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Information in conditions

= 1nput;

Z = Z+X;

it (7>y) {y = y+1; }
X = X-1;

N

The interval analysis (with widening) concludes:
X = [_OO!OO]; Y= [O!OO]; L= [_OO!OO]



Modeling conditions

Add artifical “assert” statements:

The statement assert (E) models that
E is true in the current program state

e it causes a runtime error otherwise

* but we only insert it where the condition will
always be true



Encoding conditions

X = 1nput;
y = 0;
z = 0;

while (x>0) {
assert(>0);
Z = Z+X;
if (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }
X = X-1;
}
assert(!1 (x>0));

| preserves semantics since asserts are guarded by conditions

(Alternatively, we could add dataflow constraints on the CFG edges)



Constraints for assert

A trivial but sound constraint:
[v] = JOIN(v)
A non-trivial constraint for assert (x>E):
[v] = JOIN(v)[x—>gt(JOIN(v)(x),eval(JOIN(v),E))]
where
gt([l;,h,1,[1,,h,1)=1[1;,h;] 1 [, 0]

Similar constraints are defined for the dual cases
More tricky to define for other conditions...



Exploiting conditions

input;

y = 0;

Z 0;

while (x>0) {
assert(x>0);
Z = Z+X;
1t (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }
X = X-1;

}

assert(! (x>0));

~

The interval analysis now concludes:
X = [_OO!O]; Y= [0517]; Z= [O!OO]

X



Branch correlations

* With assert we have a simple form of path sensitivity
(sometimes called control sensitivity)

e Butitis insufficient to handle correlation of branches:

if (17 > x) { ... }
... // statements that do not change x
it (17 > x) { ... }



Open and closed files

* Built-in functions open() and close () on a file

* Requirements:
— never close a closed file

— never open an open file
open()

T~
=

close()

 We want a static analysis to check this...
(for simplicity, let us assume there is only one file)



A tricky example

1f (condition) {
open();

flag = 1;

} else {
flag = 0;

}

if (flag) {
close();

}




The naive analysis (1/2)

e The lattice models the status of the file:

{open,closed}
L = (P({open, closed}), ©) p/\

{open} {cTosed}

~_

%,
e For every CFG node, v, we have a constraint variable
[v] denoting the status after v

* JOIN(v) = U [w]

wepred(v)
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The naive analysis (2/2)

Constraints for interesting statements:
[entry] = {closed}

[open()] ={open}
[close()] ={closed}

if (condition) {

For all other CFG nodes: open() ;
_ flag = 1;

[v] = JOIN(v) T
flag = 0;

Before the close () statement !}
the analysis concludes that the if (Flag) {

file is {open,closed} ® , close(Q);

11



The slightly less naive analysis

We obviously need to keep track of the T1ag variable
Our second attempt is the lattice:

L = (P({open, closed})xP({f1ag=0,f1ag=0}), cx)

Additionally, we add assert(...) if (corg;lition) {
open();

to model conditionals flag = 1;
} else {
flag = O;
Even so, we still only know that the '}
file is {open,closed} and that if (flag) {

flagis {flag=0,f1ag=0} ® , A
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Enhanced program

if (condition) {
assert(condition);
open();
flag = 1;

} else {
assert(!condition);
flag = 0;

}

1f (flag) {
assert(flag);
close();

} else {
assert(!flag);
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Relational analysis

 We need an analysis that keeps track of relations
between variables

 One approach is to maintain multiple abstract states
per program point, one for each path context

* For the file example we need the lattice:

L = Path — P({open,closed})

(isomorphic to L = P(Pathx{open,closed}))

where Path = {f1ag=0,f1ag=0} is the set of
path contexts
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Relational constraints (1/2)

* For the file statements:
[entry] = Ap.{c l0osed}
[open()] =Ap.{open}
[closed()] =Ap.{closed} infeasible”

 For flag assighments: \
[flag = O] =[f] ag=0—>pLEJPJOIN(v)(p), flag=0—J]

[flag = n]=[f1 ag¢0—>pUPJOIN(v)(p), flag=0—]
where n is a non-0
I.F'I ag — EI _ Kq pUPJOIN(V)(p) for any other £ constant number
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Relational constraints (2/2)

* For assert statements:

[assert(flag)]-=
[f1ag=0—JOIN(v)(f1ag=0), f1lag=0—>J]

[assert(!flag)]-=
[fT1ag=0—JOIN(v)(fTag=0), f1agz0—>J]

e For all other CFG nodes:

[v] = JOIN(v) = Ap. U [w](p)

wepred(v)
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[open()] =
[flag = 1

[flag = O
[...]=2p.(

[close()]

Generated constraints

[entry] = Ap.{Cc10sed}
[condition] = [entry]
[assert(condition)]=[condition]

Ap.{open}

] =[f1ag=z0—U [open(O](p), f1ag=0—>J]
[assert(!condition)]=[condition]
[ =[f1ag=0—U [assert(!condition)](p), flagz0—>J]

[flag] =...
[assert(flag)] = [flagz0—>[flag](f1ag=0), f1ag=0—->]
= Ap.{closed}
[assert(!flag)]=[flag=0—[f1ag](flag=0), f1lag#0—J]
[exit] = Ap.([cTose()](p) U [assert(!f1ag)](p))

[flag = 1](p) U [flag = O](p))
I

17



Minimal solution

[entry] {closed} {closed}
[condition] {closed} {closed}
[assert(condition)] {closed} {closed}
[open()] {open} {open}
[flag = 1] %) {open}
[assert(!condition)] {closed} {closed}
[flag = 0] {closed} %)

M...] {closed} {open}
[flag] {closed} {open}
[assert(flag)] <j %) {open}
[close()] {closed} {closed}
[assert(!flag)] {closed} %)

[exit] {closed} {closed}

We now know the file is open before close ()
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Challenges

* The static analysis designer must choose the set Path
— often as boolean combinations of predicates from conditionals

— iterative refinement (e.g. counter-example guided
abstraction refinement) can be used for gradually
finding relevant predicates

* Exponential blow-up:
— for k predicates, we have 2* different contexts
— redundancy often cuts this down

e Reasoning about assert:
— how to update the lattice elements with sufficient precision?
— possibly involves heavy-weight theorem proving
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Improvements

* Run auxiliary analyses first, for example:
— constant propagation
— sign analysis

will help in handling ¥1ag assignments

 Dead code propagation, change
[open()] = Ap.{open}
into the still sound but more precise
[open ()] = Ap.if JOIN(v)(p)= then & else {open}
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