
Anders Møller

Computer Science, Aarhus University

Static Program Analysis
Part 7 – interprocedural analysis

https://cs.au.dk/~amoeller/spa/

https://cs.au.dk/~amoeller/spa/

Interprocedural analysis

• Analyzing the body of a single function:

– intraprocedural analysis

• Analyzing the whole program with function calls:

– interprocedural analysis

• For now, we consider TIP without functions as
first-class values (so we only have direct calls)

• A naive approach:

– analyze each function in isolation

– be maximally pessimistic about results of function calls

– rarely sufficient precision…

2

CFG for whole programs

The idea:

• construct a CFG for each function

• then glue them together to reflect function calls
and returns

We need to take care of:

• parameter passing

• return values

• values of local variables across calls
(including recursive functions, so not enough to
assume unique variable names)

3

A simplifying assumption

• Assume that all function calls are of the form

• This can always be obtained by normalization

4

X = f(E1, ..., En);

Interprocedural CFGs (1/3)

Split each original call node

into two nodes:

5

X = f(E1, ..., En)

⬚ = f(E1, ..., En)

X = ⬚

the “call node”

the “after-call node”

a special edge that
connects the call node
with its after-call node

Interprocedural CFGs (2/3)

Change each return node

into an assignment:

(where result is a fresh variable)

6

return E

result = E

Interprocedural CFGs (3/3)

Add call edges and return edges:

7

⬚ = f(E1, ..., En)

result = E

function g(a1, ..., am)
function f(b1, ..., bn)

X = ⬚

Constraints

• For call/entry nodes:

– be careful to model evaluation of all the actual parameters
before binding them to the formal parameter names
(otherwise, it may fail for recursive functions)

• For after-call/exit nodes:

– like an assignment: X = result

– but also restore local variables from before the call
using the call↷after-call edge

• The details depend on the specific analysis…
8

Example: interprocedural sign analysis

• Recall the intraprocedural sign analysis…

• Lattice for abstract values:

• Lattice for abstract states:
Var → Sign

9

⊤

+ - 0

⊥

Sign =

Example: interprocedural sign analysis

• Constraint for entry node v of function f(b1,..., bn):

⟦v⟧ = ⨆ ⊥[b1→eval(⟦w⟧,E1), ..., bn→eval(⟦w⟧,En)]

• Constraint for after-call node v labeled X = ⬚,
with call node v’:

 ⟦v⟧ = ⟦v’⟧[X→⟦w⟧(result)]

(Recall: no global variables, no heap,
and no higher-order functions)

10

wpred(v)

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

where wpred(v)

w w

where Ei is i’th argument at ww

1) ⟦v⟧ = tv(⨆ ⟦w⟧)

2) wsucc(v): tv(⟦v⟧) ⊑ ⟦w⟧

– recall ”solving inequations”
– may require fewer join operations
 if there are many CFG edges
– more suitable for interprocedural flow

Alternative formulations

11

wpred(v)

w1 … wn

tv
v

w1 … wn

tv
v

x1 = ⊥; ... xn = ⊥

W = {v1, ..., vn}

while (W) {

 vi = W.removeNext()

 y = fi(x1, ..., xn)

 if (yxi) {

 for (vj dep(vi)) {

 W.add(vj)

}

 xi = y

 }

}

The worklist algorithm
(original version)

12

w1 … wn

tv
v

x1 = ⊥; ... xn = ⊥

W = {v1, ..., vn}

while (W) {

 vi = W.removeNext()

 y = ti(xi)

for (vj dep(vi)) {

propagate(y,vj)

 }

}

The worklist algorithm
(alternative version)

13

propagate(y,vj) {

z = xj ⊔ y

 if (zxj) {

 xj = z
 W.add(vj)

 }

}

w1 … wn

tv
v

Implementation: WorklistFixpointPropagationSolver

Agenda

• Interprocedural analysis

• Context-sensitive
interprocedural analysis

14

Motivating example

15

f(z) {

 return z*42;

}

g() {

 var x,y;

 x = f(0);

 y = f(87);

 return x + y;

}

Our current analysis says “⊤”

What is the sign of the return value of g?

⬚ = f(E1, ..., En) ⬚ = f(E’1, ..., E’n)

X’ = ⬚X = ⬚

Interprocedurally invalid paths

16

Function cloning
(alternatively, function inlining)

• Clone functions such that each function has
only one callee

• Can avoid interprocedurally invalid paths ☺

• For high nesting depths, gives exponential blow-up

• Doesn’t work on (mutually) recursive functions

• Use heuristics to determine when to apply
(trade-off between CFG size and precision)

17

Example, with cloning

18

f1(z1) {

 return z1*42;

}

f2(z2) {

 return z2*42;

}

g() {

 var x,y;

 x = f1(0);

 y = f2(87);

 return x + y;

}

What is the sign of the return value of g?

Context sensitive analysis
• Function cloning provides a kind of context sensitivity

(also called polyvariant analysis)

• Instead of physically copying the function CFGs,
do it logically

• Replace the lattice for abstract states, State, by

Context → lift(State)

where Context is a set of call contexts

– the contexts are abstractions of the state at function entry

– Context must be finite to ensure finite height of the lattice

– the bottom element of lift(State) represents
“unreachable” contexts

• Different strategies for choosing the set Context…
19

Constraints for CFG nodes that do not
involve function calls and returns

Easily adjusted to the new lattice Context → lift(State)

Example if v is an assignment node x = E in sign analysis:

⟦ v ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]

becomes

⟦ v ⟧(c) =

and JOIN(v) = ⨆ ⟦w⟧

becomes JOIN(v,c) = ⨆ ⟦w⟧(c)
20

wpred(v)

wpred(v)

s[x ↦ eval(s,E)] if s = JOIN(v,c) ∈ State

unreachable if JOIN(v,c) = unreachable

One-level cloning

• Let c1,…,cn be the call nodes in the program

• Define Context={c1,…,cn} {ε}

– each call node now defines its own “call context”
(using ε to represent the call context at the main function)

– the context is then like the return address of the top-most
stack frame in the call stack

• Same effect as one-level cloning, but without actually
copying the function CFGs

• Usually straightforward to generalize the constraints
for a context insensitive analysis to this lattice

• (Example: context-sensitive sign analysis – later…)
21

The call string approach

• Let c1,…,cn be the call nodes in the program

• Define Context as the set of strings over {c1,…,cn}
of length k

– such a string represents the top-most k call locations
on the call stack

– the empty string ε again represents the initial call context
at the main function

• For k=1 this amounts to one-level cloning

22

Implementation: CallStringSignAnalysis

Example:
interprocedural sign analysis with call strings (k=1)

23

f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

 return t2;

}

...

x = f(0); // c1

y = f(87); // c2

...

Lattice for abstract states: Context → lift(Var → Sign)
where Context={ε, c1, c2}

[ε ↦ unreachable,

c1 ↦ ⊥[z↦0, t1↦0, t2↦0],

c2 ↦ ⊥[z↦+, t1↦+, t2↦+]]

What is an example program
that requires k=2
to avoid loss of precision?

Context sensitivity with call strings
function entry nodes, for k=1

24

sw =
c’

w w

⟦v⟧(c) = ⨆ sw

wpred(v) ∧
c = w ∧

c’∈ Context

Constraint for entry node v of function f(b1,..., bn):
(if not ‘main’)

c’

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

⊥[b1→eval(⟦w⟧(c’),E1), ..., bn→eval(⟦w⟧(c’),En)] otherwise

unreachable if ⟦w⟧(c’) = unreachable

only consider
the call node w
that matches
the context c

Context sensitivity with call strings
after-call nodes, for k=1

25

⟦v⟧(c) =

Constraint for after-call node v labeled X = ⬚,
with call node v’ and exit node wpred(v):

if ⟦v’⟧(c) = unreachable ∨ ⟦w⟧(v’) = unreachable

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

v’

⟦v’⟧(c)[X→⟦w⟧(v’)(result)]
unreachable

otherwise

The functional approach

• The call string approach considers control flow

– but why distinguish between two different call sites if
their abstract states are the same?

• The functional approach instead considers data

• In the most general form, choose
Context = State

(requires State to be finite)

• Each element of the lattice State → lift(State)
is now a map m that provides an element m(x) from
State (or “unreachable”) for each possible x
where x describes the state at function entry

26

Example:
interprocedural sign analysis with the functional approach

27

f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

 return t2;

}

...

x = f(0);

y = f(87);

...

Lattice for abstract states: Context → lift(Var → Sign)
where Context = Var → Sign

[⊥[z↦0] ↦ ⊥[z↦0, t1↦0, t2↦0],

⊥[z↦+] ↦ ⊥[z↦+, t1↦+, t2↦+],

all other contexts ↦ unreachable]

Another example:
interprocedural sign analysis with the functional approach

28

Lattice for abstract states: Context → lift(Var → Sign)
where Context = Var → Sign

[⊥[z↦0] ↦ ⊥[z↦0, t1↦0, t2↦0],

⊥[z↦+] ↦ ⊥[z↦+, t1↦+, t2↦+],

all other contexts ↦ unreachable]

f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

 return t2;

}

g(a) {

return f(a);

}

...

x = g(0);

y = g(87);

...

The functional approach

• The lattice element for a function exit node is thus a
function summary that maps abstract function input to
abstract function output

• This can be exploited at call nodes!

• When entering a function with abstract state x:

– consider the function summary s for that function

– if s(x) already has been computed, use that to model the entire
function body, then proceed directly to the after-call node

• Avoids the problem with interprocedurally invalid paths!

• …but may be expensive if State is large

29Implementation: FunctionalSignAnalysis

Example:
interprocedural sign analysis with the functional approach

30

f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

 return t2;

}

...

x = f(0);

y = f(87);

z = f(42);

...

Lattice for abstract states: Context → lift(Var → Sign)
where Context = Var → Sign

[⊥[z↦0] ↦ ⊥[z↦0, t1↦0, t2↦0, result↦0],

⊥[z↦+] ↦ ⊥[z↦+, t1↦+, t2↦+, result↦+],

all other contexts ↦ unreachable]

At this call, we can reuse the already computed
exit abstract state of f for the context ⊥[z↦+]

The abstract state at the exit of f
can be used as a function summary

Context sensitivity with the
functional approach

function entry nodes

31

where sw is defined as beforec’

⟦v⟧(c) = ⨆ sw

wpred(v) ∧
c = sw ∧

c’∈ Context

Constraint for entry node v of function f(b1,..., bn):
(if not ‘main’)

c’

c’
⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w
only consider
the call node w
if the abstract state
from that node
matches the context c

Context sensitivity with the
functional approach

after-call nodes

32

Constraint for after-call node v labeled X = ⬚,
with call node v’ and exit node wpred(v):

c

c

⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

v

w

v’

⟦v⟧(c) =
if ⟦v’⟧(c) = unreachable ∨ ⟦w⟧(sv’) = unreachable

⟦v’⟧(c)[X→⟦w⟧(sv’)(result)]
unreachable

otherwise

Choosing the right
context sensitivity strategy

• The call string approach is expensive for k>1

– solution: choose k adaptively for each call site

• The functional approach is expensive if State is large

– solution: only consider selected parts of the abstract state as
context, for example abstract information about the
function parameter values (called parameter sensitivity),
or, in object-oriented languages, abstract information about
the receiver object ‘this’ (called object sensitivity or
type sensitivity)

33

	Slide 1
	Slide 2: Interprocedural analysis
	Slide 3: CFG for whole programs
	Slide 4: A simplifying assumption
	Slide 5: Interprocedural CFGs (1/3)
	Slide 6: Interprocedural CFGs (2/3)
	Slide 7: Interprocedural CFGs (3/3)
	Slide 8: Constraints
	Slide 9: Example: interprocedural sign analysis
	Slide 10: Example: interprocedural sign analysis
	Slide 11: Alternative formulations
	Slide 12: The worklist algorithm (original version)
	Slide 13: The worklist algorithm (alternative version)
	Slide 14: Agenda
	Slide 15: Motivating example
	Slide 16: Interprocedurally invalid paths
	Slide 17: Function cloning (alternatively, function inlining)
	Slide 18: Example, with cloning
	Slide 19: Context sensitive analysis
	Slide 20: Constraints for CFG nodes that do not involve function calls and returns
	Slide 21: One-level cloning
	Slide 22: The call string approach
	Slide 23: Example: interprocedural sign analysis with call strings (k=1)
	Slide 24: Context sensitivity with call strings function entry nodes, for k=1
	Slide 25: Context sensitivity with call strings after-call nodes, for k=1
	Slide 26: The functional approach
	Slide 27: Example: interprocedural sign analysis with the functional approach
	Slide 28: Another example: interprocedural sign analysis with the functional approach
	Slide 29: The functional approach
	Slide 30: Example: interprocedural sign analysis with the functional approach
	Slide 31: Context sensitivity with the functional approach function entry nodes
	Slide 32: Context sensitivity with the functional approach after-call nodes
	Slide 33: Choosing the right context sensitivity strategy

