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Interval analysis

• Compute upper and lower bounds for integers

• Possible applications: 

– array bounds checking

– integer representation

– …

• Lattice of intervals:

  Interval = lift({ [l,h] | l,hN  l  h })

 where

  N = {-, ..., -2, -1, 0, 1, 2, ..., }

 and intervals are ordered by inclusion:

  [l1,h1]⊑[l2,h2] iff l2  l1  h1  h2
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The interval lattice

[-,]

[0,0] [1,1] [2,2][-1,-1][-2,-2]

[0,1] [1,2][-1,0][-2,-1]

[2,]

[1,]

[0,]

[-,-2]

[-,-1]

[-,0]

[-2,0] [-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]
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⊥
bottom element here interpreted as “not an integer”



Interval analysis lattice

• The total lattice for a program point is

  Var → Interval

 that provides bounds for each (integer) variable

• If using the worklist solver that initializes the worklist 
with only the entry node, use the lattice lift(Var → Interval)
– bottom value of lift(Var → Interval) represents “unreachable program point”

– bottom value of Var → Interval represents “maybe reachable, 
but all variables are non-integers”

• This lattice has infinite height, since the chain

  [0,0] ⊑ [0,1] ⊑ [0,2] ⊑ [0,3] ⊑ [0,4] ...

 occurs in Interval
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Interval constraints

• For assignments:

  ⟦ x = E ⟧ = JOIN(v)[x→eval(JOIN(v),E)]

• For all other nodes:

  ⟦v⟧ = JOIN(v)

where JOIN(v) =  ⨆⟦w⟧
wpred(v)

5



Evaluating intervals

• The eval function is an abstract evaluation:

– eval(, x) = (x)

– eval(, intconst) = [intconst,intconst]

– eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• Abstract operators:

– op([l1,h1],[l2,h2]) =

   [ min       x op y,       max     x op y]
x[l1,h1], y[l2,h2] x[l1,h1], y[l2,h2]
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not trivial to implement!



Fixed-point problems

• The lattice has infinite height, 
so the fixed-point algorithm does not work 

• The sequence of approximants

  fi(⊥) for i = 0, 1, ...

 is not guaranteed to converge

• (Exercise: give an example of a program where this happens)

• Restricting to 32 bit integers is not a practical solution

• Widening gives a useful solution…
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Does the least fixed point exist?

• The lattice has infinite height, 
so Kleene’s fixed-point theorem does not apply 

• Tarski’s fixed-point theorem:

8

In a complete lattice L, every monotone function  
f: L → L has a unique least fixed point given by

lfp(f) = ⨅{ xL | f(x) ⊑ x}

(Proof?)



Widening

• Introduce a widening function : L → L so that

  (f)i(⊥)  for i = 0, 1, ...

 converges on a fixed point that is a safe 
approximation of each fi(⊥)

• i.e. the function  coarsens the information
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Turbo charging the iterations

f
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



Simple widening for intervals

• The function : L → L is defined pointwise on 
 L = (Var → Interval)n

• Parameterized with a fixed finite set B

– must contain - and  (to retain the ⊤ element)

– typically seeded with all integer constants occurring in the 
given program

• Idea: Find the nearest enclosing allowed interval

• On single elements from Interval:

  ([a,b]) = [ max{iB|ia}, min{iB|bi} ]

(⊥) = ⊥

11- -87 5 117

[1,42]

([1,42])



Divergence in action

[x → ⊥, y → ⊥]
[x → [8,8], y → [0,1]]
[x → [8,8], y → [0,2]]
[x → [8,8], y → [0,3]]
...
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y = 0;

x = 7;

x = x+1;

while (input) {  

  x = 7;

  x = x+1;

  y = y+1;

}



Simple widening in action

[x → ⊥, y → ⊥]
[x → [7,], y → [0,1]]
[x → [7,], y → [0,7]]
[x → [7,], y → [0,]]
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y = 0;

x = 7;

x = x+1;

while (input) {  

  x = 7;

  x = x+1;

  y = y+1;

}

B = {-, 0, 1, 7, }



Correctness of simple widening

• This form of widening works when:

–  is an extensive and monotone function, and

– the sub-lattice (L) has finite height

• f is monotone and (L) has finite height,
so (f)i(⊥) for i = 0, 1, ... converges 

• Let f = (f)k(⊥) where (f)k(⊥) = (f)k+1(⊥) 

• lfp(f) ⊑ f follows from Tarski’s fixed-point theorem,
i.e., f is a safe approximation of lfp(f)
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Narrowing

• Widening generally shoots over the target

• Narrowing may improve the result by applying f

• We have f(f) ⊑ f so applying f again may 
improve the result!

• And we also have lfp(f) ⊑ f(f) so it remains safe!

• This can be iterated arbitrarily many times

– may diverge, but safe to stop anytime
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Backing up

f 
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Narrowing in action

[x → ⊥, y → ⊥]
[x → [7,], y → [0,1]]
[x → [7,], y → [0,7]]
[x → [7,], y → [0,]]
...
[x → [8,8], y → [0,]]

B = {-, 0, 1, 7, }
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y = 0;

x = 7;

x = x+1;

while (input) {  

  x = 7;

  x = x+1;

  y = y+1;

}



Correctness of (repeated) narrowing

• f(f) ⊑ (f(f)) = (f)(f) = f since  is extensive

– by monotonicity of f and induction we also have, for all i:

  fi+1(f) ⊑ fi(f) ⊑ f
– i.e. fi+1(f) is at least as precise as fi(f)

• f(f) ⊑ f so f(f(f)) ⊑ f(f) by monotonicity of f, 
hence lfp(f) ⊑ f(f) by Tarski’s fixed-point theorem

– by induction we also have, for all i:

   lfp(f) ⊑ fi(f) 

– i.e. fi(f) is a safe approximation of lfp(f)
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Claim: lfp(f) ⊑ ... ⊑ fi(f) ⊑ ... ⊑  f(f) ⊑ f



Some observations

• The simple notion of widening is a bit naive…

• Widening happens at every interval and at every node

• There’s no need to widen intervals 
that are not “unstable”

• There’s no need to widen 
if there are no “cycles” in the dataflow
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More powerful widening

• A widening is a function ∇: L  L →L that is extensive in 
both arguments and satisfies the following property:

for all increasing chains z0 ⊑ z1 ⊑ …,
the sequence y0 = z0, …, yi+1 = yi ∇ zi+1 ,… converges
(i.e. stabilizes after a finite number of steps)

• Now replace the basic fixed point solver by computing 
x0 = ⊥ and  xi+1 = xi ∇ f(xi)  until convergence

• Theorem:  xk+1 = xk and  lfp(f) ⊑ xk for some k
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(Proof: similar to the correctness proof for simple widening)



More powerful widening
for interval analysis

Extrapolates unstable bounds to B:

⊥ ∇ y = y
x ∇ ⊥ = x
[a1,b1] ∇ [a2,b2] = 

[if a1  a2 then a1 else max{iB|ia2},

if b2  b1 then b1 else min{iB|b2i}]

The ∇ operator on L is then defined pointwise down to 
individual intervals

For the small example program, we get the same result as with simple widening 

plus narrowing (but now without using narrowing)
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Yet another improvement

• Divergence (e.g. in the interval analysis without 
widening) can only appear in presence of recursive 
dataflow constraint

• Sufficient to “break the cycles”, perform widening only 
at, for example, loop heads in the CFG
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Choosing the set B

• Defining the widening function based on constants 
occurring in the given program may not work well

• (This example requires interprocedural and control-sensitive analysis)
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f(x) { // ”McCarthy’s 91 function”

var r;

if (x > 100) {

r = x - 10;

} else {

r = f(f(x + 11));

}

return r;

}

https://en.wikipedia.org/wiki/McCarthy_91_function
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