
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 5 – widening and narrowing

https://cs.au.dk/~amoeller/spa/

https://cs.au.dk/~amoeller/spa/

Interval analysis

• Compute upper and lower bounds for integers

• Possible applications:

– array bounds checking

– integer representation

– …

• Lattice of intervals:

 Interval = lift({ [l,h] | l,hN  l  h })

 where

 N = {-, ..., -2, -1, 0, 1, 2, ..., }

 and intervals are ordered by inclusion:

 [l1,h1]⊑[l2,h2] iff l2  l1  h1  h2
2

The interval lattice

[-,]

[0,0] [1,1] [2,2][-1,-1][-2,-2]

[0,1] [1,2][-1,0][-2,-1]

[2,]

[1,]

[0,]

[-,-2]

[-,-1]

[-,0]

[-2,0] [-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

3

⊥
bottom element here interpreted as “not an integer”

Interval analysis lattice

• The total lattice for a program point is

 Var → Interval

 that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist
with only the entry node, use the lattice lift(Var → Interval)
– bottom value of lift(Var → Interval) represents “unreachable program point”

– bottom value of Var → Interval represents “maybe reachable,
but all variables are non-integers”

• This lattice has infinite height, since the chain

 [0,0] ⊑ [0,1] ⊑ [0,2] ⊑ [0,3] ⊑ [0,4] ...

 occurs in Interval
4

Interval constraints

• For assignments:

 ⟦ x = E ⟧ = JOIN(v)[x→eval(JOIN(v),E)]

• For all other nodes:

 ⟦v⟧ = JOIN(v)

where JOIN(v) = ⨆⟦w⟧
wpred(v)

5

Evaluating intervals

• The eval function is an abstract evaluation:

– eval(, x) = (x)

– eval(, intconst) = [intconst,intconst]

– eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• Abstract operators:

– op([l1,h1],[l2,h2]) =

 [min x op y, max x op y]
x[l1,h1], y[l2,h2] x[l1,h1], y[l2,h2]

6

not trivial to implement!

Fixed-point problems

• The lattice has infinite height,
so the fixed-point algorithm does not work 

• The sequence of approximants

 fi(⊥) for i = 0, 1, ...

 is not guaranteed to converge

• (Exercise: give an example of a program where this happens)

• Restricting to 32 bit integers is not a practical solution

• Widening gives a useful solution…
7

Does the least fixed point exist?

• The lattice has infinite height,
so Kleene’s fixed-point theorem does not apply 

• Tarski’s fixed-point theorem:

8

In a complete lattice L, every monotone function
f: L → L has a unique least fixed point given by

lfp(f) = ⨅{ xL | f(x) ⊑ x}

(Proof?)

Widening

• Introduce a widening function : L → L so that

 (f)i(⊥) for i = 0, 1, ...

 converges on a fixed point that is a safe
approximation of each fi(⊥)

• i.e. the function  coarsens the information

9

Turbo charging the iterations

f

10



Simple widening for intervals

• The function : L → L is defined pointwise on
 L = (Var → Interval)n

• Parameterized with a fixed finite set B

– must contain - and  (to retain the ⊤ element)

– typically seeded with all integer constants occurring in the
given program

• Idea: Find the nearest enclosing allowed interval

• On single elements from Interval:

 ([a,b]) = [max{iB|ia}, min{iB|bi}]

(⊥) = ⊥

11- -87 5 117

[1,42]

([1,42])

Divergence in action

[x → ⊥, y → ⊥]
[x → [8,8], y → [0,1]]
[x → [8,8], y → [0,2]]
[x → [8,8], y → [0,3]]
...

12

y = 0;

x = 7;

x = x+1;

while (input) {

 x = 7;

 x = x+1;

 y = y+1;

}

Simple widening in action

[x → ⊥, y → ⊥]
[x → [7,], y → [0,1]]
[x → [7,], y → [0,7]]
[x → [7,], y → [0,]]

13

y = 0;

x = 7;

x = x+1;

while (input) {

 x = 7;

 x = x+1;

 y = y+1;

}

B = {-, 0, 1, 7, }

Correctness of simple widening

• This form of widening works when:

–  is an extensive and monotone function, and

– the sub-lattice (L) has finite height

• f is monotone and (L) has finite height,
so (f)i(⊥) for i = 0, 1, ... converges

• Let f = (f)k(⊥) where (f)k(⊥) = (f)k+1(⊥)

• lfp(f) ⊑ f follows from Tarski’s fixed-point theorem,
i.e., f is a safe approximation of lfp(f)

14

Narrowing

• Widening generally shoots over the target

• Narrowing may improve the result by applying f

• We have f(f) ⊑ f so applying f again may
improve the result!

• And we also have lfp(f) ⊑ f(f) so it remains safe!

• This can be iterated arbitrarily many times

– may diverge, but safe to stop anytime

15

Backing up

f 

16

Narrowing in action

[x → ⊥, y → ⊥]
[x → [7,], y → [0,1]]
[x → [7,], y → [0,7]]
[x → [7,], y → [0,]]
...
[x → [8,8], y → [0,]]

B = {-, 0, 1, 7, }

17

y = 0;

x = 7;

x = x+1;

while (input) {

 x = 7;

 x = x+1;

 y = y+1;

}

Correctness of (repeated) narrowing

• f(f) ⊑ (f(f)) = (f)(f) = f since  is extensive

– by monotonicity of f and induction we also have, for all i:

 fi+1(f) ⊑ fi(f) ⊑ f
– i.e. fi+1(f) is at least as precise as fi(f)

• f(f) ⊑ f so f(f(f)) ⊑ f(f) by monotonicity of f,
hence lfp(f) ⊑ f(f) by Tarski’s fixed-point theorem

– by induction we also have, for all i:

 lfp(f) ⊑ fi(f)

– i.e. fi(f) is a safe approximation of lfp(f)

18

Claim: lfp(f) ⊑ ... ⊑ fi(f) ⊑ ... ⊑ f(f) ⊑ f

Some observations

• The simple notion of widening is a bit naive…

• Widening happens at every interval and at every node

• There’s no need to widen intervals
that are not “unstable”

• There’s no need to widen
if there are no “cycles” in the dataflow

19

More powerful widening

• A widening is a function ∇: L  L →L that is extensive in
both arguments and satisfies the following property:

for all increasing chains z0 ⊑ z1 ⊑ …,
the sequence y0 = z0, …, yi+1 = yi ∇ zi+1 ,… converges
(i.e. stabilizes after a finite number of steps)

• Now replace the basic fixed point solver by computing
x0 = ⊥ and xi+1 = xi ∇ f(xi) until convergence

• Theorem: xk+1 = xk and lfp(f) ⊑ xk for some k

20
(Proof: similar to the correctness proof for simple widening)

More powerful widening
for interval analysis

Extrapolates unstable bounds to B:

⊥ ∇ y = y
x ∇ ⊥ = x
[a1,b1] ∇ [a2,b2] =

[if a1  a2 then a1 else max{iB|ia2},

if b2  b1 then b1 else min{iB|b2i}]

The ∇ operator on L is then defined pointwise down to
individual intervals

For the small example program, we get the same result as with simple widening

plus narrowing (but now without using narrowing)

21

Yet another improvement

• Divergence (e.g. in the interval analysis without
widening) can only appear in presence of recursive
dataflow constraint

• Sufficient to “break the cycles”, perform widening only
at, for example, loop heads in the CFG

22

Choosing the set B

• Defining the widening function based on constants
occurring in the given program may not work well

• (This example requires interprocedural and control-sensitive analysis)
23

f(x) { // ”McCarthy’s 91 function”

var r;

if (x > 100) {

r = x - 10;

} else {

r = f(f(x + 11));

}

return r;

}

https://en.wikipedia.org/wiki/McCarthy_91_function

	Slide 1
	Slide 2: Interval analysis
	Slide 3: The interval lattice
	Slide 4: Interval analysis lattice
	Slide 5: Interval constraints
	Slide 6: Evaluating intervals
	Slide 7: Fixed-point problems
	Slide 8: Does the least fixed point exist?
	Slide 9: Widening
	Slide 10: Turbo charging the iterations
	Slide 11: Simple widening for intervals
	Slide 12: Divergence in action
	Slide 13: Simple widening in action
	Slide 14: Correctness of simple widening
	Slide 15: Narrowing
	Slide 16: Backing up
	Slide 17: Narrowing in action
	Slide 18: Correctness of (repeated) narrowing
	Slide 19: Some observations
	Slide 20: More powerful widening
	Slide 21: More powerful widening for interval analysis
	Slide 22: Yet another improvement
	Slide 23: Choosing the set B

