
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 3 – lattices and fixpoints

https://cs.au.dk/~amoeller/spa/

https://cs.au.dk/~amoeller/spa/

Flow-sensitivity

• Type checking is (usually) flow-insensitive:

– statements may be permuted without affecting typability

– constraints are naturally generated from AST nodes

• Other analyses must be flow-sensitive:

– the order of statements affects the results

– constraints are naturally generated from
control flow graph nodes

2

Sign analysis

• Determine the sign (+,-,0) of all expressions

• The Sign lattice:

• States are modeled by the map lattice Var → Sign

where Var is the set of variables in the program

⊤

+ - 0

3

⊥“not of type number”

(or, “unreachable code”)

“any number”

Implementation: TIP/src/tip/analysis/SignAnalysis.scala

Generating constraints

4

var a,b;

a = 42;

b = a + input;

a = a - b;

1

x1 = [a ↦⊤,b ↦⊤]

x2 = x1[a ↦ +]

x3 = x2[b ↦ x2(a)+⊤]

x4 = x3[a ↦ x3(a)-x3(b)]

var a,b

a = 42

b = a + input

a = a - b

1

2

3

4

2

3

4

Sign analysis constraints

• The variable ⟦v⟧ denotes a map that gives the sign value
for all variables at the program point after CFG node v

• For assignments:
 ⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]

• For variable declarations:
 ⟦ var x1, ..., xn ⟧ = JOIN(v)[x1 ↦⊤, ..., xn ↦⊤]

• For all other nodes:
 ⟦v⟧ = JOIN(v)

 where JOIN(v) = ⨆ ⟦w⟧
wpred(v)

5

combines information from predecessors

(explained later…)

Evaluating signs

• The eval function is an abstract evaluation:

– eval(,x) = (x)

– eval(,intconst) = sign(intconst)

– eval(, E1 op E2) = op(eval(,E1),eval(,E2))

• : Var → Sign is an abstract state

• The sign function gives the sign of an integer

• The op function is an abstract evaluation of the
given operator op

6

Abstract operators

+ ⊥ 0 - + ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 - + ⊤

- ⊥ - - ⊤ ⊤

+ ⊥ + ⊤ + ⊤

⊤ ⊥ ⊤ ⊤ ⊤ ⊤

- ⊥ 0 - + ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 + - ⊤

- ⊥ - ⊤ - ⊤

+ ⊥ + + ⊤ ⊤

⊤ ⊥ ⊤ ⊤ ⊤ ⊤

* ⊥ 0 - + ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 0 0 0

- ⊥ 0 + - ⊤

+ ⊥ 0 - + ⊤

⊤ ⊥ 0 ⊤ ⊤ ⊤

/ ⊥ 0 - + ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ ⊥ 0 0 ⊤

- ⊥ ⊥ ⊤ ⊤ ⊤

+ ⊥ ⊥ ⊤ ⊤ ⊤

⊤ ⊥ ⊥ ⊤ ⊤ ⊤

> ⊥ 0 - + ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 + 0 ⊤

- ⊥ 0 ⊤ 0 ⊤

+ ⊥ + + ⊤ ⊤

⊤ ⊥ ⊤ ⊤ ⊤ ⊤

== ⊥ 0 - + ⊤

⊥

0

-

+

⊤

7

== ⊥ 0 - + ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ + 0 0 ⊤

- ⊥ 0 ⊤ 0 ⊤

+ ⊥ 0 0 ⊤ ⊤

⊤ ⊥ ⊤ ⊤ ⊤ ⊤

(assuming the subset of TIP with only integer values)

Increasing precision

• Some loss of information:

– (2>0)==1 is analyzed as ⊤

– +/+ is analyzed as ⊤, since e.g. ½ is rounded down

• Use a richer lattice for better precision:

• Abstract operators are now 88 tables

⊤

+ 0 -

1

+0 -0

8

⊥

• Given a set S, a partial order ⊑ is a binary relation on S
that satisfies:

– reflexivity: xS: x ⊑ x

– transitivity: x,y,zS: x ⊑ y y ⊑ z x ⊑ z

– anti-symmetry: x,yS: x ⊑ y y ⊑ x x = y

• Can be illustrated by a Hasse diagram (if finite)

Partial orders

9

⊤

+ - 0

⊥

Upper and lower bounds

• Let X S be a subset

• We say that yS is an upper bound (X ⊑ y) when

 xX: x ⊑ y

• We say that yS is a lower bound (y ⊑ X) when

 xX: y ⊑ x

• A least upper bound ⨆X is defined by

 X ⊑ ⨆X yS: X ⊑ y ⨆X ⊑ y

• A greatest lower bound ⨅X is defined by

 ⨅X ⊑ X yS: y ⊑ X y ⊑ ⨅X

10

Lattices

• A lattice is a partial order where
x⊔y and x⊓y exist for all x,yS (x⊔y is notation for ⨆{x,y})

• A complete lattice is a partial order where
⨆X and ⨅X exist for all X S

• A complete lattice must have
– a unique largest element, ⊤ = ⨆S

– a unique smallest element, ⊥ = ⨅S

• A finite lattice is complete if ⊤ and ⊥ exist

11
Implementation: TIP/src/tip/lattices/

(exercise)

These partial orders are lattices

12

These partial orders are not lattices

13

The powerset lattice

• Every finite set A defines a complete lattice (P(A),)
where

– ⊥ =

– ⊤ = A

– x ⊔ y = x y

– x ⊓ y = x y {0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}

14

for A = {0,1,2,3}

Lattice height

• The height of a lattice is the length of the longest
path from ⊥ to ⊤

• The lattice (P(A),) has height |A|

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}

15

for A = {0,1,2,3}

Map lattice

• If A is a set and L is a complete lattice, then we obtain
a complete lattice called a map lattice:

 A → L = { [a1↦x1, a2↦x2, ...] | A={a1, a2, …} x1, x2 ,… L }

 ordered pointwise

• ⊔ and ⊓ can be computed pointwise

• height(A → L) = |A|height(L)

16

Example: A → L where

• A is the set of program variables

• L is the Sign lattice

Product lattice

• If L1, L2, ..., Ln are complete lattices,
then so is the product:

 L1L2 ... Ln = { (x1,x2,...,xn) | xi Li }

where ⊑ is defined pointwise

• Note that ⊔ and ⊓ can be computed pointwise

• height(L1L2 ... Ln) = height(L1)+ ... + height(Ln)

17

Example:
each Li is the map lattice A → L from the previous slide,
and n is the number of CFG nodes

Flat lattice

• If A is a set, then flat(A) is a complete lattice:

• height(flat(A)) = 2

18

a1 a2 ... an

⊥

⊤

Lift lattice

• If L is a complete lattice, then so is lift(L), which is:

• height(lift(L)) = height(L)+1

19

⊥

Sign analysis constraints, revisited

• The variable ⟦v⟧ denotes a map that gives the sign value
for all variables at the program point after CFG node v

• ⟦v⟧State where State = Var → Sign

• For assignments:

 ⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]

• For variable declarations:
 ⟦ var x1, ..., xn ⟧ = JOIN(v)[x1 ↦⊤, ..., xn ↦⊤]

• For all other nodes:
 ⟦v⟧ = JOIN(v)

 where JOIN(v) = ⨆ ⟦w⟧
wpred(v)

20

combines information from predecessors

Generating constraints

21

var a,b,c;

a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

⟦entry⟧ = ⊥

⟦var a,b,c⟧ = ⟦entry⟧[a ↦⊤,b ↦⊤,c ↦⊤]
⟦a = 42⟧ = ⟦var a,b,c⟧[a ↦ +]
⟦b = 87⟧ = ⟦a = 42⟧[b ↦ +]
⟦input⟧ = ⟦b = 87⟧
⟦c = a + b⟧ = ⟦input⟧[c ↦ ⟦input⟧(a)+⟦input⟧(b)]
⟦c = a - b⟧ = ⟦input⟧[c ↦ ⟦input⟧(a)-⟦input⟧(b)]
⟦exit⟧ = ⟦c = a + b⟧ ⊔ ⟦c = a - b⟧using l.u.b.

Constraints

• From the program being analyzed, we have constraint
variables x1, …, xnL and a collection of constraints:

 x1 = f1(x1, ..., xn)

 x2 = f2(x1, ..., xn)

 ...

 xn = fn(x1, ..., xn)

• These can be collected into a single function f: Ln→Ln:
 f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• How do we find the least (i.e. most precise) value of

x1,...,xn such that (x1,...,xn) = f(x1,...,xn) (if that exists)???

22

Note that Ln is

a product lattice

Monotone functions

• A function f: L1 → L2 is monotone when

 x,y L1: x ⊑ y f(x) ⊑ f(y)

• A function with several arguments is monotone if
it is monotone in each argument

• Monotone functions are closed under composition

• As functions, ⊔ and ⊓ are both monotone

• x ⊑ y can be interpreted as “x is at least as precise as y”

• When f is monotone:
“more precise input cannot lead to less precise output”

23

(exercises)

Monotonicity for the sign analysis

• The ⊔ operator and map
updates are monotone

• Compositions preserve
monotonicity

• Are the abstract operators
monotone?

• Can be verified by a tedious inspection:

– x,y,x’L: x ⊑ x’ x op y ⊑ x’ op y

– x,y,y’L: y ⊑ y’ x op y ⊑ x op y’

24

(exercises)

Example, constraints for assignments:
⟦ x = E ⟧ = JOIN(v)[x↦eval(JOIN(v),E)]

Kleene’s fixed-point theorem

x L is a fixed point of f: L → L iff f(x)=x

 In a complete lattice with finite height,
 every monotone function f has a
 unique least fixed-point:

 lfp(f) = ⨆ fi(⊥)

25

i 0

Proof of existence

• Clearly, ⊥⊑ f(⊥)

• Since f is monotone, we also have f(⊥) ⊑ f2(⊥)

• By induction, fi(⊥) ⊑ fi+1(⊥)

• This means that

 ⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ ... fi(⊥) ...

 is an increasing chain

• L has finite height, so for some k: fk(⊥) = fk+1(⊥)

• If x ⊑ y then x ⊔ y = y

• So lfp(f) = fk(⊥)

26

(exercise)

Proof of unique least

• Assume that x is another fixed-point: x = f(x)

• Clearly, ⊥ ⊑ x

• By induction and monotonicity, fi(⊥) ⊑ fi(x) = x

• In particular, lfp(f) = fk(⊥) ⊑ x, i.e. lfp(f) is least

• Uniqueness then follows from anti-symmetry

27

Computing fixed-points

The time complexity of lfp(f) depends on:

– the height of the lattice

– the cost of computing f

– the cost of testing equality

28

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala

x = ⊥;

do {

 t = x;

 x = f(x);

} while (xt);

Summary: lattice equations

• Let L be a complete lattice with finite height

• An equation system is of the form:

 x1 = f1(x1, ..., xn)

 x2 = f2(x1, ..., xn)

 ...

 xn = fn(x1, ..., xn)

where xi are variables and each fi: L
n→L is monotone

• Note that Ln is a product lattice

29

Solving equations

• Every equation system has a unique least solution,
which is the least fixed-point of the function f: Ln→Ln
defined by

 f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• A solution is always a fixed-point
(for any kind of equation)

• The least one is the most precise

30

Solving inequations

• An inequation system is of the form

 x1 ⊑ f1(x1, ..., xn)

 x2 ⊑ f2(x1, ..., xn)

 ...

 xn ⊑ fn(x1, ..., xn)

• Can be solved by exploiting the facts that

x ⊑ y ⇔ x = x ⊓ y

and

x ⊒ y ⇔ x = x ⊔ y

31

or

x1 ⊒ f1(x1, ..., xn)

x2 ⊒ f2(x1, ..., xn)

...

xn ⊒ fn(x1, ..., xn)

Monotone frameworks

• A CFG to be analyzed, nodes Node = {v1,v2, ..., vn}

• A finite-height complete lattice L of possible answers

– fixed or parametrized by the given program

• A constraint variable ⟦v⟧L for every CFG node v

• A dataflow constraint for each syntactic construct

– relates the value of ⟦v⟧ to the variables for other nodes

– typically a node is related to its neighbors

– the constraints must be monotone functions:

 ⟦vi⟧ = fi(⟦v1⟧, ⟦v2⟧, ..., ⟦vn⟧)

32

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)

Monotone frameworks

• Extract all constraints for the CFG

• Solve constraints using the fixed-point algorithm:

– we work in the lattice Ln where L is a lattice describing
abstract states

– computing the least fixed-point of the combined function:

 f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• This solution gives an answer from L for each CFG node

33

Generating and solving constraints

CFG

34

constraints

solution

fixed-point
solver

⟦p⟧ = int
⟦q⟧ = int
⟦alloc 0⟧ = int
⟦x⟧ =
⟦foo⟧ =
⟦&n⟧ = int
⟦main⟧ = ()->int

Conceptually, we separate constraint generation from constraint solving,
but in implementations, the two stages are typically interleaved

Lattice points as answers

the trivial, useless answer

the true answer

our answer (the least fixed-point)
safe answers

unsafe answers

35

Conservative approximation…

x = (⊥, ⊥, ..., ⊥);

do {

 t = x;

 x = f(x);

} while (xt);

The naive algorithm

• Correctness ensured by the fixed point theorem

• Does not exploit any special structure of Ln or f

(i.e. xLn and f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn)))

36

Implementation: SimpleFixpointSolver

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

Example: sign analysis

37

ite(n) {

 var f;

 f = 1;

 while (n>0) {

 f = f*n;

 n = n-1;

 }

 return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n → ⊤, f → ⊥]

[n → ⊥, f → ⊤]

[n → ⊥, f → +]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊥, f → +]

[n → ⊥, f → +]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊥, f → +]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → +]

[n → ⊥, f → ⊥]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → +]

[n → ⊥, f → ⊥]

[n → ⊥, f → ⊥]

[n → ⊥, f → +]

[n → ⊥, f → +]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → +]

[n → ⊤, f → ⊤]

[n → ⊥, f → ⊥]

[n → ⊤, f → +]

[n → ⊥, f → +]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → +]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → +]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → +]
(We shall later see how to improve precision for the loop condition)

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → ⊥]

[n → ⊤, f → ⊤]

[n → ⊤, f → +]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

[n → ⊤, f → ⊤]

The naive algorithm

f0(⊥, ⊥, …, ⊥) f1(⊥, ⊥, …, ⊥) … fk(⊥, ⊥, …, ⊥)

1 ⊥ f1(⊥, ⊥, …, ⊥) … …

2 ⊥ f2(⊥, ⊥, …, ⊥) … …

… … … … …

n ⊥ fn(⊥, ⊥, …, ⊥) … …

38

Computing each new entry is done using the previous column

• Without using the entries in the current column that have
already been computed!

• And many entries are likely unchanged from one column to
the next!

x1 = ⊥; ... xn = ⊥;

while ((x1,...,xn) ≠ f(x1,..., xn)) {

 pick i nondeterministically such
 that xi ≠ fi(x1, ..., xn)
 xi = fi(x1, ..., xn);

}

Chaotic iteration

We now exploit the special structure of Ln

– may require a higher number of iterations,

but less work in each iteration
39

Recall that f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

Correctness of chaotic iteration

• Let xj be the value of x=(x1, ..., xn) in the j’th iteration
of the naive algorithm

• Let xj be the value of x=(x1, ..., xn) in the j’th iteration
of the chaotic iteration algorithm

• By induction in j, show j: xj ⊑ xj

• Chaotic iteration eventually terminates at a fixed point

• It must be identical to the result of the naive algorithm
since that is the least fixed point

40

Towards a practical algorithm

• Computing i:… in chaotic iteration is not practical

• Idea: predict i from the analysis and the structure
of the program!

• Example:
In sign analysis, when we have processed
a CFG node v, process succ(v) next

41

The worklist algorithm (1/2)

• Essentially a specialization of chaotic iteration that exploits
the special structure of f

• Most right-hand sides of fi are quite sparse:
– constraints on CFG nodes do not involve all others

• Use a map:

 dep: Node → 2Node

 that for vNode gives the set of nodes (i.e. constraint variables)
w where v occurs on the right-hand side of the constraint for w

42

x1 = ⊥; ... xn = ⊥;

W = {v1, ..., vn};

while (W) {

 vi = W.removeNext();

 y = fi(x1, ..., xn);

 if (yxi) {

 for (vj dep(vi)) W.add(vj);

 xi = y;

 }

}

The worklist algorithm (2/2)

43

Implementation: SimpleWorklistFixpointSolver

Further improvements

• Represent the worklist as a priority queue

– find clever heuristics for priorities

• Look at the graph of dependency edges:

– build strongly-connected components

– solve constraints bottom-up in the resulting DAG

44

Transfer functions

• The constraint functions in dataflow analysis usually
have this structure:

⟦ v ⟧ = tv(JOIN(v))
where tv: State → State is called
the transfer function for v

• Example:

 ⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v),E)]
 = tv(JOIN(v))

where
tv(s) = s[x ↦ eval(s,E)]

45

w1 … wn

tv
v

Sign Analysis, continued...
• Another improvement of the worklist algorithm:

– only add the entry node to the worklist initially

– then let dataflow propagate through the program
according to the constraints...

• Now, what if the constraint rule for variable declarations was:
 ⟦ var x1, ..., xn ⟧ = JOIN(v)[x1 ↦ ⊥, ..., xn ↦ ⊥]

(would make sense if we treat “uninitialized” as “no value” instead of “any value”)

• Problem: iteration would stop before the fixpoint!

• Solution: replace Var → Sign by lift(Var → Sign)

(allows us to distinguish between “unreachable” and “all variables are non-integers”)

• This trick is also useful for context-sensitive analysis! (later…)

46
Implementation: WorklistFixpointSolverWithReachability, MapLiftLatticeSolver

	Slide 1
	Slide 2: Flow-sensitivity
	Slide 3: Sign analysis
	Slide 4: Generating constraints
	Slide 5: Sign analysis constraints
	Slide 6: Evaluating signs
	Slide 7: Abstract operators
	Slide 8: Increasing precision
	Slide 9: Partial orders
	Slide 10: Upper and lower bounds
	Slide 11: Lattices
	Slide 12: These partial orders are lattices
	Slide 13: These partial orders are not lattices
	Slide 14: The powerset lattice
	Slide 15: Lattice height
	Slide 16: Map lattice
	Slide 17: Product lattice
	Slide 18: Flat lattice
	Slide 19: Lift lattice
	Slide 20: Sign analysis constraints, revisited
	Slide 21: Generating constraints
	Slide 22: Constraints
	Slide 23: Monotone functions
	Slide 24: Monotonicity for the sign analysis
	Slide 25: Kleene’s fixed-point theorem
	Slide 26: Proof of existence
	Slide 27: Proof of unique least
	Slide 28: Computing fixed-points
	Slide 29: Summary: lattice equations
	Slide 30: Solving equations
	Slide 31: Solving inequations
	Slide 32: Monotone frameworks
	Slide 33: Monotone frameworks
	Slide 34: Generating and solving constraints
	Slide 35: Lattice points as answers
	Slide 36: The naive algorithm
	Slide 37: Example: sign analysis
	Slide 38: The naive algorithm
	Slide 39: Chaotic iteration
	Slide 40: Correctness of chaotic iteration
	Slide 41: Towards a practical algorithm
	Slide 42: The worklist algorithm (1/2)
	Slide 43: The worklist algorithm (2/2)
	Slide 44: Further improvements
	Slide 45: Transfer functions
	Slide 46: Sign Analysis, continued...

