorithms can easily be adapted to use widen-
ing by applying ω in each iteration.

The widening function ω will intuitively coarsen the information sufficiently
to ensure termination. For our interval analysis, ω is defined pointwise down
to single intervals. It operates relative to a set B that consists of a finite set of
integers together with −∞ and ∞. Typically, B could be seeded with all the
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integer constants occurring in the given program, but other heuristics could also
be used. For single intervals we define the function ω′ : Interval → Interval by

ω′([l, h]) = [max{i ∈ B | i ≤ l},min{i ∈ B | h ≤ i}]

ω′(⊥) = ⊥
which finds the best fitting interval among the ones that are allowed.

As explained in Section 6.1, in the interval analysis the lattice L that the naive
fixed-point algorithm works on is L = Staten = (Var → Interval)n where n is
the number of nodes in the program CFG. The widening function ω : L → L
then simply applies ω′ to every interval in the given abstract states:

ω(σ1, . . . , σn) = (σ′
1, . . . , σ

′
n)where σ′

i(X) = ω′(σi(X))
for i = 1, . . . , n and X ∈ Var

Exercise 6.5: Show that interval analysis with widening, with this definition
of ω, always terminates and yields a solution that is a safe approximation of
lfp(f).

Hint: use Tarski’s fixed-point theorem.

Widening is not only useful for infinite-height lattices; it can also be used as
an acceleration technique for analysis that have finite-height lattices but converge
too slowly and where a loss of precision is tolerable.

Widening generally shoots above the target, but a subsequent technique
called narrowing may improve the result. Let fω denote the result of analysis
with widening. Narrowing simply consists of computing f(fω). By Exercise 6.5
we have lfp(f) ⊑ fω. Then f(fω) ⊑ ω(f(fω)) = (ω ◦ f)(fω) = fω since ω is
extensive and fω is a fixed point of ω ◦ f . In other words, f(fω) is at least as
precise as fω. Furthermore, f(f(fω)) ⊑ f(fω) since f is monotone, so f(fω) ∈
{x ∈ L | f(x) ⊑ x} and thereby lfp(f) ⊑ f(fω) by Tarski’s fixed-point theorem.
In other words, f(fω) is a safe approximation of lfp(f). This technique may in
fact be iterated arbitrarily many times, as seen in the following exercise.

Exercise 6.6: Show that ∀i : lfp(f) ⊑ f i+1(fω) ⊑ f i(fω) ⊑ fω .

An example will demonstrate the benefits of widening and narrowing. Consider
this program:

y = 0; x = 7; x = x+1;

while (input) {

x = 7;

x = x+1;

y = y+1;

}

Without widening, the naive fixed-point algorithm will produce the following
diverging sequence of approximants for the program point after the while-loop:
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[x 7→ ⊥, y 7→ ⊥]
[x 7→ [8, 8], y 7→ [0, 1]]
[x 7→ [8, 8], y 7→ [0, 2]]
[x 7→ [8, 8], y 7→ [0, 3]]
...

If we apply widening, based on the set B = {−∞, 0, 1, 7,∞} seeded with the
constants occurring in the program, then we obtain a converging sequence:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [7,∞], y 7→ [0, 1]]
[x 7→ [7,∞], y 7→ [0, 7]]
[x 7→ [7,∞], y 7→ [0,∞]]

However, the result for x is discouraging. Fortunately, a few iterations of nar-
rowing quickly improve the result:

[x 7→ [8, 8], y 7→ [0,∞]]

Exercise 6.7: Exactly how many narrowing steps are necessary to reach this
solution?

This result is really the best we could hope for, for this program. For that
reason, further narrowing has no effect. However, in general, the decreasing
sequence

fω ⊒ f(fω) ⊒ f2(fω) ⊒ . . .

is not guaranteed to converge, so heuristics must determine how many times to
apply narrowing.

Exercise 6.8: Give an example of a TIP program where the narrowing se-
quence diverges for the interval analysis, when using widening followed by
narrowing.

The simple kind of widening discussed above is sometimes unnecessarily
aggressive: widening every interval in every abstract state in each iteration of the
fixed-point algorithm is not necessary to ensure convergence. For this reason,
traditional widening takes a more sophisticated approach that may lead to better
analysis precision. It involves a binary operator, ∇:

∇ : L× L → L

The widening operator ∇ (usually written with infix notation) must satisfy
∀x, y ∈ L : x ⊑ x∇y∧y ⊑ x∇y (meaning that it is an upper bound operator) and
that for any increasing sequence z0 ⊑ z1 ⊑ z2 ⊑ . . . , the sequence y0, y1, y2 . . .
defined by y0 = z0 and yi+1 = yi ∇ zi+1 for i = 0, 1, . . . converges after a finite
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number of steps. With such an operator, we can approximate the least fixed
point of f by computing the following sequence:

x0 = ⊥

xi+1 = xi ∇ f(xi)

This sequence eventually converges, that is, for some k we have xk+1 = xk.
Additionally, the result is a safe approximation of the ordinary fixed point:
lfp(f) ⊑ xk.

Exercise 6.9: Prove that if ∇ is a widening operator (satisfying the criteria
defined above), then xk+1 = xk and lfp(f) ⊑ xk for some k.

This leads us to the following variant of the naive fixed-point algorithm with
(traditional) widening:

procedure NaiveFixedPointAlgorithmWithWidening(f)
x := ⊥
while x ̸= f(x) do

x := x ∇ f(x)
end while
return x

end procedure

The other fixed-point algorithms (Section 5.3) can be extended with this form
of widening in a similar manner.

Note that if we choose as a special case∇ = ⊔, the computation of x0, x1, . . .
proceeds exactly as with the ordinary naive fixed-point algorithm.

Exercise 6.10: Show that ⊔ is a widening operator (albeit perhaps not a very
useful one) if L has finite height.

The idea of using the binary widening operator ∇ is that it allows us to
combine abstract information from the previous and the current iteration of
the fixed-point computation (corresponding to the left-hand argument and the
right-hand argument, respectively), and only coarsen abstract values that are
unstable.

For the interval analysis we can for example define ∇ as follows. We first de-
fine a widening operator ∇′ : Interval × Interval → Interval on single intervals:

⊥ ∇′ y = y

x ∇′ ⊥ = x

[l1, h1] ∇′ [l2, h2] = [l3, h3]

where

l3 =

{
l1 if l1 ≤ l2

max{i ∈ B | i ≤ l2} otherwise
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and

h3 =

{
h1 if h2 ≤ h1

min{i ∈ B | h2 ≤ i} otherwise

Compared to the definition of ω′ for simple widening (see page 83), we now
coarsen the interval end points only if they are unstable compared to the last
iteration. Intuitively, an interval that does not become larger during an iteration
of the fixed-point computation cannot be responsible for divergence.

Now we can define∇ based on∇′, similarly to how we previously defined
ω pointwise in terms of ω′:

(σ1, . . . , σn) ∇ (σ′
1, . . . , σ

′
n) = (σ′′

1 , . . . , σ
′′
n)where σ′′

i (X) = σi(X) ∇′ σ′
i(X)

for i = 1, . . . , n and X ∈ Var

Exercise 6.11: Show that this definition of ∇ for the interval analysis satisfies
the requirements for being a widening operator.

With this more advanced form of widening but without using narrowing,
for the small example program from page 83 we obtain the same analysis result
as with the combination of simple widening and narrowing we looked at earlier.

Exercise 6.12: Explain why the “simple” form of widening (using the unary
ω operator) is just a special case of the “traditional” widening mechanism
(using the binary ∇ operator).

With the simple form of widening, the analysis effectively just uses a finite
subset of L. In contrast, the traditional form of widening is fundamentally
more powerful: Although each program being analyzed uses only finitely many
elements of L, no finite-height subset suffices for all programs [CC92].

We can be even more clever by observing that divergence can only appear in
presence of recursive dataflow constraints (see Section 5.1) and apply widening
only at, for example, CFG nodes that are loop heads.2 In the above definition of
∇, this means changing the definition of σ′′

i to

σ′′
i (X) =

{
σi(X) ∇′ σ′

i(X) if node i is a loop head
σ′
i(X) otherwise

Exercise 6.13: Argue why applying widening only at CFG loop heads suffices
for guaranteeing convergence of the fixed-point computation.

Then give an example of a program where this improves precision for the
interval analysis, compared to widening at all CFG nodes.

2As long as we ignore function calls and only analyze individual functions, the loop heads are
the while nodes in CFGs for TIP programs. If we also consider interprocedural analysis (Chapter 8)
then recursive function calls must also be taken into account.



6.2 WIDENING AND NARROWING 87

Exercise 6.14: We can define another widening operator for interval analysis
that does not require a set B of integer constants. In the definition of ∇′ and
∇ from page 85, we simply chance l3 and h3 as follows:

l3 =

{
l1 if l1 ≤ l2

−∞ otherwise

and

h3 =

{
h1 if h2 ≤ h1

∞ otherwise

Intuitively, this widening coarsens unstable intervals to +/−∞.
(a) Argue that after this change, ∇ still satisfies the requirements for being

a widening operator.

(b) Give an example of a program that is analyzed less precisely after this
change.





Chapter 7

Path Sensitivity and Relational
Analysis

Until now, we have ignored the values of branch and loop conditions by simply
treating if- and while-statements as a nondeterministic choice between the two
branches, which is called control insensitive analysis. Such analyses are also path
insensitive, because they do not distinguish different paths that lead to a given
program point. The information about branches and paths can be important for
precision. Consider for example the following program:

x = input;

y = 0;

z = 0;

while (x > 0) {

z = z+x;

if (17 > y) { y = y+1; }

x = x-1;

}

The previous interval analysis (with widening) will conclude that after the
while-loop, the variable x is in the interval [−∞,∞], y is in the interval [0,∞],
and z is in the interval [−∞,∞]. However, in view of the conditionals being
used, this result is too pessimistic.

Exercise 7.1: What would be the ideal (i.e., most precise, yet sound) analysis
result for x, y, and z at the exit program point in the example above, when
using the Interval lattice to describe abstract values? (Later in this chapter
we shall see an improved interval analysis that obtains that result.)
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7.1 Control Sensitivity using Assertions

To exploit the information available in conditionals, we shall extend the language
with an artificial statement, assert(E), where E is a boolean expression. This
statement will abort execution at runtime if E is false and otherwise have no
effect, however, we shall only insert it at places where E is guaranteed to be true.
In the interval analysis, the constraints for these new statements will narrow the
intervals for the various variables by exploiting information in conditionals.

For the example program, the meanings of the conditionals can be encoded
by the following program transformation:

x = input;

y = 0;

z = 0;

while (x > 0) {

assert(x > 0);

z = z+x;

if (17 > y) { assert(17 > y); y = y+1; }

x = x-1;

}

assert(!(x > 0));

(We here also extend TIP with a unary negation operator !.) It is always safe to
ignore the assert statements, which amounts to this trivial constraint rule:

[[assert(E)]] = JOIN (v)

With that constraint rule, no extra precision is gained. It requires insight into the
specific static analysis to define nontrivial and sound constraints for assertions.

For the interval analysis, extracting the information carried by general condi-
tions, or predicates, such as E1 > E2 or E1 == E2 relative to the lattice elements
is complicated and in itself an area of considerable study. For simplicity, let us
consider conditions only of the two kinds X > E and E > X. The former kind
of assertion can be handled by the constraint rule

assert(X > E): [[v]] = JOIN (v)[X 7→ gt(JOIN (v)(X), eval(JOIN (v),E))]

where gt models the greater-than operator:

gt([l1, h1], [l2, h2]) = [l1, h1] ⊓ [l2,∞]

Exercise 7.2: Argue that this constraint for assert is sound and monotone.

Exercise 7.3: Specify a constraint rule for assert(E > X).

Negated conditions are handled in similar fashions, and all other conditions
are given the trivial constraint by default.
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With this refinement, the interval analysis of the above examplewill conclude
that after the while-loop the variable x is in the interval [−∞, 0], y is in the
interval [0, 17], and z is in the interval [0,∞].

Exercise 7.4: Discuss howmore conditionsmay be given nontrivial constraints
for assert to improve analysis precision further.

As the analysis now takes the information in the branch conditions into
account, this kind of analysis is called control sensitive (or branch sensitive). An al-
ternative approach to control sensitivity that does not involve assert statements
is to model each branch node in the CFG using two constraint variables instead
of just one, corresponding to the two different outcomes of the evaluation of the
branch condition. Another approach is to associate dataflow constraints with
CFG edges instead of nodes. The technical details of such approaches will be
different compared to the approach taken here, but the overall idea is the same.

7.2 Paths and Relations

Control sensitivity is insufficient for reasoning about relational properties that
can arise due to branches in the programs. Here is a typical example:

if (condition) {

open();

flag = 1;

} else {

flag = 0;

}

...

if (flag) {

close();

}

We here assume that open and close are built-in functions for opening and
closing a specific file. (Amore realistic setting with multiple files can be handled
using techniques presented in Chapter 11.) The file is initially closed, condition
is some complex expression, and the “. . . ” consists of statements that do not
call open or close or modify flag. We wish to design an analysis that can check
that close is only called if the file is currently open, that open is only called if
the file is currently closed, and that the file is definitely closed at the program
exit. In this example program, the critical property is that the branch containing
the call to close is taken only if the branch containing the call to openwas taken
earlier in the execution.

As a starting point, we use this powerset lattice for modeling the open/closed
status of the file:

L = P({open, closed})
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(The lattice order is implicitly ⊆ for a powerset lattice.) For example, the lattice
element {open} means that the file is definitely not closed, and {open, closed}
means that the status of the file is unknown. For every CFG node v the variable
[[v]] denotes the possible status of the file at the program point after the node.
For open and close statements the constraints are:

[[open()]] = {open}

[[close()]] = {closed}

For the entry node, we define:

[[entry ]] = {closed}

and for every other node, which does not modify the file status, the constraint is
simply

[[v]] = JOIN (v)

where JOIN is defined as usual for a forward, may analysis:

JOIN (v) =
⋃

w∈pred(v)

[[w]]

In the example program, the close function is clearly called if and only if
open is called, but the current analysis fails to discover this.

Exercise 7.5: Write the constraints being produced for the example program
and show that the solution for [[flag]] (the node for the last if condition) is
{open, closed}.

Arguing that the program has the desired property obviously involves the
flag variable, which the lattice above ignores. So, we can try with a slightly
more sophisticated lattice – a product lattice of two powerset lattices that keeps
track of both the status of the file and the value of the flag:

L′ = P({open, closed})× P({flag = 0, flag ̸= 0})

(The lattice order is implicitly defined as the componentwise subset ordering
of the two powersets.) For example, the lattice element {flag ̸= 0} in the right-
most sub-lattice means that flag is definitely not 0, and {flag = 0, flag ̸=
0} means that the value of flag is unknown. Additionally, we insert assert
statements to model the conditionals:

if (condition) {

assert(condition);

open();

flag = 1;

} else {

assert(!condition);
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flag = 0;

}

...

if (flag) {

assert(flag);

close();

} else {

assert(!flag);

}

This is still insufficient, though. At the program point after the first if-else
statement, the analysis only knows that open may have been called and flag
may be 0.

Exercise 7.6: Specify the constraints that fit with the L′ lattice. Then show that
the analysis produces the lattice element ({open, closed}, {flag = 0, flag ̸= 0})
at the program point after the first if-else statement.

The present analysis is also called an independent attribute analysis as the
abstract value of the file is independent of the abstract value of the boolean flag.
What we need is a relational analysis that can keep track of relations between
variables. One approach to achieve this is by generalizing the analysis tomaintain
multiple abstract states per program point. If L is the original lattice as defined
above, we replace it by the map lattice

L′′ = Path → L

where Path is a finite set of path contexts. A path context is typically a predicate
over the program state.1 (For instance, a condition expression in TIP defines
such a predicate.) In general, each statement is then analyzed in |Path| different
path contexts, each describing a set of paths that lead to the statement, which is
why this kind of analysis is called path sensitive. For the example above, we can
use Path = {flag = 0, flag ̸= 0}.

The constraints for open, close, and entry can now be defined as follows.2

[[open()]] = λp.{open}

[[close()]] = λp.{closed}

[[entry]] = λp.{closed}

The constraints for assignments make sure that flag gets special treatment:

flag = 0: [[v]] = [flag = 0 7→
⋃

p∈Path JOIN (v)(p),

flag ̸= 0 7→ ∅]

1Another way to select Path is to use sequences of branch nodes.
2We here use the lambda abstration notation to denote a function: if f = λx.e then f(x) = e.

Thus, λp.{open} is the function that returns {open} for any input p.
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flag = I : [[v]] = [flag ̸= 0 7→
⋃

p∈Path JOIN (v)(p),

flag = 0 7→ ∅]

flag = E: [[v]] = λq.
⋃

p∈Path JOIN (v)(p)

Here, I is an integer constant other than 0 and E is a non-integer-constant
expression. The definition of JOIN follows from the lattice structure and from
the analysis being forward:

JOIN (v)(p) =
⋃

w∈pred(v)

[[w]](p)

The constraint for the case flag = 0models the fact that flag is definitely 0 after
the statement, so the open/closed information is obtained from the predecessors,
independent of whether flag was 0 or not before the statement. Also, the
open/closed information is set to the bottom element ∅ for flag ̸= 0 because that
path context is infeasible at the program point after flag = 0. The constraint for
flag = I is dual, and the last constraint covers the cases where flag is assigned
an unknown value.

For assert statements, we also give special treatment to flag:

assert(flag): [[v]] = [flag ̸= 0 7→ JOIN (v)(flag ̸= 0),
flag = 0 7→ ∅]

Notice the small but important difference compared to the constraint for
flag = 1 statements. As before, the case for negated expressions is similar.

Exercise 7.7: Give an appropriate constraint for assert(!flag).

Finally, for any other node v, including other assert statements, the constraint
keeps the dataflow information for different path contexts apart but otherwise
simply propagates the information from the predecessors in the CFG:

[[v]] = λp.JOIN (v)(p)

Although this is sound, we could make more precise constraints for assert
nodes by recognizing other patterns that fit into the abstraction given by the
lattice.

For our example program, the following constraints are generated:

[[entry]] = λp.{closed}
[[condition]] = [[entry]]
[[assert(condition)]] = [[condition]]
[[open()]] = λp.{open}
[[flag = 1]] =

[
flag ̸= 0 7→

⋃
p∈Path [[open()]](p), flag = 0 7→ ∅

]
[[assert(!condition)]] = [[condition]]
[[flag = 0]] =

[
flag = 0 7→

⋃
p∈Path [[assert(!condition)]](p), flag ̸= 0 7→ ∅

]
[[...]] = λp.

(
[[flag = 1]](p) ∪ [[flag = 0]](p)

)
[[flag]] = [[...]]



7.2 PATHS AND RELATIONS 95

[[assert(flag)]] = [flag ̸= 0 7→ [[flag]](flag ̸= 0), flag = 0 7→ ∅]
[[close()]] = λp.{closed}
[[assert(!flag)]] = [flag = 0 7→ [[flag]](flag = 0), flag ̸= 0 7→ ∅]
[[exit]] = λp.

(
[[close()]](p) ∪ [[assert(!flag)]](p)

)
The minimal solution is, for each [[v]](p):

flag = 0 flag ̸= 0
[[entry]] {closed} {closed}
[[condition]] {closed} {closed}
[[assert(condition)]] {closed} {closed}
[[open()]] {open} {open}
[[flag = 1]] ∅ {open}
[[assert(!condition)]] {closed} {closed}
[[flag = 0]] {closed} ∅
[[...]] {closed} {open}
[[flag]] {closed} {open}
[[assert(flag)]] ∅ {open}
[[close()]] {closed} {closed}
[[assert(!flag)]] {closed} ∅
[[exit]] {closed} {closed}

The analysis produces the lattice element [flag = 0 7→ {closed}, flag ̸= 0 7→
{open}] for the program point after the first if-else statement. The constraint
for the assert(flag) statement will eliminate the possibility that the file is
closed at that point. This ensures that close is only called if the file is open, as
desired.

Exercise 7.8: For the present example, the basic lattice L is a defined as a
powerset of a finite set A = {open, closed}.
(a) Show that Path → P(A) is isomorphic to P(Path ×A) for any finite set

A. (This explains why such analyses are called relational: each element
of P(Path ×A) is a (binary) relation between Path and A.)

(b) Reformulate the analysis usingP({flag = 0, flag ̸= 0} × {open, closed})
instead of L′′ (without affecting the analysis precision).

Exercise 7.9: Describe a variant of the example program above where the
present analysis would be improved if combining it with constant propaga-
tion.

In general, the program analysis designer is left with the choice of Path .
Often, Path consists of combinations of predicates that appear in conditionals
in the program. This quickly results in an exponential blow-up: for k predicates,
each statement may need to be analyzed in 2k different path contexts. In practice,
however, there is usually much redundancy in these analysis steps. Thus, in
addition to the challenge of reasoning about the assert predicates relative to the
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lattice elements, it requires a considerable effort to avoid too many redundant
computations in path sensitive analysis. One approach is iterative refinement
where Path is initially a single universal path context, which is then iteratively
refined by adding relevant predicates until either the desired properties can be
established or disproved or the analysis is unable to select relevant predicates
and hence gives up [BR02].

Exercise 7.10: Assume that we change the rule for open from

[[open()]] = λp.{open}

to
[[open()]] = λp. if JOIN (v)(p) = ∅ then ∅ else {open}

Argue that this is sound and for some programsmore precise than the original
rule.

Exercise 7.11: The following is a variant of the previous example program:

if (condition) {

flag = 1;

} else {

flag = 0;

}

...

if (flag) {

open();

}

...

if (flag) {

close();

}

(Again, assume that “...” are statements that do not call open or close or
modify flag.) Is the path sensitive analysis described in this section capable
of showing also for this program that close is called only if the file is open?

Exercise 7.12: Construct yet another variant of the open/close example pro-
gram where the desired property can only be established with a choice of
Path that includes a predicate that does not occur as a conditional expression
in the program source. (Such a program may be challenging to handle with
iterative refinement techniques.)
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Exercise 7.13: The following TIP code computes the absolute value of x:

if (x < 0) {

sgn = -1;

} else {

sgn = 1;

}

y = x * sgn;

Design an analysis (i.e., define a lattice and describe the relevant constraint
rules) that is able to show that y is always positive or zero after the last
assignment in this program.





Chapter 8

Interprocedural Analysis

So far, we have only analyzed the body of individual functions, which is called
intraprocedural analysis. We now consider interprocedural analysis of whole pro-
grams containing multiple functions and function calls.

8.1 Interprocedural Control Flow Graphs

We use the subset of the TIP language containing functions, but still ignore
pointers and functions as values. As we shall see, the CFG for an entire program
is then quite simple to obtain. It becomes more complicated when adding
function values, which we discuss in Chapter 10.

First we construct the CFGs for all individual function bodies as usual. All
that remains is then to glue them together to reflect function calls properly.
We need to take care of parameter passing, return values, and values of local
variables across calls. For simplicity we assume that all function calls are
performed in connection with assignments:

X = f (E1, . . . , ,En);

Exercise 8.1: Show how any program can be normalized (cf. Section 2.3) to
have this form.

In the CFG, we represent each function call statement using two nodes: a
call node representing the connection from the caller to the entry of f, and an
after-call node where execution resumes after returning from the exit of f:
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X = 

(             )1 n  = f  E ,...,E 

Next, we represent each return statement

return E;

as an assignment using a special variable named result:

result = E

As discussed in Section 2.5, CFGs can be constructed such that there is always a
unique entry node and a unique exit node for each function.

We can now glue together the caller and the callee as follows:

X = 

1  = f  E  ,...,E (              )n

result = E

1             nf(b  , ..., b  )

The connection between the call node and its after-call node is represented by
a special edge (not in succ and pred), which we need for propagating abstract
values for local variables of the caller.

With this interprocedural CFG in place, we can apply the monotone frame-
work. Examples are given in the following sections.
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Exercise 8.2: How many edges may the interprocedural CFG contain in a
program with n CFG nodes?

Recall the intraprocedural sign analysis from Sections 4.1 and 5.1. That
analysis models values with the lattice Sign :

+ 0 −

and abstract states are represented by the map lattice State = Var → Sign . For
any program point, the abstract state only provides information about variables
that are in scope; all other variables can be set to ⊥.

To make the sign analysis interprocedural, we define constraints to model the
information flow at function calls and returns. First, we treat the call nodes as
no-ops that simply collect information from their predecessors. Thus, if v is a call
node, we define [[v]] = JOIN (v). For an entry node v of a function f (b1, . . . ,bn)
we consider the abstract states for all callers pred(v) and model the passing of
parameters:

[[v]] =
⊔

w∈pred(v)

sw

where1
sw = ⊥[b1 7→ eval([[w]],Ew

1 ), . . . , bn 7→ eval([[w]],Ew
n )]

where Ew
i is the i’th argument at the call node w. As discussed in Section 4.4,

constraints can be expressed using inequations instead of equations. The con-
straint rule above can be reformulated as follows, where v is a function entry
node and w ∈ pred(v) is a caller:

sw ⊑ [[v]]

Intuitively, this shows how information flows from the call node (the left-hand-
side of ⊑) to the function entry node (the right-hand-side of ⊑). This for-
mulation fits well with algorithms like PropagationWorkListAlgorithm from
Section 5.10.

Exercise 8.3: Explain why these two formulations of the constraint rule for
function entry nodes are equivalent.

1In this expression, ⊥ denotes the bottom element of the Var → Sign , that is, it maps every
variable to the bottom element of Sign .
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For the entry node v of the main function with parameters b1, . . . , bn we have
this special rule that models the fact that main is implicitly called with unknown
arguments:

[[v]] = ⊥[b1 7→ ⊤, . . . , bn 7→ ⊤]

Function exit nodes are modeled as no-ops, just like call nodes, so if v is an
exit node we can define [[v]] = JOIN (v). For an after-call node v that stores
the return value in the variable X and where v′ is the accompanying call node
and w ∈ pred(v) is the function exit node, the dataflow can be modeled by the
following constraint:

[[v]] = [[v′]][X 7→ [[w]](result)]

The constraint obtains the abstract values of the local variables from the call
node v′ and the abstract value of result from w.

Notice that in this definition of the analysis constraints we exploit the fact
that the variant of the TIP language we use in this chapter does not have global
variables, a heap, nested functions, or higher-order functions.

Exercise 8.4: Write and solve the constraints that are generated by the inter-
procedural sign analysis for the following program:

inc(a) {

return a+1;

}

main() {

var x,y;

x = inc(17);

y = inc(87);

return x+y;

}

Exercise 8.5: Assume we extend TIP with global variables. Such variables are
declared before all functions and their scope covers all functions. Write a TIP
programwith global variables that is analyzed incorrectly (that is, unsoundly)
with the current analysis. Then show how the constraint rules above should
be modified to accommodate this language feature.

Function entry nodes may have many predecessors, and similarly, function
exit nodes may have many successors. For this reason, algorithms like Propaga-
tionWorkListAlgorithm (Section 5.10) are often preferred for interprocedural
dataflow analysis.

Exercise 8.6: For the interprocedural sign analysis, how can we choose dep(v)
when v is a call node, an after-call node, a function entry node, or a function
exit node?
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8.2 Context Sensitivity

The approach to interprocedural analysis as presented in the previous sections
is called context insensitive, because it does not distinguish between different
calls to the same function. As an example, consider the sign analysis applied to
this program:

f(z) {

return z*42;

}

main() {

var x,y;

x = f(0); // call 1

y = f(87); // call 2

return x + y;

}

Due to the first call to f the parameter zmay be 0, and due to the second call it
may be a positive number, so in the abstract state at the entry of f, the abstract
value of z is ⊤. That value propagates through the body of f and back to the
callers, so both x and y also become ⊤. This is an example of dataflow along
interprocedurally invalid paths: according to the analysis constraints, dataflow
from one call node propagates through the function body and returns not only
at the matching after-call node but at all after-call nodes. Although the analysis
is still sound, the resulting loss of precision may be unacceptable.

A naive solution to this problem is to use function cloning. In this specific
example we could clone f and let the two calls invoke different but identical func-
tions. A similar effect would be obtained by inlining the function body at each
call. More generally this may, however, increase the program size significantly,
and in case of (mutually) recursive functions it would result in infinitely large
programs. As we shall see next, we can instead encode the relevant information
to distinguish the different calls by the use of more expressive lattices, much
like the path-sensitivity approach in Chapter 7.

As discussed in the previous section, a basic context-insensitive dataflow ana-
lysis can be expressed using a lattice Staten where State is the lattice describing
abstract states and n = |Node| (or equivalently, using a lattice Node → State).
Context-sensitive analysis instead uses a lattice of the form(

Context → lift(State)
)n

(or equivalently, Context → (lift(State))n or Node → Context → lift(State)
or Context × Node → lift(State)) where Context is a set of call contexts. The
reason for using the lifted sub-lattice lift(State) (as defined in Section 4.3) is that
Context may be large so we only want to infer abstract states for call contexts
that may be feasible. The bottom element of lift(State), denoted unreachable, is
used for call contexts that are unreachable from the program entry. (Of course,
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in analyses where State already provides similar information, we do not need
the lifted version.)

In the following sections we present different ways of choosing the set of
call contexts. A trivial choice is to let Context be a singleton set, which amounts
to context-insensitive analysis. Another extreme we shall investigate is to to
pick Context = State , which allows full context sensitivity. These ideas originate
from the work by Sharir and Pnueli [SP81].

Dataflow for CFG nodes that do not involve function calls and returns is
modeled as usual, except that we now have an abstract state (or the extra lattice
element unreachable) for each call context. This means that the constraint vari-
ables now range over Context → lift(State) rather than just State . For example,
the constraint rule for assignments X=E in intraprocedural sign analysis from
Section 5.1,

X = E: [[v]] = JOIN (v)[X 7→ eval(JOIN (v),E)]

becomes

X = E: [[v]](c) =

{
s[X 7→ eval(s,E)] if s = JOIN (v, c) ∈ State

unreachable if JOIN (v, c) = unreachable

where
JOIN (v, c) =

⊔
w∈pred(v)

[[w]](c)

to match the new lattice with context sensitivity. Note that information for
different call contexts is kept apart, and that the reachability information is
propagated along. How to model the dataflow at call nodes, after-call nodes,
function entry nodes, and function exit nodes depends on the context sensitivity
strategy, as described in the following sections.

8.3 Context Sensitivity with Call Strings

Let Call be the set of call nodes in the CFG. The call string approach to context
sensitivity defines2

Context = Call≤k

where k is a positive integer. With this choice of call contexts, we can obtain
a similar effect as function cloning or inlining, but without actually changing
the CFG. The idea is that a tuple (c1, c2, . . . , cm) ∈ Call≤k identifies the topmost
m call sites on the call stack. If (e1, . . . , en) ∈ (Context → State)n is a lattice
element, then ei(c1, c2, . . . , cm) provides an abstract state that approximates the
runtime states that may appear at the i’th CFG node, assuming that the function
containing that node was called from c1, and the function containing c1 was
called from c2, etc. The length of the tuples is bounded to ensure that Context

2We here use the notation A≤k meaning the set of tuples of k or fewer elements from the set A,
or more formally: A≤k =

⋃
i=0,...,k Ai.
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is finite. The context represented by empty tuple, denoted ϵ, thus identifies
the empty call stack when execution is initiated at the main function. Tuples
(c1, c2, . . . , cm) where m < k identify call stacks of height exactly m (in which
case cm must be a call node in the main function), while tuples where m = k
identify call stacks of height at least m (intuitively, call strings longer than k are
truncated).

The worst-case complexity of the analysis is evidently affected by the choice
of k.

Exercise 8.7: What is the height of the lattice (Context → State)n when
Context = Call≤k and State = Var → Sign , expressed in terms of k (the call
string bound), n = |Node|, and b = |Var |?

To demonstrate the call string approach we again consider sign analysis
applied to the program from Section 8.2. Let c1 and c2 denote the two call nodes
in the main function in the program. For simplicity, we focus on the case k = 1,
meaning that Context = {ϵ, c1, c2}, so the analysis only tracks the top-most call
site. We can now define the analysis constraints such that, in particular, at the
entry of the function f, we obtain the lattice element[

ϵ 7→ unreachable,
c1 7→ [x 7→ ⊥, y 7→ ⊥, z 7→ 0],
c2 7→ [x 7→ ⊥, y 7→ ⊥, z 7→ +]

]
which has different abstract values for z depending on the caller. Notice that the
information for the context ϵ is unreachable, since f is not the main function but
is always executed from c1 or c2.

Parameter passing at function calls is modeled in the same way as in context-
insensitive analysis, but now taking the call contexts into account. Assume w is
a call node and v is the entry node of the function f (b1, . . . ,bn) being called.
The abstract state sc′w defined by

sc
′

w =

{
unreachable if [[w]](c′) = unreachable

⊥[b1 7→ eval([[w]](c′),Ew
1 ), . . . , bn 7→ eval([[w]](c′),Ew

n )] otherwise

describes the dataflow from w to v, like the context-insensitive variant but now
parameterized with a context c′ for the call node. This definition also models
the fact that no new dataflow can appear from call node w in context c′ if that
combination of node and context is unreachable (perhaps because the analysis
has not yet encountered any dataflow to that node and context).

The constraint rule for a function entry node v where w ∈ pred(v) is a caller
and c′ ∈ Context is a call context can then be written as follows.

sc
′

w ⊑ [[v]](c) where c = w

Informally, for any call context c′ at the call node w, an abstract state sc′w is built
by evaluating the function arguments and propagated to call context c at the
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function entry node v. In this simple case where k = 1, the call node w is directly
used as context c for the function entry node, but for larger values of k it is
necessary to express how the call site is pushed onto the stack (represented by
the call string from the call context).

Alternatively, the constraint rule can be expressed as an equation by collecting
the abstract states for all relevant call nodes and contexts:

[[v]](c) =
⊔

w ∈ pred(v) ∧
c = w ∧

c′ ∈ Context

sc
′

w

Compared to the context-insensitive variant, the abstract state at v is now param-
eterized by the context c, and we only include information from the call nodes
that match c.

Exercise 8.8: Verify that this constraint rule for function entry nodes indeed
leads to the lattice element shown above for the example program.

Exercise 8.9: Give a constraint rule for the entry node of the special function
main. (Remember that main is always reachable in context ϵ and that the
values of its parameters can be any integers.)

Assume v is an after-call node that stores the return value in the variable X,
and that v′ is the associated call node and w ∈ pred(v) is the function exit node.
The constraint rule for v merges the abstract state from the v′ and the return
value from w, now taking the call contexts and reachability into account:

[[v]](c) =

{
unreachable if [[v′]](c) = unreachable ∨ [[w]](v′) = unreachable

[[v′]](c)[X 7→ [[w]](v′)(result)] otherwise

Notice that with this kind of context sensitivity, v′ is both a call node and a call
context, and the abstract value of result is obtained from the exit node w in call
context v′.

Exercise 8.10: Write and solve the constraints that are generated by the in-
terprocedural sign analysis for the program from Exercise 8.4, this time with
context sensitivity using the call string approach with k = 1. (Even though
this program does not need context sensitivity to be analyzed precisely, it
illustrates the mechanism behind the call string approach.)
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Exercise 8.11: Assume we have analyzed a program P using the interproce-
dural sign analysis with call-string context sensitivity with k = 2, and the
analysis result contains the following lattice element for the exit node of a
function named foo:[

c2 7→ [result 7→ -],
(c1, c2) 7→ [result 7→ +],
all other contexts 7→ unreachable

]
Explain informally what this tells us about the program P . Give an example
of what program P may be.

Exercise 8.12: Write a TIP program that needs the call string bound k = 2 or
higher to be analyzed with optimal precision using the sign analysis. That is,
some variable in the program is assigned the abstract value ⊤ by the analysis
if and only if k < 2.

Exercise 8.13: Generalize the constraint rules shown above to work with any
k ≥ 1, not just k = 1.

In summary, the call string approach distinguishes calls to the same function
based on the call sites that appear in the call stack. In practice, k = 1 sometimes
gives inadequate precision, and k ≥ 2 is generally too expensive. For this reason,
it is common to select k individually for each call site, based on heuristics.

8.4 Context Sensitivity with the Functional Approach

Consider this variant of the program from Section 8.2:

f(z) {

return z*42;

}

main() {

var x,y;

x = f(42); // call 1

y = f(87); // call 2

return x + y;

}

The call string approach with k ≥ 1 will analyze the f function twice, which
is unnecessary because the abstract value of the argument is + at both calls.
Rather than distingushing calls based on information about control flow from
the call stack, the functional approach to context sensitivity distinguishes calls
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based on the data from the abstract states at the calls. In the most general form,
the functional approach uses

Context = State

although a subset often suffices. With this set of call contexts, the analysis lattice
becomes (

State → lift(State)
)n

which clearly leads to a significant increase of the theoretical worst-case com-
plexity compared to context insensitive analysis.

Exercise 8.14: What is the height of this lattice, expressed in terms of h =
height(State) and s = |State|?

The idea is that a lattice element for a CFG node v is a map mv : State →
lift(State) such thatmv(s) approximates the possible states at v given that the
current function containing v was entered in a state that matches s. The situation
mv(s) = unreachable means that there is no execution of the program where the
function is entered in a state that matches s and v is reached. If v is the exit node
of a function f , the map mv is a summary of f , mapping abstract entry states to
abstract exit states, much like a transfer function (see Section 5.10) models the
effect of executing a single instruction but now for an entire function.

Returning to the example program from Section 8.2 (page 103), we will now
define the analysis constraints such that, in particular, we obtain the following
lattice element at the exit of the function f:3[

⊥[z 7→ 0] 7→ ⊥[z 7→ 0, result 7→ 0],
⊥[z 7→ +] 7→ ⊥[z 7→ +, result 7→ +],
all other contexts 7→ unreachable]

This information shows that the exit of f is unreachable unless z is 0 or + at the
entry of the function, and that the sign of result at the exit is the same as the
sign of z at the input. In particular, the context where z is -maps to unreachable
because f is never called with negative inputs in the program.

The constraint rule for an entry node v of a function f (b1, . . . ,bn) and a call
w ∈ pred(v) to the function is the same as in the call strings approach, except for
the condition on c:

sc
′

w ⊑ [[v]](c) where c = sc
′

w

(The abstract state sc′w is defined as in Section 8.3.) This rule shows that at the call
w in context c′, the abstract state sc′w is propagated to the function entry node v in
a context that is identical to sc

′

w . This makes sense because contexts are abstract
states with the functional approach.

3We here use the map update notation described on page 44 and the fact that the bottom element
of a map lattice maps all inputs to the bottom element of the codomain, so ⊥[z 7→ 0] denotes the
function that maps all variables to ⊥, except zwhich is mapped to 0.
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Exercise 8.15: Verify that this constraint rule for function entry nodes indeed
leads to the lattice element shown above for the example program.

Exercise 8.16: Give a constraint rule for the entry node of the special function
main. (Remember that main is always reachable and that the values of its
parameters can be any integers.)

Assume v is an after-call node that stores the return value in the variable X,
and that v′ is the associated call node and w ∈ pred(v) is the function exit node.
The constraint rule for v merges the abstract state from the v′ and the return
value from w, while taking the call contexts and reachability into account:

[[v]](c) =

{
unreachable if [[v′]](c) = unreachable ∨ [[w]](scv′) = unreachable

[[v′]](c)[X 7→ [[w]](scv′)(result)] otherwise

To find the relevant context for the function exit node, this rule builds the
same abstract state as the one built at the call node.

Exercise 8.17: Assume we have analyzed a program P using context sensitive
interprocedural sign analysis with the functional approach, and the analysis
result contains the following lattice element for the exit node of a function
named foo:[

[x 7→ -, y 7→ -, result 7→ ⊥] 7→ [x 7→ +, y 7→ +, result 7→ +],
[x 7→ +, y 7→ +, result 7→ ⊥] 7→ [x 7→ -, y 7→ -, result 7→ -],
all other contexts 7→ unreachable

]
Explain informally what this tells us about the program P . What could foo
look like?

Exercise 8.18: Write and solve the constraints that are generated by the in-
terprocedural sign analysis for the program from Exercise 8.4, this time with
context sensitivity using the functional approach.

Context sensitivity with the functional approach as presented here gives
optimal precision, in the sense that it is as precise as if inlining all function calls
(even recursive ones). This means that it completely avoids the problem with
dataflow along interprocedurally invalid paths.

Exercise 8.19: Show that this claim about the precision of the functional
approach is correct.

Due to the high worst-case complexity, in practice the functional approach is
often applied selectively, either only on some functions or using call contexts
that only consider some of the program variables. One choice is parameter sensi-
tivity where the call contexts are defined by the abstract values of the function
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parameters but not other parts of the program state. In the version of TIP used
in this chapter, there are no pointers or global variables, so the entire program
state at function entries is defined by the values of the parameters, which means
that the analysis presented in this section coincides with parameter sensitivity.
When analyzing object oriented programs, a popular choice is object sensitivity,
which is essentially a variant of the functional approach that distinguishes calls
not on the entire abstract states at function entries but only on the abstract values
of the receiver objects.



Chapter 9

Distributive Analysis
Frameworks

Recall from Exercise 5.26 that an analysis is distributive if all its constraint func-
tions are distributive as defined in Exercise 4.20: A function f : L1 → L2 where
L1 and L2 are lattices is distributive when ∀x, y ∈ L1 : f(x) ⊔ f(y) = f(x ⊔ y).
In this chapter, we demonstrate how distributivity enables efficient algorithms
for context- and flow-sensitive analysis. These results build on a combination of
(1) the functional approach to context sensitivity (Section 8.4), and (2) a clever
compact representations of distributive functions. The techniques presented in
this chapter originate from Reps, Horwitz and Sagiv [RHS95, SRH96] but are
presented in a constraint-based style to make the connections to the preceding
chapters more clear.

9.1 Motivating Example: Possibly-Uninitialized
Variables Analysis

The goal of possibly-uninitialized variables analysis is to approximate at each
program point in a given program which variables may have values that come
from uninitialized variables.

Possibly-uninitialized variables analysis is very similar to taint analysis, which
aims to infer which computations may involve “tainted” data that come from
untrusted input.

An an example, the possibly-uninitialized variables at each program point
in the following program are shown in comments:

var a,b,c; // a,b,c

a = input; // b,c
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b = a + c; // b,c

if (input) { // b,c

c = 1; // b

} // b,c

At the program point immediately after the variable declarations, all three
variables are possibly-uninitialized. Notice that b remains possibly-uninitialized
after the assignment b = a + c because its value depends on c (and therefore
this analysis is not simply the dual of the initialized variables analysis from
Section 5.9). At the final program point, c is possibly-uninitialized despite the
assignment c = 1 because the branch containing that assignment may not be
taken.

We shall now design such an analysis that is both flow sensitive and context
sensitive using the functional approach to context sensitivity, following the
methodology from Chapters 5 and 8. As discussed in Section 8.4, the functional
approach to context sensitivity is precise enough to completely avoid the problem
with interprocedurally invalid paths. The results of such an analysis can be used
as follows. When analyzing a program, we want to know for a given variable
X and program point v inside a function f whether f may be called in some
context c such that X is possibly-uninitialized at v in context c – and if so, a
warning can be emitted informing the programmer that the program behavior
is likely unintended if the instruction at v uses X.

First, we choose a suitable lattice of abstract states,

State = P(Var)

intuitively such that each abstract state denotes a set of possibly-uninitialized
variables. With the functional approach to context sensitivity where contexts
are themselves abstract states, we set Context = State so that the analysis lattice
for a program with n CFG nodes looks as follows:(

P(Var) → lift(P(Var))
)n

Anelement of this lattice contains a functionmv : P(Var) → (P(Var)∪{unreachable}),
called a jump function, for each CFG node v. Such a function has the intuitive
meaning that if the program function that contains v is entered from a call with
possibly-uninitialized variables s ∈ P(Var), then the set of possibly-uninitialized
variables at v is mv(s) ∈ P(Var), and mv(s) = unreachable1 means that no such
call exists in the program (in other words, that f and thereby also v are un-
reachable in context s). If, for example, the function foo below is called with
y being possibly-uninitialized while x is definitely initialized, then y and z are
possibly-uninitialized at the return instruction, thus mreturn z({y}) = {y, z}.

foo(x, y) {

var z;

z = x - y;

1unreachable here denotes the bottom element of the lifted lattice as in Section 8.2.
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z = z * z;

return z;

}

The entry of the main function is always reachable with the empty context:2

[[entrymain]](∅) ̸= unreachable

The transfer function for a variable declaration, var X, models the fact that
variables in TIP are uninitialized right after they have been declared:

tvar X(s) = s ∪ {X}

The transfer function for an assignment, X = E, is defined as follows where
vars(E) denotes the set of variables occurring in E.

tX=E(s) =

{
s ∪ {X} if vars(E) ∩ s ̸= ∅
s\{X} otherwise

As in Section 8.2, the analysis constraint for [[v]] when v is a variable decla-
ration or an assignment can be expressed using the transfer function and the
JOIN function:

[[v]](c) =

{
tv(JOIN (v, c)) if JOIN (v, c) ∈ P(Var)

unreachable if JOIN (v, c) = unreachable

where
JOIN (v, c) =

⊔
w∈pred(v)

[[w]](c)

Exercise 9.1: Explain intuitively why the above definition of the transfer func-
tion for assignments is correct for possibly-uninitialized variables analysis.

Exercise 9.2: Specify suitable constraint rules for other kinds of CFG nodes
than variable declarations and assignments (most importantly, non-main
function entry nodes and after-call nodes).

Finally, we can collect the set of possibly-uninitialized variables at each
program point v as

⊔
c∈Context [[v]](c).

2In TIP, the parameters of the main function obtain values from the program input, and other
variables cannot be accessed outside the scope of their declaration.
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Exercise 9.3: At each programpoint in the following program, which variables
are possibly-uninitialized according to the context sensitive analysis described
above? What is the result if instead using context insensitive analysis?

main() {

var x,y,z;

x = input;

z = p(x,y);

return z;

}

p(a,b) {

if (a > 0) {

b = input;

a = a - b;

b = p(a,b);

output(a);

output(b);

}

return b;

}

In Section 8.4 we saw that the jump functionmv for a function exit node v has
the interesting property that it “summarizes” the entire function for all possible
contexts the function may be called in, by mapping entry abstract states to exit
abstract states. If, for example v is the exit node of the foo function on page 112,
then mv is this function:

mv(s) =

{
s ∪ {z} if x ∈ s ∨ y ∈ s

s\{z} otherwise

This means that oncemv(s) has been computed for some abstract state s, then
the result can be reused for all calls to foowhere the corresponding abstract state
for the function entry is s, without revisiting the function body. The work-list
algorithm from Section 5.3 automatically performs such reuse.

Another important observation from Section 8.4 is that the functional ap-
proach to context sensitivity can be computationally expensive when the number
of contexts is large. The following exercise shows that a basic implementation
of the analysis is not scalable, despite the reuse effect for calls with the same
call context and the use of unreachable for avoiding analysis of functions in
unreachable contexts.
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Exercise 9.4: Estimate the worst-case complexity of possibly-uninitialized
variables analysis as specified above. Assume n is the size of the program be-
ing analyzed (measured as the number of CFG nodes) and that we use either
the naive fixed-point algorithm from Section 4.4 or the work-list algorithm
from Section 5.3.

The key to achieve a more scalable solution is distributivity, as demonstrated
in the following sections.

Exercise 9.5: Show that possibly-uninitialized variables analysis is distributive
(as defined in Exercise 5.26).

9.2 An Alternative Formulation

So far, we have simply used the standard methodology from Chapters 5 and 8,
without exploiting distributivity. But before we look into distributivity, let us
first study an alternative formulation of possibly-uninitialized variables analysis,
which is a step toward the IFDS framework described in Section 9.4. It is divided
into two phases:

1. a pre-analysis that computes function summaries for all reachable functions,
and

2. a main analysis that computes possibly-uninitialized variables for all CFG
nodes, leveraging information from the pre-analysis at function calls.

Interestingly, both phases are context insensitive (not context sensitive!), and
yet the resulting analysis achieves the same precision as the original formulation
from 9.1 for computing which variables may be possibly-uninitialized at a given
program point.

The pre-analysis phase We first describe the pre-analysis. It uses this lattice
for a program with n CFG nodes:(

lift(P(Var) → P(Var))
)n

Even though we think of this as a context insensitive analysis, the analysis
lattice looks very similar to the one from page 112. In the old analysis, an
element of the lattice for individual CFG nodeswas a set of possibly-uninitialized
program variables for each context. In this context insensitive pre-analysis, an
element of the lattice for individual CFG nodes is instead either unreachable or a
jump function mv : P(Var) → P(Var) with almost the same meaning as before,
relating the set of possibly-uninitialized variables at the entry of the function
containing v with the set of possibly-uninitialized variables at v. The lattice lift
operation is used slightly differently; this new analysis does not track which
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contexts each function may be called in, but only which functions may be called
in some context, thereby providing a coarser notion of reachability.

With this choice of analysis lattice, the constraint rules for the different kinds
of CFG nodes can be defined as follows.

The entry node entrymain of the main function is always reachable, and for
any given set s of possibly-uninitialized variables at the entry of the function, s
is trivially the set of possibly-uninitialized variables at this node since it is the
same node:

[[entrymain]]1(s) = s

The subscript at [[ · ]]1 indicates that the constraint variables here are for analysis
phase 1. For the entry node entryf of any other function f , the constraint is the
same, except that we account for reachability of the function:

[[entryf ]]1(s) = s if the program contains a call node = f( . . . )

where [[ = f( . . . )]]1 ̸= unreachable

If there are no reachable calls to f , we implicitly have [[entryf ]]1 = unreachable in
the least solution to the constraints, because unreachable is the bottom element
of the lattice. Notice that the only information that is carried from the caller to
the callee in this pre-analysis is whether the function is reachable – there is no
flow of information between the functions about which variables are possibly-
uninitialized, unlike the first formulation of the possibly-uninitialized variables
analysis.

The constraint for an assignment node v : X = E is defined using function
composition, where tX=E is the transfer function defined in Section 9.1:

[[X = E]]1 = tX=E ◦
⊔

w ∈ pred(X=E) ∧
[[w]]1 ̸= unreachable

[[w]]1 if [[w]]1 ̸= unreachable

for some w ∈ pred(X=E)

Again, we implicitly have [[X = E]]1 = unreachable if the node has no reachable
predecessors. For each reachable predecessor w in the CFG, [[w]]1 is a jump
function for w. By computing the least upper bound of those functions and
composingwith the transfer function, we take one step further, thereby obtaining
the jump function for v as illustrated with the thick dashed edge below.
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entry

v

w . . .

[[w]]1

tv[[v]]1

Variable declaration nodes can be handled similarly, and as in Chapter 8, we
simply treat return E instructions as assignments, result = E.

The constraints for after-call nodes are more involved, because this is where
we model parameter passing and return values. For a call f(E1, . . . ,En) to a
function f(X1, . . . ,Xn) { . . . }whereE1, . . . ,En are the arguments andX1, . . . ,Xn

are the parameters, let tX1,...,Xn=E1,...,En denote the transfer function for a gener-
alized form of assignment that considers whether each expression E1, . . . ,En

may involve possibly-uninitialized variables and binds the results to X1, . . . ,Xn,
respectively:

tX1,...,Xn=E1,...,En
(s) = (s ∪As)\Bs

Here, As = {Xi | vars(Ei) ∩ s ̸= ∅} is the set of parameters that are possibly-
uninitialized and Bs = {Xi | vars(Ei) ∩ s = ∅} is the set of parameters that are
definitely initialized.

Assume v is an after-call node v : X = where v′ : = f(E1, . . . ,En) is
its accompanying call node, the function f has parameters X1, . . . ,Xn, and
w ∈ pred(v) is f ’s exit node. The jump function for v is the same as the one for
v′ except that the return value for X is transferred from result at w:

[[X = ]]1(s) = [[v′]]1(s)\{X} ∪
(
(tX=result◦[[w]]1◦tX1,...,Xn=E1,...,En

◦[[v′]]1)(s)∩{X}
)

Think of s as a set of variables that are possibly-uninitialized at the entry of
the function containing v. The composition of the jump functions and trans-
fer functions tX=result ◦ [[w]]1 ◦ tX1,...,Xn=E1,...,En

◦ [[v′]]1 defines a jump function
for all interprocedurally valid execution paths3 from the entry of the function
containing v, through the function f via the call v′, to v:

3As explained in Section 8.2, an interprocedurally valid path is a path in the CFG where all calls
and returns match.
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entry

s

v

v′

[[v′]]1

[[v]]1

f entryf

w

[[w]]1tX1,...,Xn=E1,...,En

tX=result

Exercise 9.6: What are suitable constraint rules for the remaining kinds of
CFG nodes (for example, if E)?

The main analysis phase After the pre-analysis has been executed, jump
functions are available for all CFG nodes. This makes it easy to compute the
sets of possibly-uninitialized variables in the main analysis phase. This analysis
uses the same lattice for abstract states as the first formulation of the analysis in
Section 9.1:

State = P(Var)

The analysis is flow sensitive but context insensitive, and we want to compute
information only for functions that may be reachable, so we use this analysis
lattice for a program with n CFG nodes:(

lift(P(Var))
)n

By using a lifted lattice, we can distinguish between nodes that belong to un-
reachable functions and nodes that are in possibly reachable functions but with
the empty set of possibly-uninitialized variables.

The entry of the main function is always reachable:

[[entrymain]]2 ̸= unreachable

(The subscript at [[ · ]]2 indicates that these constraint variables belong to analysis
phase 2.)

For the entry node entryf of a function f with parameters X1, . . . ,Xn, the
set of possibly-uninitialized variables is obtained from all the calls to f while
taking reachability into account:

[[entryf ]]2 =
⊔

w∈pred(entryf )

sw
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where

sw =

{
unreachable if [[w]]2 = unreachable

twX1,...,Xn=Ew
1 ,...,Ew

n
([[w]]2) otherwise

and twX1,...,Xn=Ew
1 ,...,Ew

n
models parameter passing for call node w : f(Ew

1 , . . . ,Ew
n)

as before.
For all non-entry nodes we can now conveniently use the jump functions

computed by the pre-analysis. If v is a non-entry node and v′ is the entry of
the function containing v, we have the following constraint that applies v’s
jump function [[v]]1 to the set of possibly-uninitialized variables at v′ unless v′ is
unreachable:

[[v]]2 =

{
unreachable if [[v′]]2 = unreachable

[[v]]1([[v
′]]2) otherwise

This can be illustrated as follows:

v′

v

[[v]]1

Exercise 9.7: Prove that the alternative two-phase formulation of possibly-
uninitialized variables analysis has the same precision as the original formu-
lation, in the sense that it compute the same sets of possibly-uninitialized
variables for each program point.

Exercise 9.8: As a continuation of Exercise 9.4, prove that the alternative two-
phase formulation of possibly-uninitialized variables analysis has the same
worst-case complexity as the original formulation. (Hint: The bottleneck is
the pre-analysis, not the main analysis.)

Despite the apparent lack of progress suggested by Exercises 9.7 and 9.8, this
alternative formulation of the analysis paves the way for a trick presented in the
next section.
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9.3 Compact Representation of Distributive
Functions

Certain distributive functions allow compact representation. In this section we
consider two families of such functions:

1. functions of the form f : P(D) → P(D) that are distributive and where D
is a finite set,

2. functions of the form f : (D → L) → (D → L) that are distributive and
where D is a finite set and L is a complete lattice.

The first one includes the functions used in the alternative formulation of
possibly-uninitialized variables analysis in Section 9.2 and forms the foundation
of the IFDS framework presented in Section 9.4, while the second one is used in
the IDE framework in Section 9.6.

The first family of functions is a special case of the second one in the following
sense. The lattices P(D) and D → L are isomorphic (see page 43) if L is set to
the two-element lattice {⊤,⊥}. An element s ∈ P(D) is then represented by its
characteristic function in D → L:

ms(d) =

{
⊤ if d ∈ s

⊥ if d ̸∈ s

Exercise 9.9: Show that another isomorphism between P(D) and D′ → L
can be obtained by setting D′ to a singleton set, for example D′ = {⋆}, and
L = P(D).

Let f : P(D) → P(D) be a distributive function where D is a finite set. A
naive representation of f would be a table with 2|D| entries. (If D is the set
of program variables in a typical sized program, then such a table is huge!)
A distributive function is characterized by its value on the empty set and on
every singleton set, for example, f({d2, d3}) = f(∅) ∪ f({d2}) ∪ f({d3}). This
means that f can be decomposed into a function g : (D∪{•}) → P(D) as follows.
Define

g(•) = f(∅)

g(d) = f({d})\f(∅) for d ∈ D

Now f(X) = g(•) ∪
⋃

y∈X g(y) for any X ⊆ D, which means that f is fully
represented by g for any input. (Notice that it is safe to exclude f(∅) in the
second case of the definition because those elements are always included due to
the first case.)

Exercise 9.10: Prove that f(X) = g(•) ∪
⋃

y∈X g(y) for any X ⊆ D when f is
distributive and g is defined as above.
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Any such function can be represented compactly as a bipartite graph with
2 · (|D| + 1) nodes – in other words, exponentially more succinctly than with
the naive representation suggested above. As an example, withD = {d1, d2, d3},
the graph

• d1 d2 d3

• d1 d2 d3

represents the function g where g(•) = {d1}, g(d1) = ∅, and g(d2) = g(d3) =
{d3}, and thereby the function f where f(S) = {d1, d3} if d2 ∈ S or d3 ∈ S and
f(S) = {d1} otherwise. In general, the edges are defined by

{• •} ∪ {• y | y ∈ f(∅)} ∪ {x y | y ∈ f({x}) ∧ y /∈ f(∅)}

where x y denotes an edge from x in the top row to y in the bottom row.
(The condition y /∈ f(∅) is safe because f(∅) is covered by the • y edges.)
Intuitively, the edges describe how the output depends on the input. In possibly-
uninitialized variables analysis where D = Var , the edge d2 d3 means: if d2 is
possibly-uninitialized at input, then d3 is possibly-uninitialized at output. The
symbol • can be thought of as a dataflow fact that always holds. The edge • d1
means that d1 is unconditionally possibly-uninitialized at output.

Exercise 9.11: Assume Var = {a, b, c, d}. Draw the bipartite graph represen-
tations of the transfer functions in possibly-uninitialized variables analysis
for each of the following two statements:

var b,d;

a = b + d;

Then give a general description of how to produce the bipartite graph repre-
sentations of the transfer functions for variable declarations and assignments
in possibly-uninitialized variables analysis.

For this graph representation to be useful for representing jump functions,
we also need two closure properties: Fortunately, distributivity is closed under
both composition and least upper bound.

Exercise 9.12: Assume fA : P(D) → P(D) and fB : P(D) → P(D) are dis-
tributive andD is a finite set. Prove that fA ◦ fB and fA ⊔ fB are distributive.4

This can be illustrated graphically with examples, here is one for composition:

4As usual, composition of functions is defined by (fA ◦ fB)(S) = fA(fB(S)), and least upper
bound of functions is defined by (fA ⊔ fB)(S) = fA(S) ⊔ fB(S).
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• d1 d2 d3

• d1 d2 d3

• d1 d2 d3

fA

fB

fA ◦ fB

• d1 d2 d3

• d1 d2 d3

The edges d2 d1 and d3 d1 could be omitted in the resulting graph; they are
unnecessary because of the edge • d1, but it is simpler to include them.

Exercise 9.13: Draw a similar example illustrating least upper bound of two
distributive functions represented as bipartite graphs.

Exercise 9.14: Let fA : P(D) → P(D) and fB : P(D) → P(D) be distributive
functions whereD is a finite set. Describe two algorithms that given bipartite
graph representations of fA and fB construct the bipartite graph representa-
tions of fA ◦ fB and fA ⊔ fB , respectively. How efficient can you make the
algorithms?

To conclude this part, all the transfer functions and jump functions that
appear in possibly-uninitialized variables analysis and other distributive flow-
sensitive analyses with a similar analysis lattice can be represented compactly
and constructed efficiently using bipartite graphs.

The bipartite graph representation generalizes to distributive functions of the
form f : (D → L) → (D → L) where D is a finite set and L is a complete lattice.
Assume f is such a function and define g : (D ∪ {•})× (D ∪ {•}) → (L → L) as
follows.

g(d1, d2)(e) = f(⊥[d1 7→ e])(d2) for d1, d2 ∈ D and e ∈ L

g(•, d2)(e) = f(⊥)(d2) for d2 ∈ D and e ∈ L

g(•, •)(e) = e for e ∈ L

g(d1, •)(e) = ⊥ for d1 ∈ D and e ∈ L

Intuitively, g(a, b) : L → L is a function that specifies how the abstract value
of a at input influences the abstract value of b at output. Such functions can
be represented as bipartite graphs as before, but now where edges are labeled
with functions of the form L → L, written d1

m
d2 where d1, d2 ∈ D ∪ {•} and

m : L → L. We can think of an absent edge as an edge with label ⊥ (i.e., the
bottom element of the lattice L → L). It is also customary when drawing the
graphs that omitting the label on an edge means the same as writing the identity
function label, λe.e. Notice that g(•, •) is always the identity function.

As an example, assume D = {d1, d2, d3} and L is the constant propagation
lattice from Section 5.2. Here is the bipartite graph representation of such a
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function g:

• d1 d2 d3

λe.5 λe.if e ⊒ 3 then ⊤ else ⊥

• d1 d2 d3

If, for example,m : D → L is the functionm = [d1 7→ ⊥, d2 7→ 42, d3 7→ ⊤] then
f(m) = [d1 7→ 5, d2 7→ ⊤, d3 7→ ⊥].

Exercise 9.15: Assume f : (D → L) → (D → L) is distributive where D is
a finite set and L is a complete lattice, and let g be defined from f as above.
Prove that f(m)(b) = g(•, b)(⊥) ⊔

⊔
a∈D g(a, b)(m(a)) for all m : D → L and

b ∈ D. This shows that we can always use g whenever we want to compute
the value of f on some input. (It also shows that the last case, g(d1, •)(e) = ⊥,
in the definition of g is in fact irrelevant.)

Exercise 9.16: The construction of g on page 122 sometimes introduces redun-
dant edges in the bipartite graphs. In fact, it is possible to modify the first
line

g(d1, d2)(e) = f(⊥[d1 7→ e])(d2) for d1, d2 ∈ D and e ∈ L

to return ⊥ or e instead of f(⊥[d1 7→ e])(d2) in certain cases (just like certain
unnecessary edges are omitted in the unlabeled bipartite graph as discussed
earlier), while preserving the correctness property from Exercise 9.15. Inves-
tigate how this can be done (see [SRH96] for inspiration).

For all this to be useful in practice, we need compact representation of all
the edge functions L → L that arise for a given analysis, and we need efficient
algorithms for computing composition and least upper bound of such functions.
This depends on the specific analysis; an example is shown in Section 9.6.

9.4 The IFDS Framework

The ideas presented in the previous sections can be tied together with a work-list
algorithm to obtain a powerful analysis framework named IFDS (Interprocedu-
ral, Finite, Distributive, Subset) [RHS95].

IFDS covers flow sensitive analyses where the lattice of abstract states is of
the form P(D) for a finite set D and all transfer functions are distributive. For
analysis problems that satisfy these restrictions, the framework provides full
context sensitivity in polynomial time.

The elements in D represent dataflow facts, for example, “variable x is
possibly-uninitialized”. The program to be analyzed is represented as an
interprocedural control flow graph (as in Section 8.1) where each node v is
described by a transfer function tv : P(D) → P(D), represented as bipartite
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graphs as explained in Section 9.3. The framework is usually applied to forward
analysis; backward analysis can be performed by reversing the CFG edges and
swapping the roles of function entry and exit nodes. The lattice order is usually
⊆, but ⊇ also works.

The exploded CFG5 representation of the program to be analyzed has a node
for each pair ⟨v, d⟩ of a CFG node v and an element d ∈ D ∪ {•}. If the bipartite
graph for tv1 has an edge d1 d2 and the CFG has an edge from node v1 to
node v2, i.e., v2 ∈ succ(v1), then the exploded CFG has an edge from (v1, d1)
to (v2, d2), written ⟨v1, d1⟩ ⟨v2, d2⟩. Let E denote the set of all such edges for
the given program. Parameter passing and flow of return values can be treated
like assignments as in Section 9.1. The direct dataflow from call nodes to their
after-call nodes for local variables that are unaffected by the function calls is
modeled similarly.

As an example, if Var = {x, y, z} and v is an assignment x = y + zwith a
predecessor v′ ∈ pred(v), then E contains these edges when using the transfer
function for assignments in possibly-uninitialized variables analysis:

⟨v′, •⟩ ⟨v′, x⟩ ⟨v′, y⟩ ⟨v′, z⟩

⟨v, •⟩ ⟨v, x⟩ ⟨v, y⟩ ⟨v, z⟩

The exploded CFG has the property that a dataflow fact d ∈ D may hold
at CFG node v if and only if ⟨v, d⟩ is reachable from ⟨entrymain, •⟩ along an
interprocedurally valid path in the exploded CFG (see Exercise 9.23).

Exercise 9.17: Draw the exploded CFG for the following program using the
transfer functions for possibly-uninitialized variables analysis.

main() {

var a, b, c;

b = input;

a = plus(a, b);

return a - c;

}

plus(d, e) {

return d + e;

}

Note that D is the set {a, b, c, d, e, result} in this case.

The IFDS algorithm proceeds in two phases similar to the alternative formu-
lation of possibly-uninitialized variables analysis in Section 9.2. The first phase
(corresponding to the pre-analysis phase in Section 9.2) is called the tabulation

5Exploded CFGs are called exploded supergraphs in [RHS95, SRH96].
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algorithm. It incrementally builds a set of path edges denoted P, each written
as ⟨v1, d1⟩ ⇝ ⟨v2, d2⟩ where v1 is a function entry node, v2 is a CFG node in
the same function as v1, and d1, d2 ∈ D ∪ {•}. The idea is that the set of path
edges {⟨v1, d1⟩⇝ ⟨v2, d2⟩ ∈ P | d1, d2 ∈ D ∪ {•}} for a node v2 constitutes the
bipartite graph representation of v2’s jump function (see page 112) that relates
dataflow facts at the entry v1 of the function containing v2 with the dataflow
facts at v2. However, reachability is handled slightly differently. Instead of track-
ing reachability of functions in specific contexts (as in the original formulation
of possibly-uninitialized variables analysis in Section 9.1), or reachability of
functions independently of contexts (as in the alternative analysis formulation
in Section 9.2), reachability in IFDS is tracked at the level of individual dataflow
facts: A path edge ⟨v1, d1⟩ ⇝ ⟨v2, d2⟩ is only added to P if we have already
established that ⟨v1, d1⟩may be reachable from the program entry.

Phase 1 The path edges are constructed as the least solution to the following
constraints for the different kinds of CFG nodes. Thus, the lattice used in this
analysis phase is the powerset lattice of path edges.

The first constraint rule expresses that the program entry is always reachable:

⟨entrymain, •⟩⇝ ⟨entrymain, •⟩ ∈ P

Second, if v is a function entry node, v1 ∈ pred(v) is a call node that calls
the function containing v, and v0 is the entry node of the function containing
v1, this constraint rule models the flow of reachable dataflow facts from the call
node to the function entry node:

∀d1, d2, d3 : ⟨v0, d1⟩⇝ ⟨v1, d2⟩ ∈ P ∧ ⟨v1, d2⟩ ⟨v, d3⟩ ∈ E

=⇒ ⟨v, d3⟩⇝ ⟨v, d3⟩ ∈ P

At first, this rule may look wrong, but remember that this analysis phase does
not propagate dataflow facts (that is done in the second phase) but builds path
edges for the nodes in the exploded CFG that are reachable from the program
entry. The new edge ⟨v, d3⟩ ⇝ ⟨v, d3⟩ added with this rule means that ⟨v, d3⟩
may be reachable from the program entry.

Third, if v is an after-call node belonging to a call node v′, v0 is the entry node
of the function that contains v and v′, and furthermore, w ∈ succ(v′) is the entry
node of the function being called with associated after-call node w′ ∈ pred(v),
we use this constraint rule to model the flow of reachable dataflow facts from v0
to the call node v′, further through the function being called, and ending at v:

∀d1, d2, d3, d4, d5 : ⟨v0, d1⟩⇝ ⟨v′, d2⟩ ∈ P ∧ ⟨v′, d2⟩ ⟨w, d3⟩ ∈ E

∧ ⟨w, d3⟩⇝ ⟨w′, d4⟩ ∈ P ∧ ⟨w′, d4⟩ ⟨v, d5⟩ ∈ E

=⇒ ⟨v0, d1⟩⇝ ⟨v, d5⟩ ∈ P

The dataflow involved in this rule can be illustrated as follows, where solid and
dashed edges represent edges in E and P, respectively, and the thick dashed
edge is the new edge added by the rule:



126 9 DISTRIBUTIVE ANALYSIS FRAMEWORKS

v0

d1

v

d5

v′

d2

f
w

d3

w′

d4

Notice how this rule uses the path edges of the exit node w′ of the function being
called as a summary of the function, and that the dataflow follows interproce-
durally valid paths only, which is essential for obtaining the desired context
sensitivity.

The fourth constraint rule models the flow of function-local state that is
transferred from a call node v′ to its after-call node v, where v0 is the entry node
of the function that contains v and v′:

∀d1, d2, d3 : ⟨v0, d1⟩⇝ ⟨v′, d2⟩ ∈ P ∧ ⟨v′, d2⟩ ⟨v, d3⟩ ∈ E

=⇒ ⟨v0, d1⟩⇝ ⟨v, d3⟩ ∈ P

This constraint rule also applies to any other kind of node v with a predecessor
v′ ∈ pred(v) where v0 is the entry node of the function that contains v and v′,
expressing intraprocedural dataflow that does not involve function calls.

The least solution to the constraints obtained with these rules for a given
program is easily computed using a work-list algorithm (see Section 5.3).

Exercise 9.18: Explain how these constraint rules correspond to those in the
pre-analysis phase in Section 9.2.

Phase 2 The second phase (corresponding to the main analysis phase in Sec-
tion 9.2) that computes the final analysis results is remarkably simple and entirely
intra-procedural: The abstract state [[v]] ∈ P(D) for any CFG node v is obtained
directly from the path edges of v, as expressed by this single rule where v0 is
the entry node in the function containing v:

∀d1, d2 : ⟨v0, d1⟩⇝ ⟨v, d2⟩ ∈ P =⇒ d2 ∈ [[v]]

This works because a path edge ⟨v0, d1⟩ ⇝ ⟨v, d2⟩ ∈ P has been added in the
first analysis phase only if the dataflow fact d2 may hold at v. Because of the
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fine-grained tracking of reachability at the level of individual dataflow facts in
the first phase, the second phase in IFDS is simpler than the main phase of the
analysis in Section 9.2.

Continuing the running example, the IFDS framework can be instantiated
to possibly-uninitialized variables analysis by setting D = Var , i.e., the set
of variables in the program being analyzed, and defining the edges E in the
exploded CFG according to the transfer functions from Section 9.1 and the
control flow edges in the program CFG as explained above.

Exercise 9.19: Explain step-by-step how IFDS-based possibly-uninitialized
variables analysis runs on the example programs from Exercise 9.3 and Exer-
cise 9.17.

IFDS-based possibly-uninitialized variables analysis gives the same analysis
results as the analysis from Section 9.2. Via Exercise 9.7, the IFDS formulation
also has same precision as the analysis from Section 9.1, while scalability is
improved considerably, as seen in the following exercise.

Exercise 9.20: Show that the worst-case time complexity of IFDS analysis is
O(|E| · |D|3) where E is the set of CFG edges in the program being analyzed.
(Compare this result with Exercises 9.4 and 9.8.)

The precision of IFDS analysis can be stated more formally as follows. An
interprocedurally valid path is a path v0 · v1 · · · · · vk in the CFG from the program
entry v0 = entrymain to a node v = vk where all calls and returns match, as
explained earlier. Let tvi denote the transfer function of each CFG node vi for
i = 1, 2, . . . , k in such a path, and let IVP denote the set of all interprocedurally
valid paths. The abstract state [[v]] computed by IFDS for a CFG node v has the
following property:

[[v]] =
⊔

v0 · v1 · · · · · vk ∈ IVP
where v0 = entrymain and vk = v

(tvk ◦ tvk−1
◦ · · · ◦ tv2 ◦ tv1)(⊥)

This is also called the meet-over-all-valid-paths solution.6

Exercise 9.21: Argue that IFDS indeed computes meet-over-all-valid-paths
solutions. (Hint: Distributivity is important for this property to hold.)

Exercise 9.22: Which of the five analyses in Exercise 5.34 fit into the IFDS
framework? For the analyses that do, describe how their transfer functions
can be expressed as bipartite graphs.

6The IFDS and IDE papers [RHS95, SRH96] use upside-down lattices compared to the presenta-
tion used here, so join-over-all-valid-pathswould be a more appropriate name.
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Exercise 9.23: As mentioned earlier in this section, the IFDS framework has
an interesting connection to a certain kind of graph reachability: Dataflow
fact d ∈ D may hold at CFG node v (i.e., d ∈ [[v]]2) if and only if there exists
an interprocedurally valid path from ⟨entrymain, •⟩ to ⟨v, d⟩ in the exploded
CFG. Explain why this property holds.

9.5 Copy-Constant Propagation Analysis

In constant propagation analysis from Section 5.2, the lattice of abstract states
is Var → flat(Z). With D = Var and L = flat(Z), the transfer functions are
of the form f : (D → L) → (D → L) that we studied in Section 9.3. Constant
propagation analysis is, however, not distributive, as seen in Exercise 5.34. Copy-
constant propagation analysis is a less precise variant that is distributive, and it is
suitable for motivating the IDE framework presented in Section 9.6.

Copy-constant propagation analysis uses the same analysis lattice as ordinary
constant propagation analysis, but with this less precise abstraction of operators
(compare with the definition on page 57):

a ôp b =

{
⊥ if a = ⊥ or b = ⊥
⊤ otherwise

For any composite expression, such as, x*y+3, the analysis simply yields⊤. This
means that the transfer functions for assignments, X = E, can be defined by
considering only three cases of right-hand-side expressions: (1) E is an integer
literal, Int, (2) E is a single variable, Y (an assignment of the form X = Y is called
a copy assignment), and (3) E is any other expression.

Exercise 9.24: Describe the labeled bipartite graph representation of the
transfer functions for the three kinds of expressions.
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Exercise 9.25: Describe the result of performing context insensitive (and path
insensitive) copy-constant propagation analysis on the following program.

main() {

var x;

x = p(7);

return x;

}

p(a) {

var y,z;

if (a > 0) {

y = a - 1;

y = p(y);

}

z = -2 * y + 5;

return z;

}

Exercise 9.26: Prove that copy-constant propagation analysis is distributive.

Exercise 9.27: Perhaps surprisingly, copy-constant propagation analysis fits
into the IFDS framework. For a given program to be analyzed, let Lit be
the (finite) set of integer literals that occur in the program, and choose D =
Var × Lit as the set of dataflow facts. Explain how to perform copy-constant
propagation analysis using IFDS with this choice of the set D.

9.6 The IDE Framework

The IDE (Interprocedural Distributive Environment) framework [SRH96] also
covers flow sensitive analyses with distributive transfer functions as in IFDS,
but with a larger class of abstract state lattices.

In IDE, the lattice of abstract states is D → L for some finite set D and
complete lattice L with finite height.7 As seen in Section 9.3, this generalizes
the form of abstract states from IFDS. The transfer function for a CFG node v
accordingly has the form tv : (D → L) → (D → L). The notion of exploded
CFGs for a given program is generalized similarly, so each edge in E is now
labeled with a functionm : L → L, written ⟨v1, d1⟩

m ⟨v2, d2⟩. An absent edge
means the same as one with label m = ⊥ (i.e., the bottom element of L → L).
Intuitively, the label m expresses how the abstract value of d1 at v1 influences

7An element of the latticeD → L is called an environment, which explains the ‘E’ in IDE.
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the abstract value of d2 at v2. (In comparison, in IFDS the presence or absence of
an edge ⟨v1, d1⟩ ⟨v2, d2⟩ expresses whether or not d1 at v1 influences d2 at v2.)

The edges in E can be constructed from the program being analyzed using
the bipartite graph representation from Section 9.3: If the bipartite graph for
tv1 : (D → L) → (D → L) has an edge d1

m
d2 and the CFG has an edge

from node v1 to node v2, i.e., v2 ∈ succ(v1), then the exploded CFG has a
corresponding edge ⟨v1, d1⟩

m ⟨v2, d2⟩ ∈ E.

Exercise 9.28: Draw the exploded CFG for the program from Exercise 9.25
using the transfer functions from copy-constant propagation analysis.

In IDE, path edges (called jump functions in [SRH96]) are similarly labeled
with functions of the form L → L. Recall from Section 9.4 that IFDS builds a set
of path edges P, starting with the empty set of edges and in each step adding
an edge. IDE instead builds the edge labels, starting with ⊥ everywhere and in
each step moving upwards in the L → L lattice at some edge. For this reason, we
introduce a different notation. For each pair of exploded CFG nodes, ⟨v1, d1⟩ and
⟨v2, d2⟩, the constraint variable [[⟨v1, d1⟩⇝ ⟨v2, d2⟩]]P : L → L denotes the label
of the corresponding edge. We similarly use the notation [⟨v1, d1⟩ ⟨v2, d2⟩]E
for the label of the edge from ⟨v1, d1⟩ to ⟨v2, d2⟩ in E.

Phase 1 The first phase of IDE builds the path edges, much like phase one in
IFDS but using the more general lattice consisting of L → L functions. Each of
the following constraint rules directly corresponds to one of the constraint rules
in IFDS.

The first constraint rule expresses that the program entry is always reachable
and has the identity jump function:

id ⊑ [[⟨entrymain, •⟩⇝ ⟨entrymain, •⟩]]P

where id : L → L is the identity function, id = λe.e for all e ∈ L.
Second, if v is a function entry node, v1 ∈ pred(v) is a call node that calls the

function containing v, and v0 is the entry node of the function containing v1, this
constraint rule models reachability of exploded CFG nodes at function entries:

∀d1, d2, d3 : [[⟨v0, d1⟩⇝ ⟨v1, d2⟩]]P ̸= ⊥ ∧ [⟨v1, d2⟩ ⟨v, d3⟩]E ̸= ⊥
=⇒ id ⊑ [[⟨v, d3⟩⇝ ⟨v, d3⟩]]P

Third, if v is an after-call node belonging to a call node v′, v0 is the entry node
of the function that contains v and v′, and furthermore, w ∈ succ(v′) is the entry
node of the function being called with associated after-call node w′ ∈ pred(v),
the following constraint rule models the dataflow from v0 to the call node v′,
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further through the function being called, and ending at v:

∀d1, d2, d3, d4, d5 :
m1 = [[⟨v0, d1⟩⇝ ⟨v′, d2⟩]]P ̸= ⊥ ∧ m2 = [⟨v′, d2⟩ ⟨w, d3⟩]E ̸= ⊥
∧ m3 = [[⟨w, d3⟩⇝ ⟨w′, d4⟩]]P ̸= ⊥ ∧ m4 = [⟨w′, d4⟩ ⟨v, d5⟩]E ̸= ⊥

=⇒ m4 ◦m3 ◦m2 ◦m1 ⊑ [[⟨v0, d1⟩⇝ ⟨v, d5⟩]]P

The composition of the edge functions express how the abstract value of ⟨v0, d1⟩
influences the abstract value of ⟨v, d5⟩. This rule can be illustrated like the
corresponding rule in IFDS but now with edge labels (where m = m4 ◦m3 ◦
m2 ◦m1):

v0

d1

v

d5

v′

d2

m1

f
w

d3

w′

d4

m3
m2

m4

m

The fourth constraint rule applies to after-call nodes v where v′ is the asso-
ciated call node and v0 is the entry node of the function that contains v and
v′:

∀d1, d2, d3 : m1 = [[⟨v0, d1⟩⇝ ⟨v′, d2⟩]]P ̸= ⊥ ∧ m2 = [⟨v′, d2⟩ ⟨v, d3⟩]E ̸= ⊥
=⇒ m2 ◦m1 ⊑ [[⟨v0, d1⟩⇝ ⟨v, d3⟩]]P

Similar to IFDS, this constraint rule also applies to any other kind of node v
with a predecessor v′ ∈ pred(v)where v0 is the entry node of the function that
contains v and v′.

Phase 2 The second phase of IDE analysis uses the path edges (representing
jump functions) that have been produced in the first phase to compute an
abstract value [[⟨v, d⟩]] ∈ lift(L) for each exploded CFG node ⟨v, d⟩. We here use
a lifted lattice with the bottom element unreachable representing nodes that are
unreachable from the program entry. This analysis phase closely resembles the
main phase of the analysis described in Section 9.2.
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As usual, we specify the analysis in a constraint-based style. First, the pro-
gram entry is always reachable:

∀d : [[⟨entrymain, d⟩]] ̸= unreachable

Second, at any CFG node v, the abstract value of d ∈ D can be obtained from the
abstract values at the entry v0 of the function containing v and the path edges
that lead from v0 to v:

∀d0, d : [[⟨v0, d0⟩]] ̸= unreachable ∧ m = [[⟨v0, d0⟩⇝ ⟨v, d⟩]]P
=⇒ m([[⟨v0, d0⟩]]) ⊑ [[⟨v, d⟩]]

Third, for each function entry node v where v1 ∈ pred(v) is a call node that
calls the function containing v, we model the dataflow from v1 to v (typically
parameter passing) by propagating abstract values according to the edges in the
exploded CFG from v1 to v:

∀d1, d : [[⟨v1, d1⟩]] ̸= unreachable ∧ m = [⟨v1, d1⟩ ⟨v, d⟩]E
=⇒ m([[⟨v1, d1⟩]]) ⊑ [[⟨v, d⟩]]

Finally, the resulting abstract state for eachCFGnode v, denoted [[v]]2 : D → L,
is defined by [[v]]2(d) = [[⟨v, d⟩]] ∈ L for d ∈ D.

The least solution to the resulting constraints for each analysis phase for a
given program can be computed using a work-list algorithm, much like for IFDS
but with a little more effort for the second phase (pseudo-code can be found in
[SRH96]).

Exercise 9.29: Explain why the second phase of IDE does not need separate
constraints for modeling the flow of return values from function exit nodes to
after-call nodes.

The efficiency of IDE depends on the edge label functions being efficiently
representable. This means that functions that appear on the edges E in the
exploded CFG and on the path edgesP can be represented in constant space (i.e.,
independently of the size of the program), and function composition, least upper
bound, equality, and function application can be computed in constant time.
For copy-constant propagation analysis, we only need the identity function and
constant functions, which trivially have this property (assuming that operations
on constants can be performed in constant time).

Exercise 9.30: Let F denote the set of functions F = {λe.e} ∪ {λe.c | c ∈ L}
where L is a finite-height complete lattice. Show that F is closed under
function composition and least upper bound.

Exercise 9.31: Show step-by-step how IDE-based copy-constant propagation
analysis runs on the example program from Exercise 9.28. Is the analysis
result more precise compared to the context insensitive analysis?
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As discussed in Section 9.4, the IFDS algorithm computes the meet-over-
all-valid paths solutions in polynomial time (while an analysis based directly
on the functional approach to context sensitivity as the one presented in Sec-
tion 8.4 computes the same results but in worst-case exponential time). The IDE
approach similarly has two key properties:

1. The IDE algorithm also produces meet-over-all-valid paths solutions (but
for the more general class of analysis problems than IFDS).

2. The worst-case time complexity of IDE analysis is the same as for IFDS:
O(|E|·|D|3)whereE is the set of CFG edges in the programbeing analyzed,
provided that the edge functions are efficiently representable and the
height of L is constant.

Exercise 9.32: Argue that IDE computes meet-over-all-valid-paths solutions.
(See Exercise 9.21.)

Exercise 9.33: Prove the statement above about the worst-case time complexity
of IDE analysis.

Interestingly, the IDE framework is sometimes preferable also for analysis
problems that fit into IFDS. Consider, for example, copy-constant propagation
analysis as discussed in Exercise 9.27. With IFDS, this analysis requires a set of
dataflow facts of size |Var | · |Lits|, whereas the size of Lits is irrelevant in the
IDE version. Depending on implementation techniques, this may have a large
effect on the analysis performance.

Exercise 9.34: One approach to compute possibly-uninitialized variables with
IDE is to use the characteristic function isomorphism discussed in Section 9.3.
Another approach is to use the alternative isomorphism from Exercise 9.9.
Which of those two approaches is preferable regarding analysis scalability?





Chapter 10

Control Flow Analysis

If we introduce functions as values (and thereby higher-order functions), then at
each call site, it is no longer trivial to see which function is being called. A similar
challenge arises in object-oriented languages with methods that are invoked
using dynamic dispatching. The task of control flow analysis is to conservatively
approximate the interprocedural control flow, also called the call graph, for such
programs. A call graph shows for each call site which functions may be called,
expressed as call edges from the AST node or CFG node representing the call site
to the functions that may be called. We usually aim for an over-approximation,
meaning that call graphs may contain too many call edges but never too few.
Thereby, the call graph provides a foundation for subsequently performing
interprocedural dataflow analysis, such as constant propagation analysis.

10.1 Closure Analysis for the λ-calculus

Control flow analysis in its purest form can best be illustrated by the classical
λ-calculus. Its abstract syntax is defined by this grammar:

Exp→ λId.Exp
| Id
| Exp Exp

(In Section 10.3 we demonstrate this analysis technique on the TIP language.)
The concrete syntax also allows parentheses.1 For simplicity we assume that all
λ-bound variables are distinct. To construct a CFG for a term in this calculus,
we need to approximate for every expression E the set of closures to which it may
evaluate. A closure can be modeled by a symbol of the form λX that identifies

1As customary, application is left-associative, and application has higher precedence than ab-
straction.
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a concrete λ-abstraction. This problem, called closure analysis, can be solved
using the techniques from Chapters 4 and 5. However, since the intraprocedural
control flow is trivial in this language, we might as well perform the analysis
directly on the AST.

For every AST node v we introduce a constraint variable [[v]] denoting the set
of resulting closures. For an abstraction λX.E we have the constraint

λX ∈ [[λX.E]]

(the function may certainly evaluate to itself), and for an application E1 E2 we
have the conditional constraint

λX ∈ [[E1]] =⇒
(
[[E2]] ⊆ [[X]] ∧ [[E]] ⊆ [[E1 E2]]

)
for every abstraction λX.E, which models that the actual argument E2 may flow
into the formal argument X and that the value of the function body E is among
the possible results of the function call E1 E2.

As an example, for the small program (λs.λz.sz)(λn.λt.λe.e)(λr.λp.r), which
contains 7 λ-abstractions and 3 applications, the following constraints are pro-
duced:

λs ∈ [[λs.λz.sz]]
λz ∈ [[λz.sz]]
λn ∈ [[λn.λt.λe.e]]
λt ∈ [[λt.λe.e]]
λe ∈ [[λe.e]]
λr ∈ [[λr.λp.r]]
λp ∈ [[λp.r]]
λs ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[s]] ∧ [[λz.sz]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λz ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[z]] ∧ [[sz]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λn ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[n]] ∧ [[λt.λe.e]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λt ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[t]] ∧ [[λe.e]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λe ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[e]] ∧ [[e]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λr ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[r]] ∧ [[λp.r]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λp ∈ [[λs.λz.sz]] =⇒
([[λn.λt.λe.e]] ⊆ [[p]] ∧ [[r]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)]])

λs ∈ [[s]] =⇒
([[z]] ⊆ [[s]] ∧ [[λz.sz]] ⊆ [[sz]])

λz ∈ [[s]] =⇒
([[z]] ⊆ [[z]] ∧ [[sz]] ⊆ [[sz]])

λn ∈ [[s]] =⇒
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([[z]] ⊆ [[n]] ∧ [[λt.λe.e]] ⊆ [[sz]])
λt ∈ [[s]] =⇒
([[z]] ⊆ [[t]] ∧ [[λe.e]] ⊆ [[sz]])

λe ∈ [[s]] =⇒
([[z]] ⊆ [[e]] ∧ [[e]] ⊆ [[sz]])

λr ∈ [[s]] =⇒
([[z]] ⊆ [[r]] ∧ [[λp.r]] ⊆ [[sz]])

λp ∈ [[s]] =⇒
([[z]] ⊆ [[p]] ∧ [[r]] ⊆ [[sz]])

λs ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[s]] ∧ [[λz.sz]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

λz ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[z]] ∧ [[sz]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

λn ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[n]] ∧ [[λt.λe.e]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

λt ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[t]] ∧ [[λe.e]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

λe ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[e]] ∧ [[e]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

λr ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[r]] ∧ [[λp.r]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

λp ∈ [[(λs.λz.sz)(λn.λt.λe.e)]] =⇒
([[λr.λp.r]] ⊆ [[p]] ∧ [[r]] ⊆ [[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]])

Note that constraints that contain conjunctions can be rewritten as multiple
individual constraints. For example, λz ∈ [[s]] =⇒ ([[z]] ⊆ [[z]] ∧ [[sz]] ⊆ [[sz]])
can be rewritten as the two constraints λz ∈ [[s]] =⇒ [[z]] ⊆ [[z]] and λz ∈ [[s]] =⇒
[[sz]] ⊆ [[sz]].

We shall see in the following section how to compute solutions to such a
collection of constraints. For this specific collection of constraints in this example,
the least solution is as follows.

[[s]] = {λn}
[[z]] = {λr}
[[n]] = {λr}
[[t]] = ∅
[[e]] = ∅
[[r]] = ∅
[[p]] = ∅
[[λs.λz.sz]] = {λs}
[[λz.sz]] = {λz}
[[sz]] = {λt}
[[λn.λt.λe.e]] = {λn}
[[λt.λe.e]] = {λt}
[[λe.e]] = {λe}
[[λr.λp.r]] = {λr}
[[λp.r]] = {λp}
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[[(λs.λz.sz)(λn.λt.λe.e)]] = {λz}
[[(λs.λz.sz)(λn.λt.λe.e)(λr.λp.r)]] = {λt}

In particular, we see from this solution that s in the application sz can only be the
abstraction λn.λt.λe.e (according to the solution for [[s]]), and at the outermost
application (corresponding to the entire program), the abstraction being applied
can only be λz.sz (according to the solution for [[(λs.λz.sz)(λn.λt.λe.e)]]).

Exercise 10.1: Show that the resulting constraints for any λ-calculus term are
monotone and can be solved by a fixed-point computation, with an appropri-
ate choice of lattice.

10.2 The Cubic Algorithm

The constraints for closure analysis are an instance of a general class that can be
solved in cubic time. Many problems fall into this category, so wewill investigate
the algorithm more closely.

We have a finite set of tokens T = {t1, . . . , tk} and a finite set of variables
V = {x1, . . . , xn}whose values are sets of tokens. Our task is to read a collection
of constraints of the form t∈x or t∈x =⇒ y⊆z and produce the least solution.

Exercise 10.2: Show that a unique least solution exists, since solutions are
closed under intersection.

The following algorithm can find the least solution to the collection of con-
straints in time O(n3) for a program of size n (for example, measured by the
number of AST nodes). It maintains a directed graphwhere nodes correspond to
constraint variables and edges reflect inclusion constraints. For each constraint
variable x,

• x.sol ⊆ T holds the solution for x,

• x.succ ⊆ V is the set of successors of x (i.e., the edges of the graph), and

• x.cond(t) ⊆ V × V represents a set of conditional constraints for x and t.

Additionally we have

• W ⊆ T × V is a worklist.

All the sets are initially empty. The constraints are processed one by one using
the following helper functions for adding tokens and edges and propagating
tokens to satisfy the constraints that have been seen so far.

procedure addToken(t, x)
if t ̸∈ x.sol then

x.sol .add(t)
W.add(t, x)
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end if
end procedure

procedure addEdge(x, y)
if x ̸= y ∧ y ̸∈ x.succ then

x.succ.add(y)
for t in x.sol do

addToken(t, y)
end for

end if
end procedure

procedure propagate()
whileW ̸= ∅ do

(t, x) := W.removeNext()
for (y, z) in x.cond(t) do

addEdge(y, z)
end for
for y in x.succ do

addToken(t, y)
end for

end while
end procedure

The constraints are now processed as follows.

t∈x:
addToken(t, x)
propagate()

t∈x =⇒ y⊆z:
if t ∈ x.sol then

addEdge(y, z)
propagate()

else
x.cond(t).add(y, z)

end if

Exercise 10.3: Show, step by step, how this algorithm finds the smallest
solution for the constraints from the example program in Section 10.1.

Exercise 10.4: Explain how the algorithm can be extended to also support
unconditional inclusion constraints of the form x⊆y.
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To analyze the time complexity of this algorithm,we assume that the numbers
of tokens and variables are both O(n). This is clearly the case in closure analysis
of a program of size n. The number of constraints generated is O(n) for the first
kind and O(n2) for the second kind.

Each pair of a token and a variable can be added at most once to the worklist,
so the number of iterations of propagate isO(n2). For the same reason,W can be
implemented with constant time operations using an array. The addEdge func-
tion is calledO(n2) times in total because there areO(n2) conditional constraints,
and each of them is processed either immediately or at most once by propagate.
The function addToken takes time O(1) if representing each x.sol as a bit vector.
The addEdge function calls addToken O(n3) times in total because there are
O(n2) edges and O(n) tokens. If representing x.succ using, for example, arrays
or hashtables, each operation on x.succ takes timeO(n). This means that all calls
to addEdge take time O(n3) in total. Each iteration of propagate takes time O(n)
if excluding the time for addEdge, assuming that x.cond(t) is also implemented
using arrays or hashtables (and duplicates in x.cond(t) do not affect correctness).
Adding up, the total cost for the algorithm isO(n3). The fact that this seems like
a lower bound as well is referred to as the cubic time bottleneck.2

Numerous algorithmic variations and improvements are possible, including:

• cycle elimination (collapsing nodes if there is a cycle of inclusion con-
straints) [FFSA98],

• maintaining the worklist in topological order [PKH07],

• interleaving solution propagation and constraint processing [PKH07, PB09],

• using a shared bit vector representation to savememory [HT01b, SCD+13],

• type filtering [LH03, SCD+13],

• on-demand processing [HT01a],

• difference propagation [LH03, PKH04], and

• subsumed node compaction [RC00].

These techniques have mostly been studied in connection to points-to analysis
(see Chapter 11). For a control flow analysis perspective, see the survey by
Midtgaard [Mid12].

10.3 TIP with First-Class Functions

Consider now our tiny language TIP where we allow functions as values. For
a computed function call E(E1,. . .,En)we cannot see directly from the syntax
which functions may be called. A coarse but sound CFG could be obtained by

2It is possible to improve this slightly toO(n3/ log n) using a bit vector representation assuming
a machine with word size Θ(log n) [Cha08].
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assuming that any function with the right number of arguments could be called.
However, we can do much better by performing a control flow analysis.

Our lattice is the powerset of the set of tokens containingX for every function
name X, ordered by subset inclusion. For every syntax tree node v we introduce
a constraint variable [[v]] denoting the set of functions v could point to. For a
function named f we have the constraint

f ∈ [[f ]]

for assignments X=E we have the constraint

[[E]] ⊆ [[X]]

and, finally, for computed function calls E(E1,. . .,En)we have for every defi-
nition of a function f with arguments a1f , . . . , anf and return expression E′

f this
constraint:

f ∈ [[E]] =⇒
(
[[E1]] ⊆ [[a1f ]] ∧ · · · ∧ [[En]] ⊆ [[anf ]] ∧ [[E′

f ]] ⊆ [[E(E1, . . . ,En)]]
)

A still more precise analysis could be obtained if we restrict ourselves to
typable programs and only generate constraints for those functions f for which
the call would be type correct.

We can optionally also introduce a simpler rule for the special case where the
function being called is given directly by name (as in simple function calls before
we added first-class functions to TIP). For a direct function call f (E1,. . .,En)

where f is a function with arguments a1f , . . . , anf and return expression E′
f , we

have this (unconditional) constraint:

[[E1]] ⊆ [[a1f ]] ∧ · · · ∧ [[En]] ⊆ [[anf ]] ∧ [[E′
f ]] ⊆ [[E(E1, . . . ,En)]]

With the result of a control flow analysis, we can construct a CFG as in
Chapter 8.1 but with edges between a call site and all possible target functions
according to the control flow analysis. Consider the following example program:

inc(i) { return i+1; }

dec(j) { return j-1; }

ide(k) { return k; }

foo(n,f) {

var r;

if (n==0) { f = ide; }

r = f(n);

return r;

}

main() {

var x,y;

x = input;
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if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }

return y;

}

The control flow analysis (with the special rule for direct calls) generates the
following constraints:

inc ∈ [[inc]]
dec ∈ [[dec]]
ide ∈ [[ide]]
[[ide]] ⊆ [[f]]
[[f(n)]] ⊆ [[r]]
inc ∈ [[f]] =⇒ [[n]] ⊆ [[i]] ∧ [[i+1]] ⊆ [[f(n)]]
dec ∈ [[f]] =⇒ [[n]] ⊆ [[j]] ∧ [[j-1]] ⊆ [[f(n)]]
ide ∈ [[f]] =⇒ [[n]] ⊆ [[k]] ∧ [[k]] ⊆ [[f(n)]]
[[input]] ⊆ [[x]]
[[foo(x,inc)]] ⊆ [[y]]
[[foo(x,dec)]] ⊆ [[y]]
foo ∈ [[foo]]
[[x]] ⊆ [[n]] ∧ [[inc]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,inc)]]
[[x]] ⊆ [[n]] ∧ [[dec]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,dec)]]
main ∈ [[main]]

The nonempty values of the least solution are:

[[inc]] = {inc}
[[dec]] = {dec}
[[ide]] = {ide}
[[f]] = {inc, dec, ide}
[[foo]] = {foo}

On this basis, we can construct the following interprocedural CFG for the pro-
gram, which then can be used as basis for subsequent interprocedural dataflow
analyses.
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foo

ide inc dec

main

entry

var x,y

x = input

if (x > 0)

... = foo(x,inc)

true

... = foo(x,dec)

false

y = ...

entry

y = ...

return y

exit

var r

if (n == 0)

f = ide

true

... = f(n)

false

r = ...

return r

entry entryentry

exit

return i + 1

exit

return j - 1

exit

return k

exit
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Exercise 10.5: Consider the following TIP program:

f(y,z) {

return y(z);

}

g(x) {

return x+1;

}

main(a) {

return f(g,f(g,a));

}

(a) Write the constraints that are produced by the control flow analysis for
this program.

(b) Compute the least solution to the constraints.

Exercise 10.6: As an alternative to the analysis described above, design a
flow-sensitive control flow analysis as a monotone framework (i.e., in the
style of Chapters 5 and 8). (Hint: choose a suitable lattice and define
appropriate dataflow constraints.) Then explain briefly how your analysis
handles the following TIP program, compared to using the flow-insensitive
analysis described above.

inc(x) {

return x+1;

}

dec(y) {

return y-1;

}

main(a) {

var t;

t = inc;

a = t(a);

t = dec;

a = t(a);

return a;

}

10.4 Control Flow in Object Oriented Languages

A language with functions as values must use the kind of control flow analysis
described in the previous sections to obtain a reasonably precise CFG. For com-
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mon object-oriented languages, such as Java or C#, it is also useful, but the added
structure provided by the class hierarchy and the type system permits some
simpler alternatives. In the object-oriented setting the question is which method
implementations may be executed at a given method invocation site:

x.m(a,b,c)

The simplest solution is to scan the class library and select any method named m
whose signature accepts the types of the actual arguments. A better choice, called
Class Hierarchy Analysis (CHA), is to consider only the part of the class hierarchy
that is spanned by the declared type of x. A further refinement, called Rapid Type
Analysis (RTA), is to restrict further to the classes of which objects are actually
allocated. Yet another technique, called Variable Type Analysis (VTA), performs
intraprocedural control flow analysis while making conservative assumptions
about the remaining program.

These techniques are of course much faster than full-blown control flow
analysis, and for real-life programs they are often sufficiently precise.





Chapter 11

Pointer Analysis

The last TIP language feature we consider is pointers and dynamic memory
allocation (see the syntax in Section 2.1). For simplicity, we ignore records
(except in the last part of Section 11.2).

To illustrate the problem with pointers, assume we wish to perform a sign
analysis or constant propagation analysis of TIP code like this:

...

*x = 42;

*y = -87;

z = *x;

Here, the value of z depends on whether or not x and y are aliases, meaning that
they point to the same cell. Without knowledge of such aliasing information, it
quickly becomes impossible to produce useful dataflow and control flow analysis
results.

11.1 Allocation-Site Abstraction

We first focus on intraprocedural analysis and postpone treatment of function
calls to Section 11.4.

The most important information that must be obtained is the set of possible
memory cells that the pointers may point to. There are of course arbitrarily
many possible cells during execution, so we must select some finite abstraction.
A common choice, called allocation-site abstraction [CWZ90], is to introduce
an abstract cell X for every program variable named X and an abstract cell
alloc-i, where i is a unique index, for each occurrence of an alloc operation
in the program. Each abstract cell represents the set of cells at runtime that are
allocated at the corresponding source location, hence the name allocation-site
abstraction. We use Cell to denote the set of abstract cells for the given program.
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The first analyses that we shall study are flow-insensitive. The end result of
such an analysis is a function pt : Var → P(Cell) that for each pointer variable
X returns the set pt(X) of abstract cells it may point to. This class of analyses
is called points-to analysis. We wish to perform a conservative analysis that
computes sets that may be too large but never too small.

Given such points-to information, many other facts can be approximated. If
we wish to know whether pointer variables x and y may be aliases, then a safe
answer is obtained by checking whether pt(x) ∩ pt(y) is nonempty.

The initial values of local variables are undefined in TIP programs, however,
for these flow-insensitive points-to analyses we assume that all the variables are
initialized before they are used. (In other words, these analyses are sound only
for programs that never read from uninitialized variables; see also Section 5.9.)

An almost-trivial analysis, called address taken, is to simply return all possible
abstract cells, except that any variable X is only included if the expression &X
occurs in the given program. This only suffices for very simple applications, so
more ambitious approaches are usually preferred. If we restrict ourselves to
typable programs, then any points-to analysis could be improved by removing
those cells whose types do not match the type of the pointer variable.

11.2 Andersen’s Algorithm

One approach to points-to analysis, called Andersen’s algorithm [And94] or
inclusion-based points-to analysis, is quite similar to control flow analysis. For
each abstract cell c we introduce a constraint variable [[c]] ranging over sets of
abstract cells.

The analysis assumes that the program has been normalized so that every
pointer operation is of one of these six kinds:

• X = alloc P; where P is null or an integer constant

• X1 = &X2;

• X1 = X2;

• X1 = *X2;

• *X1 = X2;

• X = null;

Exercise 11.1: Explain how this normalization can be performed systemati-
cally by introducing fresh temporary variables. (See also Exercise 2.4.)

For each of these pointer operations we then generate constraints:
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X = alloc P : alloc-i ∈ [[X]]
X1 = &X2: X2 ∈ [[X1]]
X1 = X2: [[X2]] ⊆ [[X1]]

X1 = *X2: c ∈ [[X2]] =⇒ [[c]] ⊆ [[X1]] for each c ∈ Cell
*X1 = X2: c ∈ [[X1]] =⇒ [[X2]] ⊆ [[c]] for each c ∈ Cell

The last two constraints are generated for every abstract cell c ∈ Cell , but it is safe
to skip the abstract cells that represent program variables X where &X does not
occur in the program. The null assignment is ignored, since it corresponds to the
trivial constraint ∅ ⊆ [[X]]. Notice that these constraints match the requirements
of the cubic algorithm from Section 10.2. The resulting points-to function is
defined simply as pt(p) = [[p]].

Consider the following example program fragment.

p = alloc null;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;

Andersen’s algorithm generates these constraints:

alloc-1 ∈ [[p]]
[[y]] ⊆ [[x]]
[[z]] ⊆ [[x]]
c ∈ [[p]] =⇒ [[z]] ⊆ [[c]] for each c ∈ Cell
[[q]] ⊆ [[p]]
y ∈ [[q]]
c ∈ [[p]] =⇒ [[c]] ⊆ [[x]] for each c ∈ Cell
z ∈ [[p]]

where Cell = {p, q, x, y, z, alloc-1}. The points-to sets for the least solution is
quite precise in this case:

pt(p) = {alloc-1, y, z}
pt(q) = {y}
pt(x) = pt(y) = pt(z) = ∅

Note that although this algorithm is flow insensitive, the directionality of the
set inclusion constraints implies that the dataflow is still modeled with some
accuracy.
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Exercise 11.2: Use Andersen’s algorithm to compute the points-to sets for the
variables in the following program fragment:

a = &d;

b = &e;

a = b;

*a = alloc null;

Exercise 11.3: Use Andersen’s algorithm to compute the points-to sets for the
variables in the following program fragment:

z = &x;

w = &a;

a = 42;

if (a > b) {

*z = &a;

y = &b;

} else {

x = &b;

y = w;

}

The following two exercises show that Andersen’s analysis is, perhaps sur-
prisingly, not the most precise possible flow-insensitive points-to analysis. This
is mostly of theoretical interest, however [BCSS11]. The lack of flow-sensitivity
(see Section 11.6) and path-sensitivity (and context sensitivity for interprocedu-
ral analysis, see Section 11.4) are much more important factors in practice.
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Exercise 11.4: Use Andersen’s algorithm to compute the points-to sets for the
variables in the following program fragment:

a = &b;

a = &x;

b = &c;

c = &d;

x = &y;

y = &z;

*a = **a;

Notice that the last statement has not been normalized. As observed by
Horwitz [Hor97], the normalization of the statement causes imprecision in
the following sense: According to Andersen’s analysis, which requires the
statement to be normalized using two temporary variables, b and xmay be
aliases, but that is not possible with any TIP program that contains the above
set of assignments, no matter which control flow exists between them.

Exercise 11.5: This example is due to Chakaravarthy [Cha03]:

a = &c;

c = &b;

b = &a;

b = a;

*b = c;

d = *a;

(a) Show that Andersen’s analysis concludes for this code that dmay point
to c.

(b) Argue that for any TIP program that has this set of assignments, no
matter which control flow exists between them, d never points to c in
any execution. (Hint: amay point to b, and bmay point to c, but not
simultaneously.)

Exercise 11.6: Recall from Exercise 5.26 that an analysis is distributive if all
its constraint functions are distributive. Show that Andersen’s analysis is not
distributive. (Hint: consider the constraint for the statement x=*y or *x=y.)

Let us now consider how to perform pointer analysis for TIP programs
that also use records (see Section 2.1 and Exercise 5.10). One simple approach
called field insensitive analysis is to treat all fields in a record as equivalent,
which is trivial for Andersen’s analysis. Another simple approach called field-
based analysis is to conversely treat each field name as a single global variable
without distinguishing between the different cells that contain the fields. Those
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approaches are sometimes too imprecise, so instead we describe in more detail
a field-sensitive extension of Andersen’s analysis tailored for TIP. We impose
one restriction, however: for this analysis, the values of record fields cannot
themselves be records. (The values of record fields can be pointers to records,
so this is not a severe restriction in practice; see Exercise 11.8.)

As a first step, we allocate constraint variables also for all possible fields in all
cells, so we now have [[ · ]] :

(
Cell ∪ (Cell × Field)

)
→ P(Cell)where Field is the

set of field names that occur in the program being analyzed. For convenience
we use the notation [[c.f ]] instead of [[(c, f)]] for c ∈ Cell , f ∈ Field . Next, we
specify constraint rules for the different kinds of statements that may involve
records and pointers:

X = { X1:X′
1,. . ., Xk:X′

k }: [[X′
1]] ⊆ [[X.X1]] ∧ . . . ∧

[[X′
k]] ⊆ [[X.Xk]]

X = alloc { X1:X′
1,. . ., Xk:X′

k }: alloc-i ∈ [[X]] ∧
[[X′

1]] ⊆ [[alloc-i.X1]] ∧ . . . ∧
[[X′

k]] ⊆ [[alloc-i.Xk]]
X1 = X2.X3: [[X2.X3]] ⊆ [[X1]]

X1 = X2: [[X2]] ⊆ [[X1]] ∧
[[X2.f ]] ⊆ [[X1.f ]] for each f ∈ Field

X1 = *X2: c ∈ [[X2]] =⇒ ([[c]] ⊆ [[X1]] ∧
[[c.f ]] ⊆ [[X1.f ]])

for each c ∈ Cell and f ∈ Field
X1.X2 = X3:

}
see Exercise 11.7

(*X1).X2 = X3:

As usual, other syntactic forms can be normalized to these basic constructs, and
each constraint models the flow of pointer values.

As an example, for the (already normalized) program

i = null;

x = alloc {f: i}; // alloc-1

y = alloc {h: x}; // alloc-2

t = *y;

z = t.h;

where Cell = {x, y, z, i, t} and Field = {f, h} we obtain the constraints

alloc-1 ∈ [[x]]
[[i]] ⊆ [[alloc-1.f]]
alloc-2 ∈ [[y]]
[[x]] ⊆ [[alloc-2.h]]
c ∈ [[y]] =⇒ ([[c]] ⊆ [[t]] ∧ [[c.f ]] ⊆ [[t.f ]]) for each c ∈ Cell and f ∈ Field
[[t.h]] ⊆ [[z]]

and after computing the least solutionwe get these points-to sets for the program
variables:
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pt(x) = pt(z) = {alloc-1}
pt(y) = {alloc-2}
pt(i) = pt(t) = ∅

Exercise 11.7: Specify a suitable constraint rule for both forms of field write
statements, X1.X2=X3; and (*X1).X2 = X3;. Then explain how the ana-
lysis works on this program:

x = alloc {f: 1, g: 2};

y = alloc {h: x, g: 3};

z = alloc 4;

(*y).h = z;

In Java-like languages, the fields of an object are always accessed via a refer-
ence (i.e., a pointer) to the object. The Java syntax E.X for accessing a field X of
an object pointed to by an expression E corresponds to the TIP (or C) syntax
(*E).X.

Exercise 11.8: Assumewe restrict the syntax of TIP pointer operations to these
Java-like expressions:

Exp → Id
| alloc { Id:Exp,. . ., Id:Exp }
| (*Exp).Id
| null

and these statements:

Stm → Id = Exp;
| (*Exp).Id = Exp;

That is, we can no longer create pointers to variables or to cells containing
non-record values but only to heap-allocated records.

Specify constraint rules for Andersen-style points-to analysis for these
operations (in a properly normalized form).

11.3 Steensgaard’s Algorithm

An interesting alternative is Steensgaard’s algorithm [Ste96], which performs a
coarser analysis essentially by viewing assignments as being bidirectional. The
analysis can be expressed elegantly using term unification; for that reason it is
called a unification-based points-to analysis. We use a term variable [[c]] for every
abstract cell c and a term constructor t representing a pointer to t. (Notice the
change in notation compared to Section 11.2: here, [[c]] is a term variable and
does not directly denote a set of abstract cells.)
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X = alloc P : [[X]] = [[alloc-i]]
X1 = &X2: [[X1]] = [[X2]]
X1 = X2: [[X1]] = [[X2]]

X1 = *X2: [[X2]] = α ∧ [[X1]] = α where α is a fresh term variable
*X1 = X2: [[X1]] = α ∧ [[X2]] = α where α is a fresh term variable

Notice that at most two unification constraints are constructed for each pointer
operation. (This is different from Andersen’s analysis where the last two kinds
of statements require a constraint for each abstract cell.)

As usual, term constructors satisfy the general term equality axiom:

α1 = α2 =⇒ α1 = α2

The resulting points-to function is defined as:

pt(p) = {t ∈ Cell | [[p]] = [[t]]}

For the example program from Section 11.2, Steensgaard’s algorithm gener-
ates the following constraints:

[[p]] = [[alloc-1]]
[[x]] = [[y]]
[[x]] = [[z]]
[[p]] = α1

[[z]] = α1

[[p]] = [[q]]
[[q]] = [[y]]
[[x]] = α2

[[p]] = α2

[[p]] = [[z]]

We can use the unification algorithm from Section 3.3 to find the resulting
points-to sets:

pt(p) = pt(q) = {alloc-1, y, z}

This result is less precise than what we obtained using Andersen’s algorithm,
but reached using the faster algorithm.

Notice that unification can never fail in Steensgaard’s analysis, since there is
only one kind of term constructor (unlike the type analysis in Chapter 3).

Exercise 11.9: Use Steensgaard’s algorithm to compute the points-to sets for
the two programs from Exercise 11.2 and Exercise 11.3. Are the results less
precise than when using Andersen’s analysis?
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Exercise 11.10: It is tempting to simplify the constraint rule for X1 = *X2;

from
[[X2]] = α ∧ [[X1]] = α

to
[[X2]] = [[X1]]

however, this may degrade the analysis precision. Give an example of a pro-
gram where this simplification affects the analysis results.

Similarly, can the constraint rule for *X1 = X2; be simplified from

[[X1]] = α ∧ [[X2]] = α

to
[[X1]] = [[X2]]

without affecting the analysis results?

Exercise 11.11: Prove that Andersen’s analysis is always at least as precise as
Steensgaard’s analysis.

11.4 Interprocedural Pointer Analysis

In languages with both function values and pointers, functions may be stored
in the heap, which makes it difficult to perform control flow analysis before
points-to analysis. But it is also difficult to perform interprocedural points-to
analysis without the information from a control flow analysis. For example, the
following function call uses a function value accessed via a pointer dereference
and also passes a pointer as argument:

(*x)(x);

The solution to this chicken-and-egg problem is to perform control flow analysis
and points-to analysis simultaneously.

To express the combined algorithm, we assume that all function calls are
normalized to the form

X = X0(X1,. . . , Xn);

so that the involved expressions are all variables. Similarly, all return expressions
are assumed to be just variables, as in return X;.

Exercise 11.12: Show how to perform such normalization in a systematic
manner.
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Andersen’s algorithm is already similar to control flow analysis, and it can
simply be extended with the appropriate constraints. A reference to a constant
function f generates the constraint:

f ∈ [[f ]]

The computed function call generates the constraint

f ∈ [[X0]] =⇒
(
[[X1]] ⊆ [[X′

1]] ∧ · · · ∧ [[Xn]] ⊆ [[X′
n]] ∧ [[X’]] ⊆ [[X]]

)
for every occurrence of a function definition with n parameters

f (X′
1,. . .,X′

n) { . . .return X’; }

This will maintain the precision of the control flow analysis.

Exercise 11.13: Design a context sensitive variant of the Andersen-style points-
to analysis. (Hint: see Sections 8.2–8.4.)

Exercise 11.14: Continuing Exercise 11.13, can we still use the cubic algorithm
(Section 10.2) to solve the analysis constraints? If so, is the analysis time still
O(n3)where n is the size of the program being analyzed?

11.5 Null Pointer Analysis

We are now also able to define an analysis that detects null dereferences. Specif-
ically, we want to ensure that *X is only executed when X is not null. Let us
consider intraprocedural analysis, so we can ignore function calls.

As before, we assume that the program is normalized, so that all pointer
manipulations are of the six kinds described in Section 11.2 The basic lattice we
use, called Null , is:

NN

where the bottom element NNmeans definitely not null and the top element ⊤
represents values that may be null. We then form the following map lattice for
abstract states:

State = Cell → Null

For every CFG node vwe introduce a constraint variable [[v]] denoting an element
from themap lattice. We shall use each constraint variable to describe an abstract
state for the program point immediately after the node.

For all nodes that do not involve pointer operations we have the constraint:

[[v]] = JOIN (v)
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where
JOIN (v) =

⊔
w∈pred(v)

[[w]]

For a load operation X1 = *X2 we need to model the change of the program
variableX1. Our abstraction has a single abstract cell forX1. With the assumption
of intraprocedural analysis, that abstract cell represents a single concrete cell.
(With an interprocedural analysis, we would need to take into account that
each stack frame at runtime has an instance of the variable.) For the expression
*X2 we can ask the points-to analysis for the possible cells pt(X2). With these
observations, we can give a constraint for load operations:

X1 = *X2: [[v]] = load(JOIN (v),X1,X2)

where
load(σ,X1,X2) = σ[X1 7→

⊔
α∈pt(X2)

σ(α)]

Similar reasoning gives constraints for the other operations that affect pointer
variables:

X = alloc P : [[v]] = JOIN (v)[X 7→ NN, alloc-i 7→ ⊤]
X1 = &X2: [[v]] = JOIN (v)[X1 7→ NN]
X1 = X2: [[v]] = JOIN (v)[X1 7→ JOIN (v)(X2)]
X = null: [[v]] = JOIN (v)[X 7→ ⊤]

Exercise 11.15: Explain why the above four constraints are monotone and
sound.

For a store operation *X1 = X2; we need to model the change of whatever
X1 points to. That may be multiple abstract cells, namely pt(X1). Moreover,
each abstract heap cell alloc-i may describe multiple concrete cells. In the
constraint for store operations, we must therefore join the new abstract value
into the existing one for each affected cell in pt(X1):

*X1 = X2: [[v]] = store(JOIN (v),X1,X2)

where
store(σ,X1,X2) = σ [α 7→

α∈pt(X1)

σ(α) ⊔ σ(X2) ]

The situation we here see at store operations where we model an assignment
by joining the new abstract value into the existing one is called a weak update. In
contrast, in a strong update the new abstract value overwrites the existing one,
which we see in the null pointer analysis at all operations that modify program
variables. Strong updates are obviously more precise than weak updates in gen-
eral, but it may require more elaborate analysis abstractions to detect situations
where strong update can be applied soundly.
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After performing the null pointer analysis of a given program, a pointer
dereference *X at a program point v is guaranteed to be safe if

JOIN (v)(X) = NN

The precision of this analysis depends of course on the quality of the underlying
points-to analysis.

Consider the following buggy example program:

p = alloc null;

q = &p;

n = null;

*q = n;

*p = n;

Andersen’s algorithm computes the following points-to sets:

pt(p) = {alloc-1}
pt(q) = {p}
pt(n) = ∅

Based on this information, the null pointer analysis generates the following
constraints:

[[p = alloc null]] = ⊥[p 7→ NN, alloc-1 7→ ⊤]
[[q = &p]] = [[p = alloc null]][q 7→ NN]
[[n = null]] = [[q = &p]][n 7→ ⊤]
[[*q = n]] = [[n = null]][p 7→ [[n = null]](p) ⊔ [[n = null]](n)]
[[*p = n]] = [[*q = n]][alloc-1 7→ [[*q = n]](alloc-1) ⊔ [[*q = n]](n)]

The least solution is:

[[p = alloc null]] = [p 7→ NN, q 7→ NN, n 7→ NN, alloc-1 7→ ⊤]
[[q = &p]] = [p 7→ NN, q 7→ NN, n 7→ NN, alloc-1 7→ ⊤]
[[n = null]] = [p 7→ NN, q 7→ NN, n 7→ ⊤, alloc-1 7→ ⊤]
[[*q = n]] = [p 7→ ⊤, q 7→ NN, n 7→ ⊤, alloc-1 7→ ⊤]
[[*p = n]] = [p 7→ ⊤, q 7→ NN, n 7→ ⊤, alloc-1 7→ ⊤]

By inspecting this information, an analysis could statically detect that when *q =
n is evaluated, which is immediately after n = null, the variable q is definitely
non-null. On the other hand, when *p = n is evaluated, we cannot rule out the
possibility that pmay contain null.

Exercise 11.16: Show an alternative constraint for load operations using weak
update, together with an example program where the modified analysis then
gives a result that is less precise than the analysis presented above.

Exercise 11.17: Show an (unsound) alternative constraint for store operations
using strong update, together with an example program where the modified
analysis then gives a wrong result.
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11.6 Flow-Sensitive Pointer Analysis

Note that we can produce interesting heap structures with TIP programs, even
without records. An example of a nontrivial heap is

x

y

z

where x, y, and z are program variables. We will seek to answer questions about
disjointness of the structures contained in program variables. In the example
above, x and y are not disjoint whereas y and z are. Such information may be
useful, for example, to automatically parallelize execution in an optimizing com-
piler. For such analysis, flow-insensitive reasoning is sometimes too imprecise.
However, we can create a flow-sensitive variant of Andersen’s analysis.

We use a lattice of points-to graphs, which are directed graphs in which the
nodes are the abstract cells for the given program and the edges correspond
to possible pointers. Points-to graphs are ordered by inclusion of their sets of
edges. Thus, ⊥ is the graph without edges and ⊤ is the completely connected
graph. Formally, our lattice for abstract states is then

State = P(Cell × Cell)

ordered by the usual subset inclusion. For every CFG node v we introduce
a constraint variable [[v]] denoting a points-to graph that describes all possible
stores at that program point. For the nodes corresponding to the various pointer
manipulations we have these constraints:

X = alloc P : [[v]] = JOIN (v)↓X ∪ {(X, alloc-i)}
X1 = &X2: [[v]] = JOIN (v)↓X1 ∪ {(X1,X2)}
X1 = X2: [[v]] = assign(JOIN (v),X1,X2)

X1 = *X2: [[v]] = load(JOIN (v),X1,X2)
*X1 = X2: [[v]] = store(JOIN (v),X1,X2)
X = null: [[v]] = JOIN (v)↓X

and for all other nodes:
[[v]] = JOIN (v)

where
JOIN (v) =

⋃
w∈pred(v)

[[w]]

σ↓x = {(s, t) ∈ σ | s ̸= x}
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assign(σ, x, y) = σ↓x ∪ {(x, t) | (y, t) ∈ σ}

load(σ, x, y) = σ↓x ∪ {(x, t) | (y, s) ∈ σ, (s, t) ∈ σ}

store(σ, x, y) = σ ∪ {(s, t) | (x, s) ∈ σ, (y, t) ∈ σ}
Notice that the constraint for store operations uses weak update.

Exercise 11.18: Explain the above constraints.

Consider now the following program:
var x,y,n,p,q;

x = alloc null; y = alloc null;

*x = null; *y = y;

n = input;

while (n>0) {

p = alloc null; q = alloc null;

*p = x; *q = y;

x = p; y = q;

n = n-1;

}

After the loop, the analysis produces the following points-to graph:

x

alloc−3

alloc−1

alloc−4

alloc−2

y

p q

From this result we can safely conclude that x and ywill always be disjoint.
Note that this analysis also computes a flow sensitive points-to map that for

each program point v is defined by:

pt(p) = {t | (p, t) ∈ [[v]]}

This analysis is more precise than Andersen’s algorithm, but clearly also more
expensive to perform. As an example, consider the program:
x = &y;

x = &z;

After these statements, Andersen’s algorithm would predict that pt(x) = {y, z}
whereas the flow-sensitive analysis computes pt(x) = {z} for the final program
point.
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11.7 Escape Analysis

We earlier lamented the escaping stack cell error displayed by the following pro-
gram, which was beyond the scope of the type analysis.

baz() {

var x;

return &x;

}

main() {

var p;

p=baz(); *p=1;

return *p;

}

Having performed a points-to analysis, we can easily perform an escape analysis
to catch such errors. We just need to check that the possible cells for return
expressions in the points-to graph cannot reach arguments or variables defined
in the function itself, since all other locations must then necessarily reside in
earlier frames on the invocation stack.





Chapter 12

Abstract Interpretation

In the preceding chapters we have used the term soundness of an analysis only
informally: if an analysis is sound, the properties it infers for a given program
hold in all actual executions of the program. The theory of abstract interpreta-
tion provides a solid mathematical foundation for what it means for an analysis
to be sound, by relating the analysis specification to the formal semantics of
the programming language. Another use of abstract interpretation is for un-
derstanding whether an analysis design, or a part of an analysis design, is as
precise as possible relative to a choice of analysis lattice and where imprecision
may arise. The fundamental ideas of abstract interpretation were introduced by
Cousot and Cousot in the 1970s [CC76, CC77, CC79b].

12.1 A Collecting Semantics for TIP

We begin by defining formal semantics of the same subset of TIP that we used for
the sign analysis in Sections 4.1 and 5.1, meaning that we ignore function calls,
pointers, and records. In this process we clarify some of under-specified parts of
TIP as discussed in Exercise 2.1. Instead of using traditional styles of semantics,
such as operational semantics, denotational semantics, or axiomatic semantics,
we choose a constraint-based approach that aligns well with our formulations
of the analyses presented in the preceding chapters. Moreover, we choose to
define the semantics based on the CFG representation of TIP programs. These
choices allow us to more concisely relate the semantics and the analysis. What
matters is that the semantics captures the meaning of programs in ordinary
executions, without any approximations. The semantics specifies how a concrete
program execution works, whereas our analyses can be thought of as abstract
interpreters.1

1The research literature on abstract interpretation sometimes refers to what we here call semantics
as the “concrete semantics” and the analysis specification is called the “abstract semantics”.
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A concrete state is a partial map from program variables to integers:2

ConcreteState = Var ↪→ Z

For every CFG node v we have a constraint variable that ranges over sets of
concrete states:

{[v]} ⊆ ConcreteState

The idea is that {[v]} shall denote the set of concrete states that are possible
at the program point immediately after the instruction represented by v, in
some execution of the program. This is called a collecting semantics, because
it “collects” the possible states. In Exercises 12.59–12.64 we shall study other
kinds of collecting semantics that collect relevant information suitable for other
analysis, such as live variables analysis. We choose to focus on the program
point immediately after the instruction of the CFG node, instead of the program
point before, to align with our sign analysis and the other forward analyses from
Chapter 5.

Consider this simple program as an example:

var x;

x = 0;

while (input) {

x = x + 2;

}

Its CFG looks as follows, where the bullets represent the program points that
have associated constraint variables.

input

x = x + 2

exit

entry

x = 0

var x

true
false

The solution we are interested in maps the constraint variable {[x = 0]} to the
single state where x is zero, {[x = x + 2]} is mapped to the set of all states where
x is a positive even number, and similarly for the other program points.

As a first step, we define some useful auxiliary functions, ceval , csucc, and
CJOIN , that have a close connection to the auxiliary functions used in the

2We use the notation A ↪→ B to denote the set of partial functions from A to B.
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specification of the sign analysis, but now for concrete executions instead of
abstract executions.

The function ceval : ConcreteState × Exp → P(Z) gives the semantics of
evaluating an expression E ∈ Exp relative to a concrete state ρ ∈ ConcreteState ,
which results in a set of possible integer values, defined inductively as follows:3

ceval(ρ,X) = {ρ(X)}
ceval(ρ, I) = {I}
ceval(ρ, input) = Z
ceval(ρ,E1 +E2) = {z1 + z2 | z1 ∈ ceval(ρ,E1) ∧ z2 ∈ ceval(ρ,E2)}
ceval(ρ,E1 /E2) = {z1 / z2 | z1 ∈ ceval(ρ,E1) ∧ z2 ∈ ceval(ρ,E2)}

Evaluation of the other binary operators is defined similarly. In this simple
subset of TIP we consider here, evaluating an expression cannot affect the values
of the program variables. Also note that division by zero simply results in the
empty set of values.

We overload ceval such that it also works on sets of concrete states,
ceval : P(ConcreteState)× Exp → P(Z):

ceval(R,E) =
⋃
ρ∈R

ceval(ρ,E)

The function csucc : ConcreteState ×Node → P(Node) gives the set of possi-
ble successors of a CFG node relative to a concrete state. If v is an if or while
node with branch condition E and ρ ∈ ConcreteState , then csucc(ρ, v) contains
v’s true successor in the CFG if z ∈ ceval(ρ,E) for some z ̸= 0, it contains v’s false
successor if 0 ∈ ceval(ρ,E), and it contains no other nodes. (Since evaluation of
expressions does not affect the values of the program variables, as noted above,
conveniently it does not matter whether the states given as first argument to
csucc belong to the program point immediately before or immediately after the
if/while node.) Note that csucc may return two successors, even for a single
concrete state (if the branch condition contains input), and it also may return
zero successors (in case of division by zero). For all other kinds of nodes, let
csucc(ρ, v) = succ(v). Similar to the definition of ceval , we also overload csucc
to work on sets of concrete states, csucc : P(ConcreteState)×Node → P(Node):

csucc(R, v) =
⋃
ρ∈R

csucc(ρ, v)

For a CFG node v, CJOIN (v) denotes the set of states at the program point
immediately before the instruction represented by v, relative to the states at the
program points after the relevant other nodes according to the csucc function:4

CJOIN (v) = {ρ ∈ ConcreteState | ∃w ∈ Node : ρ ∈ {[w]} ∧ v ∈ csucc(ρ, w)}
3We let I denote both an arbitrary syntactic numeral and the mathematical integer it describes,

and for simplicity we do not restrict the numeric computations to, for example, 64 bit signed integers.
4Note that CJOIN (v) is a function of all the constraint variables {[v1]}, . . . , {[vn]} for the entire

program, just like JOIN (v) is a function of all the constraint variables [[v1]], . . . , [[vn]].
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Exercise 12.1: Convince yourself that this definition of CJOIN makes sense,
especially for the cases where v is a node with multiple incoming edges (like
input in the example on page 164) or it is the first node of a branch (like x =
x + 2 in the example).

The semantics of a node v that represents an assignment statement X = E can
now be expressed as the following constraint rule:

{[X=E]} =
{
ρ[X 7→ z]

∣∣ ρ ∈ CJOIN (v) ∧ z ∈ ceval(ρ,E)
}

This rule formalizes the runtime behavior of assignments: For every state ρ
that may appear immediately before executing the assignment, the state after
the assignment is obtained by overwriting the value of X with the result of
evaluating E.

If v is a variable declaration, var X1, . . . ,Xn, we use this rule:

{[var X1, . . . ,Xn]} ={
ρ[X1 7→ z1, . . . ,Xn 7→ zn]

∣∣ ρ ∈ CJOIN (v) ∧ z1 ∈ Z ∧ · · · ∧ zn ∈ Z
}

The only possible initial state at entry nodes is the partial map that is undefined
for all program variables, denoted []:

{[entry]} = {[]}

For all other kinds of nodes, we have this trivial constraint rule:

{[v]} = CJOIN (v)

Notice the resemblance with the analysis constraints from Section 5.1.

Exercise 12.2: Define a suitable constraint rule that expresses the semantics
of assert statements (see Section 7.1) in our collecting semantics. (For this
exercise, think of assert statements as written explicitly by the programmers
anywhere in the programs, not just for use in control sensitive analysis.)

Conveniently, the set of valuations of each constraint variable forms a power-
set lattice (see Section 4.3), P(ConcreteState) ordered by subset. For the entire
program, we thus have the product lattice

(
P(ConcreteState)

)n where n is the
number of CFG nodes for the program. The powerset of concrete values, P(Z),
similarly forms a complete lattice.

A program with n CFG nodes, v1, . . . , vn, is thus represented by n equations:

{[v1]} = cfv1({[v1]}, . . . , {[vn]})
{[v2]} = cfv2({[v1]}, . . . , {[vn]})
...
{[vn]} = cfvn({[v1]}, . . . , {[vn]})
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The constraint for each CFG node v is a function cfv :
(
P(ConcreteState)

)n →
P(ConcreteState), much like the analysis of a program is expressed as an equa-
tion system in Sections 4.4 and 5.1. In the same way, we can combine the n
functions into one, cf :

(
P(ConcreteState)

)n →
(
P(ConcreteState)

)n, defined
by

cf (x1, . . . , xn) =
(
cfv1

(x1, . . . , xn), . . . , cfvn(x1, . . . , xn)
)

in which case the equation system looks like

x = cf (x)

where x ∈
(
P(ConcreteState)

)n. Thus, cf captures the semantics of the program
as one single function, in the same way af in Chapter 5 (page 54) captures the
analysis of the program as one single function.

Exercise 12.3: Show that the constraints defined by the rules above are mono-
tone. Then show that the combined constraint function cf is also monotone.

With these definitions and observations, we can define the semantics of a
given program as the least solution to the generated constraints. A solution
to a constraint system is, as usual, a valuation of the constraint variables that
satisfies all the constraints – in other words, a fixed point of cf . Since the function
cf is monotone according to Exercise 12.3, Tarski’s fixed-point theorem from
Chapter 6 (page 81) immediately gives us that it has a unique least fixed point,
thus a unique least solution to the constraints always exists.

To motivate why we are interested in the least solution, consider again the
example program from page 164. It only contains one variable, so Var = {x}.
Here are two different solutions to the semantic constraints:

solution 1 solution 2
{[entry]} {[]} {[]}
{[var x]} {[x 7→ z] | z ∈ Z} {[x 7→ z] | z ∈ Z}
{[x = 0]} {[x 7→ 0]} {[x 7→ 0]}
{[input]} {[x 7→ z] | z ∈ {0, 2, 4, . . . }} {[x 7→ z] | z ∈ Z}
{[x = x + 2]} {[x 7→ z] | z ∈ {2, 4, . . . }} {[x 7→ z] | z ∈ Z}
{[exit]} {[x 7→ z] | z ∈ {0, 2, 4, . . . }} {[x 7→ z] | z ∈ Z}

Naturally, for this particular program we want a solution where x in the loop
and at the exit point can only be a nonnegative even integer, not an arbitrary
integer.

Exercise 12.4:
(a) Check that both of the above solutions are indeed solutions to the con-

straints for this particular program.

(b) Give an example of yet another solution.

(c) Argue that solution 1 is the least of all solutions.

Recall the example program from Sections 4.1 and 5.1:
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var a,b,c;

a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

For this program, at the program points immediately after the assignment
b = 87, immediately after the assignment c = a - b (at the end of the else
branch), and the exit, the following sets of concrete states are possible according
to the collecting semantics:

{[b = 87]} = {[a 7→ 42, b 7→ 87, c 7→ z] | z ∈ Z}
{[c = a - b]} = {[a 7→ 42, b 7→ 87, c 7→ −45]}
{[exit]} = {[a 7→ 42, b 7→ 87, c 7→ 129], [a 7→ 42, b 7→ 87, c 7→ −45]}

Exercise 12.5: Check that the least fixed point of the semantic constraints for
the program is indeed these sets, for the three program points.

In comparison, the sign analysis specified in Section 5.1 computes the following
abstract states for the same program points:

[[b = 87]] = [a 7→ +, b 7→ +, c 7→ ⊤]
[[c = a - b]] = [a 7→ +, b 7→ +, c 7→ ⊤]
[[exit]] = [a 7→ +, b 7→ +, c 7→ ⊤]

In this specific case the analysis result is almost the best we could hope for,
with that choice of analysis lattice. Notice that the abstract value of c at the
program point after c = a - b is⊤, although the only possible value in concrete
executions is −45. This is an example of a conservative analysis result.

As shown above, Tarski’s fixed-point theorem ensures that the collecting
semantics is well defined – even though it is generally non-computable. The
variant of Kleene’s fixed-point theorem from Chapter 4 (page 47) is not strong
enough to ensure this property, as the lattice has infinite height.

Exercise 12.6: Show that the lattice (P(ConcreteState))n has infinite height.

An alternative to using Tarski’s fixed-point theorem is to use the fact that
Kleene’s fixed-point theorem also holds for infinite-height lattices when f is a
complete join morphism.5 A function f : L1 → L2 whereL1 andL2 are complete
lattices is called a complete join morphism if f(

⊔
A) =

⊔
a∈A f(a) for every A ⊆ L.

If f is a complete join morphism it is also monotone. For finite lattices, a function
5It actually suffices that f is continuous, meaning that f(

⊔
A) =

⊔
a∈A f(a) for every A ⊆ L

where A is totally ordered, i.e., ∀x, y ∈ A : x ⊑ y ∨ y ⊑ x. For a variant of Kleene’s theorem that
only requires monotonicity, see Exercise 4.32.
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is a complete join morphism if and only if it is distributive (see the definition of
distributivity in Exercise 4.20). All the constraints for the collecting semantics
defined by the rules above, in particular the function cf , are not just monotone
but complete join morphisms.

Exercise 12.7: Prove that every complete join morphism is monotone.

Exercise 12.8: Prove that if L is a complete lattice (not necessarily with finite
height) and the function f : L → L is a complete join morphism, then lfp(f) =⊔

i≥0 f
i(⊥) is a unique least fixed point for f .

Exercise 12.9: Show that the constraints defined by the rules above for the col-
lecting semantics, including the combined constraint function cf , are indeed
complete join morphisms.

Exercise 12.10: For readers familiar with traditional operational semantics,
denotational semantics, or axiomatic semantics: Specify the semantics for
the same subset of TIP as considered above, but this time using operational
semantics, denotational semantics, or axoimatic semantics. Your semantics
and the one specified above should be equivalent in the following sense: For
every program P , at every program point p in P , the set of concrete states
that may appear at p in some execution of P is the same for the two different
styles of semantics. Then prove that your semantics has this property. (We
continue with this topic in Section 12.6.)

For use later in this chapter, let us introduce the notation {[P ]} = lfp(cf ) and
[[P ]] = lfp(af )where cf is the semantic constraint function and af is the analysis
constraint function for a given program P . In other words, {[P ]} denotes the
semantics of P , and [[P ]] denotes the analysis result for P .

12.2 Abstraction and Concretization

To clarify the connection between concrete information and abstract information
for the sign analysis example, let us consider three different abstraction functions
that tell us how each element from the semantic lattices is most precisely de-
scribed by an element in the analysis lattices. The functions map sets of concrete
values, sets of concrete states, and n-tuples of sets of concrete states to their most
precise possible abstract counterparts:

αa : P(Z) → Sign
αb : P(ConcreteState) → State

αc :
(
P(ConcreteState)

)n → Staten
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As before, P(Z) is the powerset lattice defined over the set of integers ordered
by subset, Sign is the sign lattice from Section 4.1, we define ConcreteState =
Var ↪→ Z and State = Var → Sign as in Sections 12.1 and 4.1, respectively, and
n is the number of CFG nodes. The functions are defined as follows, to precisely
capture the informal descriptions given earlier:

αa(D) =



⊥ if D is empty
+ if D is nonempty and contains only positive integers
- if D is nonempty and contains only negative integers
0 if D is nonempty and contains only the integer 0
⊤ otherwise

for any D ∈ P(Z)

αb(R) = σ where σ(X) = αa({ρ(X) | ρ ∈ R})
for any R ⊆ ConcreteState and X ∈ Var

αc(R1, . . . , Rn) = (αb(R1), . . . , αb(Rn))
for any R1, . . . , Rn ⊆ ConcreteState

It is a natural condition that abstraction functions are monotone. Intuitively,
a larger set of concrete values or states should not be represented by a smaller
abstract element in the lattice order.

Exercise 12.11: Argue that the three functions αa, αb, and αc defined above
for the sign analysis are monotone.

Dually, we may define concretization functions that express the meaning of
the analysis lattice elements in terms of the concrete values, states, and n-tuples
of states:

γa : Sign → P(Z)
γb : State → P(ConcreteState)

γc : State
n →

(
P(ConcreteState)

)n
defined by

γa(s) =



∅ if s = ⊥
{1, 2, 3, . . . } if s = +
{−1,−2,−3, . . . } if s = -
{0} if s = 0
Z if s = ⊤

for any s ∈ Sign

γb(σ) = {ρ ∈ ConcreteState | ρ(X) ∈ γa(σ(X)) for all X ∈ Var}
for any σ ∈ State

γc(σ1, . . . , σn) = (γb(σ1), . . . , γb(σn))
for any (σ1, . . . , σn) ∈ Staten
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Concretatization functions are, like abstraction functions, naturally monotone.

Exercise 12.12: Argue that the three functions γa, γb, and γc from the sign
analysis example are monotone.

Furthermore, abstraction functions and concretization functions that arise
naturally when developing program analyses are closely connected. If L1 and
L2 are complete lattices, α : L1 → L2 is an abstraction function, and γ : L2 → L1

is a concretization function, then α and γ usually have the following properties:

• γ ◦ α is extensive (meaning that x ⊑ γ(α(x)) for all x ∈ L1; see Exer-
cise 4.18), and

• α ◦ γ is reductive (meaning that α(γ(y)) ⊑ y for all y ∈ L2).

The pair of monotone functions, α and γ, is called a Galois connection if it satisfies
these two properties. The intuition of the first property is that abstraction may
lose precision but must be safe. One way to interpret the second property is that
the abstraction function should always give the most precise possible abstract
description for any element in the semantic lattice. In many cases, α ◦ γ is the
identity function. The two properties can be illustrated as follows, using αc and
γc from the sign analysis as an example:

(
P(ConcreteState)

)n
Staten

x
αc

γc

(
P(ConcreteState)

)n
Staten

y

αc

γc

Exercise 12.13: Show that all three pairs of abstraction and concretization
functions (αa, γa), (αb, γb), and (αc, γc) from the sign analysis example are
Galois connections. (See also Exercise 12.29.)

Exercise 12.14: Show that αa◦γa, αb◦γb, and αc◦γc are all equal to the identity
function, for the three pairs of abstraction and concretization functions from
the sign analysis.

Exercise 12.15: Argue that γ ◦ α is typically not the identity function, when
α : L1 → L2 is an abstraction function and γ : L2 → L1 is the associated
concretization function for some analysis. (Hint: consider αa and γa from the
sign analysis example.)
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Exercise 12.16: Give an example of an analysis with abstraction function α
and concretization function γ, such that α ◦ γ is not the identity function.

Exercise 12.17: Assume L1 and L2 are complete lattices and α and γ are
functions, α : L1 → L2, and γ : L2 → L1. The pair of functions, α and γ, is
called an adjunction between L1 and L2 if the following condition is satisfied:

∀x ∈ L1, y ∈ L2 : α(x) ⊑ y ⇐⇒ x ⊑ γ(y)

Prove that α and γ form a Galois connection (i.e., α and γ are monotone,
γ ◦ α is extensive, and α ◦ γ is reductive) if and only if they are an adjunction
between L1 and L2.

This theorem is useful for some of the later exercises in this section.

Exercise 12.18: Show that if α : L1 → L2 and γ : L2 → L1 form a Galois con-
nection between two complete lattices L1 and L2, then α is a complete join
morphism, i.e. α(

⊔
A) =

⊔
a∈A α(a) for every A ⊆ L1.

(Hint: see Exercise 12.17.)

We shall use this result in the soundness argument in Section 12.3. Not
surprisingly, the dual property also holds: γ satisfies γ( ⊔B) = ⊔b∈B γ(b)
for every B ⊆ L2 when α and γ form a Galois connection. (A function γ
satisfying this property is called a complete meet morphism.)

Exercise 12.19: Show that if α and γ form a Galois connection, then α(⊥) = ⊥
and γ(⊤) = ⊤.

(Hint: see Exercises 4.9 and 12.18.)

We have argued that the Galois connection property is natural for any rea-
sonable pair of an abstraction function and a concretization function, including
those that appear in our sign analysis example. The following exercise tells
us that it always suffices to specify either α or γ, then the other is uniquely
determined if requiring that they together form a Galois connection.
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Exercise 12.20: Prove the following properties about Galois connections:

If L1 and L2 are complete lattices and the functions α : L1 → L2 and γ : L2 →
L1 form a Galois connection, then γ is uniquely determined by α:

γ(y) =
⊔

{x ∈ L1 | α(x) ⊑ y} for all y ∈ L2

Conversely, α is uniquely determined by γ:

α(x) = ⊔{y ∈ L2 | x ⊑ γ(y)} for all x ∈ L1

(Hint: see Exercise 12.17.)

The result from Exercise 12.20 means that once the analysis designer has
specified the collecting semantics and the analysis lattice and constraint rules,
then the relation between the semantic domain and the analysis domain may
be specified using an abstraction function α (resp. a concretization function γ),
and then the associated concretization function γ (resp. abstraction function α)
is uniquely determined – provided that one exists such that the two functions
form a Galois connection.

This raises an interesting question: Under what conditions does α (resp. γ)
have a corresponding γ (resp. α) such that α and γ form a Galois connection?
One answer is that the converse of the property shown in Exercise 12.18 holds
too, as shown in the following exercise.

Exercise 12.21: Show that if L1 and L2 are complete lattices and α : L1 → L2

is a complete join morphism, then there exists a function γ : L2 → L1 such
that α and γ form a Galois connection.

The dual property also holds: if γ satisfies γ( ⊔B) = ⊔b∈B γ(b) for every
B ⊆ L2 (i.e., γ is a complete meet morphism) then there exists a function
α : L1 → L2 such that α and γ form a Galois connection.

The following exercise demonstrates that the Galois connection property can
be used as a “sanity check” when designing analysis lattices.
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Exercise 12.22: Instead of using the usual Sign lattice from Section 5.1, assume
we chose to design our sign analysis based on this lattice:

0- 0+

⊤

⊥

with the meaning of the elements expressed by this concretization function:

γa(s) =


∅ if s = ⊥
{0, 1, 2, 3, . . . } if s = 0+
{0,−1,−2,−3, . . . } if s = 0-
Z if s = ⊤

At first, this may seem like a reasonable lattice for an analysis, but there is
something strange about it: How shouldwe define eval(σ, 0)? Or equivalently,
how should we define αa({0})? We could somewhat arbitrarily choose either
0+ or 0-.

Show that, with this choice of lattice, there does not exist an abstraction
function αa such that αa and γa form a Galois connection.

Despite the lack of a Galois connection in the example in Exercise 12.22, in
this specific case we could go ahead and design a variant of the sign analysis
based on this alternative lattice, without sacrificing the soundness or termination
properties. However, many of the useful properties discussed in the following
sections might not hold without the Galois connection property, and the analysis
might produce potentially surprising results. As an example, assumewe analyze
the following programusing control-insensitive sign analysis (i.e., a sign analysis
that ignores branch conditions) with the modified lattice from Exercise 12.22,
and that the analysis designer has chosen αa({0}) = 0- and αa({0, 1}) = 0+.

x = input > 3;

if (!x) {

output x;

}

After the first statement, the abstract value of x is 0+ (since > yields 0 or 1), so
at the output statement, the abstract value of x is then 0+. This means that the
analysis is precise enough to be able to conclude that the output value is definitely
not a negative number. Now consider a situation where the analysis designer
wants to increase analysis precision generally by adding control sensitivity to the
analysis, using the approach presented in Chapter 7. With the representation of
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branch conditions as assert statements, the simple branch condition !x can be
modeled by the following rule:

assert(!x): [[v]] =

{
σ[x 7→ αa({0})] if 0 ∈ γa(σ(x))

⊥ otherwise
where σ = JOIN (v)

This rule soundly models the fact that only executions where x has the value
0 satisfy the branch condition. However, with this change of the analysis, the
abstract value of x at the output statement is now 0-, so the analysis is no longer
able to conclude that the output value is definitely not a negative number. In
other words, even though the analysis has apparently become more precise by
adding a simple form of control sensitivity, it is less precise for some programs,
which may be counterintuitive.

Exercise 12.23: Continuing Exercise 12.22, let us add a lattice element 0, below
0- and 0+ and above ⊥, with γa(0) = {0}. Show that with this modification,
an abstraction function αa exists such that αa and γa form aGalois connection.

Exercise 12.24: In interval analysis (Section 6.1) we use the domain P(Z)
representing sets of concrete values and the domain Interval representing
abstract values. What are the abstraction function and the concretization
function between these domains? Do they form a Galois connection?

For the sign analysis (with the ordinary Sign lattice) we can also specify the
connection between concrete values in Z and abstract values in Sign using a
representation function, β : Z → Sign :

β(d) =


+ if d > 0

- if d < 0

0 if d = 0

The abstraction function αa can then be induced from the representation func-
tion:

αa(D) =
⊔

{β(d) | d ∈ D}

Exercise 12.25: Show that this definition of αa coincides with the one from
page 169.

Intuitively, for a given set of concrete values, this construction of αa picks
the most precise abstract element that safely approximates the representation of
each of the concrete values. Often it is more natural to specify a representation
function than an abstraction function or a concretization function. The following
exercise shows that this works whenever a suitable representation function can
be defined.
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Exercise 12.26: Assume β : V → Lwhere V is a set and L is a complete lattice.
Define α : P(V ) → L and γ : L → P(V ) by α(D) =

⊔
{β(d) | d ∈ D} and

γ(x) = {d ∈ D | β(d) ⊑ x}. Prove that α and γ form a Galois connection.

The next two exercises show that we can build Galois connections using
product lattices and map lattices (see Section 4.3).

Exercise 12.27: Assume L1, L2, L′
1, and L′

2 are complete lattices, α : L1 → L2

and γ : L2 → L1 form a Galois connection, and α′ : L′
1 → L′

2 and γ′ : L′
2 → L′

1

form a Galois connection. Define α′′ : L1 ×L′
1 → L2 ×L′

2 and γ′′ : L2 ×L′
2 →

L1 × L′
1 by α′′(x, x′) = (α(x), α′(x′)) and γ′′(y, y′) = (γ(y), γ′(y′)) for all

x ∈ L1, x′ ∈ L′
1, y ∈ L2, y′ ∈ L′

2. Prove that α′′ and γ′′ form a Galois
connection between the product lattices L1 × L′

1 and L2 × L′
2.

Exercise 12.28: AssumeL1 andL2 are complete lattices, S is a set, andα : L1 →
L2 and γ : L2 → L1 form a Galois connection. Define α′ : (S → L1) → (S →
L2) and γ′ : (S → L2) → (S → L1) by α′(x)(s) = α(x(s)) and γ′(y)(s) =
γ(y(s)) for all x : S → L1, y : S → L2, and s ∈ S. Prove that α′ and γ′ form a
Galois connection between the map lattices S → L1 and S → L2.

Exercise 12.29: Use the results of Exercises 12.27 and 12.28 to give a simpler
solution to Exercise 12.13.

12.3 Soundness

We are now in position to formally define what we mean by soundness of an
analysis. Let α : L1 → L2 be an abstraction function where L1 is the lattice
for a collecting semantics and L2 is the lattice for an analysis. As an example,
αc :

(
P(ConcreteState)

)n → Staten defined in Section 12.2 is such a function for
the sign analysis. An analysis is sound with respect to the semantics and the
abstraction function for a given program P if the following property holds:

α({[P ]}) ⊑ [[P ]]

In other words, soundness means that the analysis result over-approximates the
abstraction of the semantics of the program. For the sign analysis, the property
can be illustrated like this:
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(
P(ConcreteState)

)n
Staten

{[P ]}
αc

[[P ]]

For the simple TIP example program considered in Section 12.1, the sound-
ness property is indeed satisfied (here showing the information just for the
program point immediately after the c = a - b statement):

αc(. . . , {[c = a - b]}, . . . ) =
αc(. . . , [a 7→ 42, b 7→ 87, c 7→ −45], . . . ) ⊑
(. . . , [a 7→ +, b 7→ +, c 7→ ⊤], . . . ) =
(. . . , [[c = a - b]], . . . )

If we specify the relation between the two domains using concretization
functions instead of using abstraction functions, wemay dually define soundness
as the property that the concretization of the analysis result over-approximates
the semantics of the program:

{[P ]} ⊑ γ([[P ]])

For the sign analysis, which uses the concretization function γc : State
n →(

P(ConcreteState)
)n, this property can be illustrated as follows:

(
P(ConcreteState)

)n
Staten

{[P ]}

γc

[[P ]]

Exercise 12.30: Show that if α and γ form a Galois connection, then the two
definitions of soundness stated above are equivalent.
(Hint: see Exercise 12.17.)
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We often use the term soundness of analyses without mentioning specific
programs. An analysis is sound if it is sound for every program.

In Section 12.2 we established the relations between the concrete domains
from the semantics and the abstract domains from the analysis. To prove that
an analysis is sound, we also need to relate the semantic constraints with the
analysis constraints. In the following, we outline the steps involved in such a
proof for the sign analysis. We assume that the relations between the domains are
specified using abstraction functions; if instead using concretization functions,
the properties that need to be established are dual, similar to the above definition
of soundness based on concretization functions.

First, eval is a sound abstraction of ceval , in the sense that the following
property holds for every expression E and every set of concrete states R ⊆
ConcreteState :

αa(ceval(R,E)) ⊑ eval(αb(R),E)

Exercise 12.31: Prove that eval is a sound abstraction of ceval , in the sense
defined above.

(Hint: Use induction in the structure of the TIP expression. As part of the
proof, you need to show that each abstract operator is a sound abstraction
the corresponding concrete operator, for example for the addition operator:
αa({z1 + z2 | z1 ∈ D1 ∧ z2 ∈ D2}) ⊑ αa(D1) +̂ αa(D2) for all sets D1, D2 ⊆
Z.)

The succ function is a sound abstraction of csucc:

csucc(R, v) ⊆ succ(v) for any R ⊆ ConcreteState

and JOIN (defined on page 52) is a sound abstraction of CJOIN , meaning that

αb(CJOIN (v)) ⊑ JOIN (v)

for every CFG node v ∈ Node whenever the constraint variables that are used in
the definitions of JOIN and CJOIN satisfy αb({[w]}) ⊑ [[w]] for all w ∈ Node .

Exercise 12.32: Prove that succ is a sound abstraction of csucc and that JOIN
is a sound abstraction of CJOIN , in the sense defined above.

Let cfv :
(
P(ConcreteState)

)n → P(ConcreteState) and afv : State
n → State

denote v’s constraint function from the semantics and the analysis, respectively,
for every CFG node v. For example, if v represents an assignment statement X =
E, we have:

cfv({[v1]}, . . . , {[vn]}) =
{
ρ[X 7→ z]

∣∣ ρ ∈ CJOIN (v) ∧ z ∈ ceval(ρ,E)
}

afv([[v1]], . . . , [[vn]]) = σ[X 7→ eval(σ,E)]where σ = JOIN (v)

The function afv is a sound abstraction of cfv if the following property holds for
all R1, . . . , Rn ⊆ ConcreteState:

αb(cfv(R1, . . . , Rn)) ⊑ afv(αb(R1), . . . , αb(Rn))
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If we consider the combined constraint functions for the entire program,
cf ({[v1]}, . . . , {[vn]}) =

(
cfv1({[v1]}, . . . , {[vn]}), . . . , cfvn({[v1]}, . . . , {[vn]})

)
and

af ([[v1]], . . . , [[vn]]) =
(
afv1([[v1]], . . . , [[vn]]), . . . , afvn([[v1]], . . . , [[vn]])

)
then af being

a sound abstraction of cf means that

αc(cf (R1, . . . , Rn)) ⊑ af (αc(R1, . . . , Rn))

which can be illustrated like this:

(
P(ConcreteState)

)n
Staten

αc

αccf af

Exercise 12.33: Prove that each kind of CFGnode v, the sign analysis constraint
afv is a sound abstraction of the semantic constraint cfv . (The most interesting
case is the one where v is an assignment node.) Then use that result to prove
that af is a sound abstraction of cf .

We can provide a general definition of soundness of abstractions, covering all
the variants above, as follows. Assume L1 and L′

1 are lattices used in a collecting
semantics and L2 and L′

2 are lattices used for an analysis. Let α : L1 → L2 and
α′ : L′

1 → L′
2 be abstraction functions, and let γ : L2 → L1 and γ′ : L′

2 → L′
1 be

concretization functions such that α, γ, α′, and γ′ form two Galois connections.
Consider two monotone functions cg : L1 → L′

1 and ag : L2 → L′
2. We say that

ag is a sound abstraction of cg if the following property holds:

α′ ◦ cg ⊑ ag ◦ α

The following exercise provides an alternative definition of soundness that
is based on concretization functions instead of abstraction functions.

Exercise 12.34: Prove that if α, α′, γ, and γ′ form two Galois connections as
above, then α′ ◦ cg ⊑ ag ◦ α holds if and only if cg ◦ γ ⊑ γ′ ◦ ag holds.

As an example for our sign analysis, eval being a sound abstraction of ceval
means that αa◦ceval ⊑ eval ◦αb (for a fixed expression), which can be illustrated
as follows:
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P(ConcreteState)

P(Z)

State

Sign

ceval

αb

αa

eval

Intuitively, when starting from a set of concrete states, if we first abstract the
states and then evaluate abstractly with eval we get an abstract value that over-
approximates the one we get if we first evaluate concretely with ceval and then
abstract the values.

With the result of Exercise 12.33, it follows that the sign analysis is sound
with respect to the semantics and the abstraction/concretization functions, as
shown next.

Recall that the analysis result for a given program P is computed as [[P ]] =
lfp(af ) (if not using widening, which we discuss later in this section). By the
fixed-point theorems from Section 12.1, the semantics of P is similarly given
by {[P ]} = lfp(cf ). According to the definition of soundness, we thus need to
show that α(lfp(cf )) ⊑ lfp(af ) (if the connection between the lattices is specified
using an abstraction function α) or lfp(cf ) ⊑ γ(lfp(af )) (if using a concretization
function γ, cf. Exercise 12.17).

The central result we need is the following soundness theorem:

If L1 and L2 are complete lattices with a concretization function
γ : L2 → L1, cf : L1 → L1 and af : L2 → L2 are monotone, and af is
a sound abstraction of cf with respect to γ, i.e., cf ◦ γ ⊑ γ ◦ af , then
lfp(cf ) ⊑ γ(lfp(af )).

Applying this theorem to the sign analysis amounts to setting L1 =(
P(ConcreteState)

)n, L2 = Staten, and γ = γc. The functions cf and af are
the constraint functions for the semantics and the analysis, respectively, of the
program P being analyzed.

Proving this theorem is straightforward thanks to Tarski’s fixedpoint theorem
(see page 81). Assume the conditions for L1, L2, γ, cf , and af are satisfied.
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We know from Tarski’s fixed point theorem that lfp(cf ) and lfp(af ) are well-
defined. As lfp(af ) is a fixed point of af we have af (lfp(af )) = lfp(af ), so
γ(af (lfp(af ))) = γ(lfp(af )). Since af is a sound abstraction of cf we then have
cf (γ(lfp(af ))) ⊑ γ(lfp(af )). This means that γ(lfp(af )) ∈ {x ∈ L1 | cf (x) ⊑ x},
so by Tarski’s fixed point theorem, lfp(cf ) ⊑ γ(lfp(af )).

To summarize, a general recipe for specifying and proving soundness of an
analysis consists of the following steps:

1. Specify the analysis, i.e. the analysis lattice (a complete lattice) and the con-
straint generation rules, and check that all the analysis constraint functions
are monotone (as we did for the sign analysis example in Section 5.1).

2. Specify the collecting semantics, and check that the semantic constraint
functions are monotone (as we did for the sign analysis example in Sec-
tion 12.1). The collecting semantics must capture the desired aspects of
concrete execution, such that it formalizes the ideal properties that the
analysis is intended to approximate. For the sign analysis example, we
designed the collecting semantics such that it collects the reachable states
for every program point; other analyses may need other kinds of collecting
semantics (see Section 12.6).

3. Establish the connection between the semantic lattice and the analysis
lattice (as we did for the sign analysis example in Section 12.2), either
by an abstraction function or by a concretization function. Alternatively,
one may use a representation function (Exercise 12.26) and induce the
abstraction and concretization functions. For the sign analysis example, the
lattices are defined in three layers, leading to the definitions of αa, αb, αc
and γa, γb, γc. By ensuring that the Galois connection property is satisfied,
it is only a matter of taste whether one chooses to specify this connection
using abstraction functions or using concretization functions, thanks to the
Galois connection dualities we have seen in Section 12.2. (However, notice
that the soundness theorem does not require the presence of a Galois
connection, but merely that the abstraction and concretization functions
are monotone.)

4. Show that each constituent of the analysis constraints is a sound abstraction
of the corresponding constituent of the semantic constraints (with respect
to the concretization function), for all programs (as we did for the sign
analysis example in Exercises 12.31, 12.32, and 12.33).

5. Soundness of the analysis then follows from the soundness theorem stated
above.

For analyses that use widening, we know from Exercise 6.9 that the ana-
lysis result is always a safe approximation of the least solution to the analysis
constraints. This means that the soundness theorem can also be used for such
analyses.
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Exercise 12.35: Prove that the interval analysis (Section 6.1) with widening
(using the definition of∇ from page 86) is soundwith respect to the collecting
semantics from Section 12.1.

Proving soundness of realistic analyses for real-world programming lan-
guages is a major endeavor [JLB+15]. A pragmatic light-weight alternative is
soundness testing [AMN17], which is the process of running a given program
concretely a number of times, with as high coverage as possible, and testing that
all observed runtime facts are over-approximated by the static analysis result.

12.4 Optimality

Assume we are developing a new analysis, and that we have chosen an analysis
lattice and the rules for generating analysis constraints for the various program-
ming language constructs. To enable formal reasoning about the soundness and
precision of the analysis, we have also provided a suitable collecting semantics for
the programming language (as in Section 12.1) and abstraction/concretization
functions that define the meaning of the analysis lattice elements (as in Sec-
tion 12.2). Furthermore, assume we have proven that the analysis is sound using
the approach from Section 12.3. We may now ask: Are our analysis constraints as
precise as possible (yet sound), relative to the chosen analysis lattice?

As in the previous section, let α : L1 → L2 be an abstraction function where
L1 is the lattice for a collecting semantics andL2 is the lattice for an analysis, such
that α and γ form a Galois connection, and consider two functions cf : L1 → L1

and af : L2 → L2 that represent, respectively, the semantic constraints and
the analysis constraints for a given program. We say that af is the optimal6
abstraction of cf if

af = α ◦ cf ◦ γ

(which can also be written: af (b) = α(cf (γ(b))) for all b ∈ L2). Using the lattices
and abstraction/concretization functions from the sign analysis example, this
property can be illustrated as follows.

6In the literature on abstract interpretation, the term “best” is sometimes used instead of “opti-
mal”.
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(
P(ConcreteState)

)n
Staten

γc

αccf af

(Compare this with the illustration of soundness from page 179.) To see that α ◦
cf ◦γ is indeed the most precise monotone function that is a sound abstraction of
cf , assume g : L2 → L2 is some monotone function that is a sound abstraction of
cf , that is, α(cf (a)) ⊑ g(α(a)) for all a ∈ L1. Then for all a′ ∈ L2, α(cf (γ(a′))) ⊑
g(α(γ(a′))) ⊑ g(a′). The last inequality holds because α ◦ γ is reductive and g is
monotone. Thus, α ◦ cf ◦ γ ⊑ g, meaning that α ◦ cf ◦ γ is the most precise such
function.

Notice what the optimality condition tells us: We can obtain the best possible
(i.e., most precise yet sound) abstraction of cf for a given analysis lattice element
y by first concretizing y, then applying the semantic function cf , and finally
abstracting. Unfortunately this observation does not automatically give us
practical algorithms for computing optimal abstraction, but it enables us to
reason about the precision of our manually specified analysis constraints.

The above definition of optimality focuses on af and cf , but it can be gen-
eralized to all levels of the analysis as follows. Assume L1 and L′

1 are lattices
used in a collecting semantics and L2 and L′

2 are lattices used for an analysis.
Let α : L1 → L2 and α′ : L′

1 → L′
2 be abstraction functions, and let γ : L2 → L1

and γ′ : L′
2 → L′

1 be concretization functions such that α, γ, α′, and γ′ form two
Galois connections. Consider two functions cg : L1 → L′

1 and ag : L2 → L′
2. We

say that ag is the optimal abstraction of cg if the following property holds:

ag = α′ ◦ cg ◦ γ

Let us look at some examples from the sign analysis. First, it is easy to see that
our definition of abstract multiplication *̂ (page 53) is the optimal abstraction of
concrete multiplication, denoted “·”:

s1*̂s2 = αa
(
γa(s1) · γa(s2)

)
for any s1, s2 ∈ Sign , where we overload the · operator to work on sets of integers:
D1 ·D2 = {z1 · z2 | z1 ∈ D1 ∧ z2 ∈ D2} for any D1, D2 ⊆ Z.

Exercise 12.36: Prove that all the abstract operators (+̂, -̂, >̂, etc.) defined
in Section 5.1 are optimal abstractions of their concrete counterparts. (This
exercise can be seen as a formal version of Exercise 5.4.)
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Despite the result of the previous exercise, the eval function from Section 5.1
is not the optimal abstraction of ceval . Here is a simple counterexample: Let
σ ∈ State such that σ(x) = ⊤ and consider the TIP expression x - x. We then
have

eval(σ, x - x) = ⊤
while

αa
(
ceval(γb(σ), x - x)

)
= 0

(This is essentially the same observation as the one in Exercise 5.9, but this time
stated more formally.) Interestingly, defining the eval function inductively and
compositionally in terms of optimal abstractions does not make the function
itself optimal.

Exercise 12.37: Assume we only work with normalized TIP programs (as
in Exercise 2.2). Give an alternative computable definition of eval for sign
analysis (i.e., an algorithm for computing eval(σ,E) for any abstract state σ
and normalized TIP expression E), such that eval is the optimal abstraction
of ceval .

Exercise 12.38: Is it possible to solve Exercise 12.37 without the normalization
assumption?

Recall the definition of the abstract operators in interval analysis from Chap-
ter 6 (page 80):

ôp([l1, h1], [l2, h2]) = [ min
x∈[l1,h1],y∈[l2,h2]

x op y, max
x∈[l1,h1],y∈[l2,h2]

x op y]

where [l1, h1], [l2, h2] ∈ Interval . Notice that this is by construction an optimal
abstraction. As pointed out in Exercise 6.2 it is not immediately implementable,
so a non-optimal (but still sound) alternative may be preferred in practice.

Exercise 12.39: Which of the other abstractions used in interval analysis
(Section 6.1) are optimal?

To be able to reason about optimality of the abstractions used in, for example,
live variables analysis or reaching definitions analysis, we first need a style of
collecting semantics that is suitable for those analyses, which we return to in
Section 12.6.

12.5 Completeness

As usual in logics, the dual of soundness is completeness. In Section 12.3 we
defined soundness of an analysis for a program P as the property α({[P ]}) ⊑ [[P ]].
Consequently, it is natural to define that an analysis is complete for P if the
following property holds:

[[P ]] ⊑ α({[P ]})
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An analysis is complete if it is complete for all programs. If an analysis is both
sound and complete for P we have α({[P ]}) = [[P ]].7

In Section 12.4 we studied the notion of optimality of abstractions, motivated
by the interest in defining analysis constraints to be as precise as possible, relative
to the chosen analysis lattice. We can similarly ask, is the analysis result [[P ]] for
a program P as precise as possible for the currently used analysis lattice? Stated
more formally, the question is whether α({[P ]}) = [[P ]] holds; in other words,
this property coincides with the analysis being sound and complete for P .

Even if we manage to solve Exercise 12.37 and obtain an optimal definition of
eval for sign analysis, the analysis is not sound and complete for all (normalized)
programs, as demonstrated by the following counterexample:

x = input;

y = x;

z = x - y;

Let σ denote the abstract state after the statement y = x such that σ(x) = σ(y) =
⊤. Any sound abstraction of the semantics of the single statement z = x - y
will result in an abstract state that maps z to ⊤, but the answer 0 would be
more precise and still sound in the analysis result for the final program point.
Intuitively, the analysis does not know about the correlation between x and y.

For this specific example program, we could in principle improve analysis
precision by changing the constraint generation rules to recognize the special
pattern consisting of the statement y = x followed by z = x - y. Instead of
such an ad hoc approach to gain precision, relational analysis (see Chapter 7) is
usually a more viable solution.

In Section 12.3 we observed (Exercise 12.30) that analysis soundness could
equivalently be defined as the property {[P ]} ⊑ γ([[P ]]). However, a similar
equivalence does not hold for completeness, as shown by the following two
exercises.

Exercise 12.40: We know from Exercise 12.17 that if α and γ form a Galois
connection then α(x) ⊑ y ⇐⇒ x ⊑ γ(y) for all x, y. Prove (by showing a
counterexample) that the converse property does not hold, i.e. α(x) ⊒ y ⇍⇒
x ⊒ γ(y).
(Hint: consider αa and γa from the sign analysis.)

Exercise 12.41: Give an example of a program P such that [[P ]] ⊑ α({[P ]}) and
γ([[P ]]) ̸⊑ {[P ]} for sign analysis.

Thus, {[P ]} = γ([[P ]]) is a (much) stronger property than α({[P ]}) = [[P ]].
If {[P ]} = γ([[P ]]) is satisfied, the analysis captures exactly the semantics of
P without any approximation; we say that the analysis is exact for P . Every

7The literature on abstract interpretation often uses the term “complete” for what we call “sound
and complete”, by working under the assumption of sound analyses.
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nontrivial abstraction loses information and therefore no interesting analysis is
exact for all programs.8 (Still, the property may hold for some programs.)

Exercise 12.42:
(a) Explain why the sign analysis is both complete and exact for this pro-

gram:

var x;

x = 0;

(b) Explain why the sign analysis is complete but not exact for this program:

var x;

x = 1;

Having established a notion of analysis completeness (and a less interesting
notion of analysis exactness), we proceed by defining a notion of completeness of
the individual abstractions used in an analysis, to understand where imprecision
may arise.

As in the preceding sections, assumeL1 andL′
1 are lattices used in a collecting

semantics and L2 and L′
2 are lattices used for an analysis. Let α : L1 → L2 and

α′ : L′
1 → L′

2 be abstraction functions, and let γ : L2 → L1 and γ′ : L′
2 → L′

1 be
concretization functions such that α, γ, α′, and γ′ form two Galois connections.
Consider two functions cg : L1 → L′

1 and ag : L2 → L′
2. We say that ag is a

complete abstraction of cg if the following property holds:

ag ◦ α ⊑ α′ ◦ cg

(Compare this with the definition of soundness of abstractions from page 179.)
Again, let us consider sign analysis as example. In Section 12.4 we saw that

abstract multiplication is optimal. In fact, it is also complete:

αa(D1)*̂αa(D2) ⊑ αa(D1 ·D2)

for any D1, D2 ⊆ Z. This tells us that the analysis, perhaps surprisingly, never
loses any precision at multiplications.

For abstract addition, the situation is different, as shown in the next exercise.

Exercise 12.43: Abstract addition in sign analysis is not complete. Give an
example of two sets D1, D2 ⊆ Zwhere αa(D1)+̂αa(D2) ̸⊑ αa(D1 +D2). (We
here overload the + operator to work on sets of integers, like we did earlier
for multiplication.)

Is it possible to change the definition of abstract addition to make it sound
and complete (without changing the analysis lattice)?

8These observations show that we could in principle have chosen define the concept of complete-
ness using the concretization function γ instead of using the abstraction function α, but that would
have been much less useful.
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Exercise 12.44: For which of the operators -, /, >, and == is sign analysis
complete? What about input?

Notice that least upper bound in an analysis lattice L2 is always a sound
and complete abstraction of least upper bound in the corresponding collecting
semantics lattice L1 whenever there is a Galois connection between L1 and L2:

α
(⊔

A
)
=

⊔
a∈A

α(a)where A ⊆ L1

(This result follows directly from Exercise 12.18.) Intuitively this means, perhaps
surprisingly, that joining abstract information, for example when the branches
merge after an if statement, is never to blame for precision losses.

Exercise 12.45: In sign analysis, is the analysis constraint function for assign-
ments afX=E a complete abstraction of the corresponding semantic constraint
function cfX=E, given that E is an expression for which eval is complete?

For abstractions that are sound, completeness implies optimality (but not
vice versa, cf. exercises 12.36 and 12.43):

Exercise 12.46: Prove that if ag is sound and complete with respect to cg , it is
also optimal.

We have seen in Section 12.4 that for any Galois connection, there exists an
optimal (albeit often non-computable) abstraction of every concrete operation.
The same does not hold for soundness and completeness, as shown in the
following exercise.

Exercise 12.47: Prove that there exists a sound and complete abstraction ag
of a given concrete operation cg if and only if the optimal abstraction of cg is
sound and complete.

(We have seen examples of abstractions that are optimal but not sound and
complete, so this result implies that sound and complete abstractions do not
always exist.)

The following exercise provides a “soundness and completeness theorem”,
as a variant of the soundness theorem from page 180.

Exercise 12.48: Prove that if af is sound and complete with respect to cf then
α({[P ]}) = [[P ]], where cf is the semantic constraint function and af is the
analysis constraint function for a given program P , and α is the abstraction
function.

This theorem relies on the fact that sound and complete abstractions are
closed under composition, unlike optimal abstractions, as seen in the following
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exercise.

Exercise 12.49:
(a) Prove that if af is sound and complete with respect to cf then af ◦ af is

sound and complete with respect to cf ◦ cf . (Hint: see your solution to
Exercise 12.48.)

(b) Prove that the following statement does not hold in general: If af is
the optimal abstraction of cf then af ◦ af is the optimal abstraction of
cf ◦ cf . (Hint: consider the example program on page 185.)

Since [[P ]] =
⊔

i≥0 af
i(⊥) by the fixed-point theorem, part (b) of this result

shows that even when the analysis constraint af for a given program P is
the most precise possible (relative to the chosen analysis lattice), the analysis
result [[P ]] may not be the most precise possible (that can be expressed in the
analysis lattice). In contrast, part (a) is the central property in the proof of
the soundness and completeness theorem in Exercise 12.48.

Exercise 12.50: Which of the abstractions used in interval analysis (Section 6.1)
are complete? In particular, is abstract addition complete?

Abstractions that are incomplete may be complete in some situations; for
example, abstract addition in sign analysis is not complete in general (Exer-
cise 12.43), but it is complete in situations where, for example, both arguments
are positive values. For this reason, even though few analyses are sound and
complete for all programs, many analyses are sound and complete for some
programs or program fragments.

Exercise 12.51: Prove that abstract addition in sign analysis is complete if
both arguments are positive values. That is, show that αa(D1)+̂αa(D2) ⊑
αa(D1 +D2) for all D1, D2 ⊆ {1, 2, 3, . . . }.

There are not many programs for which our simple sign analysis is complete
and gives a nontrivial analysis result, so to be able to demonstrate how these
observations may be useful, let us modify the analysis to use the following
slightly different lattice instead of the usual Sign lattice from Section 5.1.

0- 0+

⊤

0

⊥

The meaning of the elements is expressed by this concretization function γa:
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γa(s) =



∅ if s = ⊥
{0} if s = 0
{0, 1, 2, 3, . . . } if s = 0+
{0,−1,−2,−3, . . . } if s = 0-
Z if s = ⊤

From Exercise 12.22 we know that an abstraction function αa exists such that αa
and γa form a Galois connection.

Exercise 12.52: Give a definition of eval that is optimal for expressions of the
form t * twhere t is any program variable (recall Exercise 12.37).

The remaining abstract operators can be defined similarly, and the rest of
the eval function and other analysis constraints can be reused from the ordinary
sign analysis.

The modified sign analysis concludes that output is 0+ for the following
small program:

x1 = input;

x2 = input;

y1 = x1 * x1;

y2 = x2 * x2;

output y1 + y2;

Exercise 12.53: Explain why the modified sign analysis is sound and complete
for this program.

Assume the analysis is built to raise an alarm if the output of the analyzed
program is a negative value for some input. In this case, it will not raise an
alarm for this program, and because we know the analysis is sound (over-
approximating all possible behaviors of the program), this must be the correct
result. Now assume instead that the analysis is built to raise an alarm if the
output of the analyzed program is a positive value for some input. In this case,
it does raise an alarm, and because we know the analysis is complete for this
program (though not for all programs), this is again the correct result – there
must exist an execution of the program that outputs a positive value; we can
trust that the alarm is not a false positive.

Exercise 12.54: Design a relational sign analysis that is sound and complete
for the three-line program from page 185.

Exercises 12.50 and 12.54 might suggest that increasing analysis precision
generally makes an analysis complete for more programs, but that is not the
case: The trivial analysis that uses a one-element analysis lattice is sound and
complete for all programs, but it is obviously useless because its abstraction
discards all information about any analyzed program.
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For further discussion about the notion of completeness, see Giacobazzi et
al. [GRS00, GLR15].

12.6 Trace Semantics

The TIP semantics presented in Section 12.1 is called a reachable states collecting
semantics, because it for each program point collects the set of states that are
possible when program execution reaches that point for some input. As we
have seen, this precisely captures the meaning of TIP programs in a way that
allows us to prove soundness of, for example, sign analysis. For other analyses,
however, the reachable states collecting semantics is insufficient because it does
not capture all the information about how TIP programs execute. As a trivial
example, for the program

main(x) {

return x;

}

the reachable states collecting semantics will only tell us that the set of states at
the function entry and the set of states at the function exit are both
{[x 7→ z] | z ∈ Z}, but it does not tell us that the return value is always the
same as the input value. In other words, the reachable states collecting seman-
tics does not provide information about how one state at a program point is
related to states at other program points. To capture such aspects of TIP program
execution, we can instead use a trace semantics that expresses the meaning of a
TIP program as the set of traces that can appear when the program runs. A trace
is a finite sequence of pairs of program points (represented as CFG nodes) and
states:9

Trace = (Node × ConcreteState)∗

We first define the semantics of single CFG nodes as functions from concrete
states to sets of concrete states (as concrete counterparts to the transfer functions
from Section 5.10): ctv : ConcreteState → P(ConcreteState).

For assignment nodes, ctv can be defined as follows:

ctX=E(ρ) = {ρ[X 7→ z] | z ∈ ceval(ρ,E)}

The semantics of variable declaration nodes can be defined similarly. All other
kinds of nodes do not change the state:

ctv(ρ) = {ρ}

The trace semantics of a program P is a set of finite traces, written ⟨[P ]⟩ ∈
P(Trace). We can define ⟨[P ]⟩ as the set of finite traces that start at the program
entry point and in each step proceed according to the CFG. (We do not require

9For a setX , the Kleene star operationX∗ denotes the set of all finite sequences of elements from
X , including the empty sequence.
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that the traces reach the program exit.) More formally, we define ⟨[P ]⟩ as the
least solution to the following two constraints (similarly to how we defined [[P ]]
and {[P ]} earlier):

(entry, []) ∈ ⟨[P ]⟩

π · (v, ρ) ∈ ⟨[P ]⟩ ∧ v′ ∈ csucc(ρ, v) ∧ ρ′ ∈ ctv′(ρ) =⇒ π · (v, ρ) · (v′, ρ′) ∈ ⟨[P ]⟩

The first constraint says that the program entry point is always reachable in the
empty state. The second constraint says that if the program has a trace that ends
at node v in state ρ such that v′ is a possible successor node and ρ′ is a state we
may get if executing v′ from state ρ, then the trace that is extended with the extra
pair (v′, ρ′) is also possible.

As an example, if P is the trivial program above, we have

⟨[P ]⟩ = {(entry , [x 7→ 0]) · (return x, [x 7→ 0]) · (exit , [x 7→ 0]),

(entry , [x 7→ 1]) · (return x, [x 7→ 1]) · (exit , [x 7→ 1]),

. . . }

which contains the information that the value of x is the same at the entry and
the exit, in any execution.

Exercise 12.55: Describe the trace semantics of the program from page 164.

Exercise 12.56: Explain why it makes sense to define the trace semantics as
the least solution to the constraints. (Hint: see the discussion for the reachable
states collecting semantics on page 167.)

Interestingly, the relation between the reachable states collecting semantics
and the trace semantics can be expressed as a Galois connection induced by an
abstraction function

αt : P(Trace) →
(
P(ConcreteState)

)n
defined by

αt(T ) = (R1, . . . , Rn)

where Ri = {ρ | ··· ·(vi, ρ) · ··· ∈ T} for each i = 1, . . . , n.

Intuitively, given a set of traces, αt simply extracts the set of reachable states for
each CFG node.

The setP(Trace) forms a powerset lattice, andαt is a complete joinmorphism,
so by Exercise 12.21 we know that a concretization function γt exists such that
αt and γt form a Galois connection.

Exercise 12.57: Show that αt (as defined above) is indeed a complete join
morphism.
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The existence of this Galois connection shows that the domain of the reach-
able states collecting semantics is in some sense an abstraction of the domain of
the trace semantics.

The following exercise shows that composition of Galois connections leads
to new Galois connections.

Exercise 12.58: Let α1 : L1 → L2, γ1 : L2 → L1, α2 : L2 → L3, and γ2 : L3 →
L2. Assume both (α1, γ1) and (α2, γ2) are Galois connections. Prove that
(α2 ◦ α1, γ1 ◦ γ2) is then also a Galois connection.

In Section 12.2 we have established a Galois connection between the domain(
P(ConcreteState)

)n of the reachable states collecting semantics and the do-
main Staten of the sign analysis, and we have now also established a Galois
connection between the domain P(Trace) of the trace semantics and the domain(
P(ConcreteState)

)n. Applying the result from Exercise 12.58 then gives us a
Galois connection between P(Trace) and Staten, which can be illustrated like
this:

P(Trace)
(
P(ConcreteState)

)n
Staten

αt αc

αc ◦ αt

γt γc

γt ◦ γc

Exercise 12.59: Prove that the reachable states collecting semantics is sound
with respect to the trace semantics. (Even though the collecting semantics is
not a computable analysis, we can still apply the notion of soundness and the
proof techniques from Section 12.3.)

To demonstrate the usefulness of trace semantics, let us consider how to
prove soundness of the reaching definitions analysis from Section 5.7. Recall
that an assignment X = E (called a definition of X) is reaching a program point v
if in some execution of the program, v is reached, and the variable X was last
assigned to at that assignment.

As a start, we define more formally what is meant by the set of reaching
definitions at a given program point. We do this by first defining an instru-
mented trace semantics that extends the information in the traces with maps
from variables to where the variables were last assigned to:

TraceRD = (Node × ConcreteState × ReachingDef )∗
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ReachingDef = Var ↪→ Node

Here, we have added a third component, a map from variables to CFG nodes, to
each element of the traces. Define ⟨[P ]⟩RD as the least solution to the following
two constraints, similarly to how we defined the ordinary trace semantics ⟨[P ]⟩
earlier, but capturing the reaching definitions information:

(entry, [], []) ∈ ⟨[P ]⟩RD

π · (v, ρ, δ) ∈ ⟨[P ]⟩RD ∧ v′ ∈ csucc(ρ, v) ∧ ρ′ ∈ ctv′(ρ) =⇒
π · (v, ρ, δ) · (v′, ρ′, δ′) ∈ ⟨[P ]⟩RD

where

δ′ =

{
δ[X 7→ v′] if v′ is an assignment X = E
δ otherwise

In each element of the traces, the first two components are exactly as before.
The reaching definitions map in the third component is initially empty and is
updated whenever an assignment is encountered.

We also define an abstraction functionαRD : P(TraceRD) → (P(Node))n that
extracts the sets of semantically reaching definitions from a set of instrumented
traces for a program with n program points:

αRD(T ) = (R1, . . . , Rn)

where

Ri = {w | · · · · (vi, ρ, δ) · · · · ∈ T where δ(X ) = w for some ρ, δ,X }

for i = 1, . . . , n. Intuitively, when execution is at a program point vi, the δ
function contains the definitions that reach vi.

We can now state formally what it means for the reaching definitions analysis
to be sound for a program P :

αRD(⟨[P ]⟩RD) ⊑ [[P ]]RD

where [[P ]]RD denotes the reaching definitions analysis result for P .

Exercise 12.60: Describe ⟨[P ]⟩RD and [[P ]]RD for P being the example program
from Section 5.7.

Exercise 12.61: With this instrumented trace semantics, use the approach from
Section 12.3 to prove that the reaching definitions analysis from Section 5.7 is
sound.

Reasoning about other analyses generally requires other forms of instru-
mented semantics that capture the semantic properties of interest.
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Exercise 12.62: Use the approach from Section 12.3 and an appropriate in-
strumented trace semantics to prove that the available expressions analysis
from Section 5.5 is sound. (This is more tricky than Exercise 12.61, because
available expressions analysis is a “must” analysis!)

Exercise 12.63: Use the approach from Section 12.3 and an appropriate in-
strumented trace semantics to prove that the live variables analysis from
Section 5.4 is sound. As part of this, you need to specify an appropriate
collecting semantics that formally captures what it means for a variable to
be live (see the informal definition in Section 5.4). (This is more tricky than
Exercise 12.61, because live variables analysis is a “backward” analysis!)

Exercise 12.64: Investigate for some of the abstractions used in analyses
presented in the preceding chapters (for example, live variables analysis
or reaching definitions analysis) whether or not they are optimal and/or
complete.

Exercise 12.65: Show that there exists a Galois connection between the instru-
mented trace semantics for reaching definitions αRD(⟨[P ]⟩RD) and the ordinary
trace semantics α(⟨[P ]⟩RD).
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