Static Program Analysis
Part 2 — type analysis and unification

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Type errors

* Reasonable restrictions on operations:
— arithmetic operators apply only to integers
— comparisons apply only to like values
— only integers can be input and output
— conditions must be integers
— only functions can be called
— the * operator only applies to pointers
— field lookup can only be performed on records
— the fields being accessed are guaranteed to be present

 Violations result in runtime errors

* Note: no type annotations in TIP

Type checking

Can type errors occur during runtime?

This is interesting, hence instantly undecidable

Instead, we use conservative approximation

— a program is typable if it satisfies some type constraints
— these are systematically derived from the syntax tree

— if typable, then no runtime errors occur

— but some programs will be unfairly rejected (slack)

What we shall see next is the essence of the
Damas—Hindley—Milner type inference technique,
which forms the basis of the type systems of e.g. ML, OCaml, and Haskell

Typability

no type errors typable

T~

T~ slack

Fighting slack

 Make the type checker a bit more clever:

* An eternal struggle

Fighting slack

 Make the type checker a bit more clever:

* An eternal struggle
* And a great source of publications

Be careful out there

 The type checker may be unsound:

* Example: covariant arrays in Java

— a deliberate pragmatic choice

Generating and solving constraints

AST

constraints

solver
(unification)

[p] = tint

[q] = tint
[alloc 0] = tint
[xI=¢

[foo] = ¢

[&n] = tint
[main] = ()=int

solution

Types

* Types describe the possible values:

Type = 1nt
T Type

(Type, ..., Type) — Type
{Id: Type, ..., Id: Type }

 These describe integers, pointers, functions,
and records

* Types are terms generated by this grammar
— example: (int,Tint) - 11int

Type constraints

We generate type constraints from an AST:
— all constraints are equalities
— they can be solved using a unification algorithm

Type variables:
— for each identifier declaration X we have the variable [X]
— for each non-identifier expression E we have the variable [£]

Recall that all identifiers are unique
The expression E denotes an AST node, not syntax

(Possible extensions: polymorphism, subtyping, ...)

10

Generating constraints (1/3)

I: [[]=1nt

E,opE;: [E.] =[E,] =[E;opE;] =1nt
E,==E; [E,] = [E,] A [E;==E,] =1nt
1nput: [1nput]=1nt

X=E: [X] = [£]

output E: [E]=1nt

1t (E) {S}: [E] =1nt

1T (E) {S,} else{S,}: [E]=1nt

while (E) {S}: [E] =1nt

Generating constraints (2/3)

X(X{y.... X){..returnk; }:

[XT = (X0 - [X1D = [E]

E(El S oo (5
[E] = ([ED, .., [E.D) — [ECE;, ... ED]
allocE: [alToc E] = T[£]
&X: 1&X] = T[X]
null: Inu' -|]] =Ta (each a is a fresh type variable)
*E: [E] = T[*E]
“E;=Ejy: [E,] = T[E,]
For each parameter X of the main function: [X]=1nt

For the return expression E of the main function: [E] = 1nt

12

Exercise
main() {

var X, Yy, Z;
X = 1nput;

y = alloc 8;
Ty = X;

Z = *Y;
return X;

¥

e Generate and solve the constraints
 Thentrywithy = alloc 8 replacedbyy = 42

* Also try with the Scala implementation (when it’s completed) .

Generating constraints (3/3)

X, iE,y ...y X 1E }:

{Xl:El,.--,X' _ 1:[[E1]]!---!Xn:[[En]]}
E.X: | Ellap™ salll X, ... }

This is the idea, but not directly expressible in our language of types

14

Generating constraints (3/3)

Let {f,, f,, ..., f,} be the set of field names that appear in
the program

Extend Type — ... |¢ where o represents absent fields
IX;iE;y oy X tE }: [AX,iE,, ooy X iE }] ={f1:Vs oo Fr i Y }

where y. = {[[E,-]] it £:= X, for some

o otherwise

E.X: [EN={f1:Y1s s fniV¥m} AQE.X]Fo
[E.X]iff=X
where'y; = a; otherwise

(Field write statements? Exercise...)

15

General terms

Constructor symbols:
e O-ary:a,b,c — | beant
e l-ary:d, e | B
e 2-ary:f, g, h
e 3-ary:i,j, k

— Ex: (t,1,)-14

Terms with variables:
e f(X,b)

e h(X,g(Y,2)) o

I~

Terms:
® a
* d(a)
* h(a,g(d(a),b))

X, Y, and Z here are type variables,

like [(*p) -1] or [p],
not program variables

16

The unification problem

* An equality between two terms with variables:

k(X,b,Y) = k(f(Y,2),Z,d(2))

e A solution (a unifier) is an assignment from variables
to terms that makes both sides equal:

X =f(d(b),b)
Y = d(b) Implicit constraint for term equality:
7 - b c(ty,...ty) = c(ty),..t)) = t;=t/ for all j

17

Unification errors
* Constructor error:
d(X) = e(X)
* Arity error:

a = a(X)

18

The linear unification algorithm

Paterson and Wegman (1978)
In time O(n):

— finds a most general unifier
— or decides that none exists

Can be used as a back-end for type checking

... but only for finite terms

19

Recursive data structures

The program
var p;

p = alloc null;
P = p;

creates these constraints

[null] =Tt
[alToc null1]=1[null]
[p]=[alloc null]

[p] = T[p]

which have this “recursive solution” for p:
[p] =t wheret =Tt

Regular terms

* Infinite but (eventually) repeating:

— e(e(e(e(e(e(...))))
— d(a,d(a,d(a, ...)))

— F(R(R(F(-..), F(...)), F(F(...), £(...))), F(F(FC...), £(...)), f(F(...),f(...))))

* Only finitely many different subtrees

* A non-regular term:

— f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))

21

Regular unification

Huet (1976)

The unification problem for regular terms

can be solved in O(n-A(n))
using a union-find algorithm

A(n) is the inverse Ackermann function:

— smallest k such that n < Ack(k,k)
— this is never bigger than 5 for any real value of n

See the TIP implementation...

22

Union-Find

makeset(x) {
X.parent := x
x.rank :=0

find(x) {
if Xx.parent !=x
x.parent := find(x.parent)
return x.parent

union(x, y) {
xr := find(x)
yr :=find(y)
if Xxr=vyr
return
if xr.rank < yr.rank
Xr.parent := yr
else
yr.parent := xr
if xr.rank = yr.rank

xr.rank := xr.rank + 1

23

Union-Find (simplified)

makeset(x) { union(x, y) {

X.parent ;=X xr := find(x)
} | yr := find(y)
if xr=yr
t
find(d) ¢ return

, Xr.parent :=yr
if Xx.parent I=x

X.parent := find(x.parent)

return x.parent
] Implement ‘unify’ procedure using

union and find to unify terms...

Implementation strategy

Representation of the different kinds of types
(including type variables)

Map from AST nodes to type variables
Union-Find
Traverse AST, generate constraints, unify on the fly

— report type error if unification fails

— when unifying a type variable with e.g. a function type,
it is useful to pick the function type as representative

— for outputting solution, assign names to type variables
(that are roots), and be careful about recursive types

25

The complicated function

main() {
foo(p,x) { VLT e
var f,q; n = 1nput;
if (*p==0) { return foo(&n,foo);
f=1; }
} else { [
q = alloc 0;
*q = (Fp)-1;
F=C*p)*(x(q,x));
}
return f;

}

Generated constraints

[*p==0] = int
[f] =[]

1 [0]=1nt

[foo] = ([p], [x])—-[f]
[*p] =1nt

[1] =1nt

[p] = T[*p]

[aTToc 0] =1[0]

[a] = T[*d]
[f]=0CP)*(x(q,x))]
[x(gq,x)]=1nt
[input] =1nt

[n] = [1nput]

[foo] =([&n], [foo])—[foo(&n, foo)]
[(*p)-1] =1int

[a] =[[alloc O]

[al = T[(*p)-1]

[*p] =1nt
[(*p)*(x(q,x))] =1nt

[x] = CIal, XD —[x(q,x)]
[main] = O-=[foo(&n,foo)]
[&n] = T[n]

[*p] = [O]
[foo(&n,foo)]=1nt

27

Solutions

[p] =Tint

[q] = tint
[alloc 0]=Ttint
[X] =&

[foo] =¢

[&n] = Tint
[main]= ()-int

~

Here, ¢ is the regular type that is the unfolding of
o= (Tint,9)—>int

which can also be written p = p t.(Tint, t)>int

All other variables are assigned 1nt

28

Infinitely many solutions

The function

poly(x) {
return *X;

¥

has type (Ta) —a for any type o

(which is not expressible in our current type language)

29

Recursive and polymorphic types

Extra notation for recursive and polymorphic types:

Type — ...

(not very useful unless we also add
polymorphic expansion at calls,

but that makes complexity exponential,
or even undecidable...)

| u TypeVar. Type
| TypeVar
TypeVar >t | u | ...

A type T € Type is a (finite) term generated by
this grammar

L a. tis the (potentially recursive) type Tt where
occurrences of a represent 7 itself

a € TypeVar is a type variable (implicitly universally
quantified if not bound by an enclosing p)

Slack — let-polymorphism

Fx) {
return *x;
}
main() {
return f(alloc 1) + *(f(alloc(alloc 2));

}

This never has a type error at runtime — but it is not typable
Tint=x]=11int

But we could analyze f beforemain: [f]=(Tt)—t

and then “instantiate” that type at each callto finmain

31

Slack — let-polymorphism

polyrec(g,x) {
var r;
if (x==0) {

r=g;
} else {

r=polyrec(2,0);
}

return r+1l;

}

main() {
return polyrec(null, 1)

}

This never has a type error at runtime — but it is not typable
And let-polymorphism doesn’t work here because bar is recursive

32

Slack — flow-insensitivity

fO {
var X;
X = alloc 17;
X = 42;
return x + 87;
}

This never has a type error at runtime — but it is not typable

The type analysis is flow insensitive (it ignores the order of statements)

33

Other programming errors

* Not all errors are type errors:

baz() {
— dereference of nul 1 pointers var x:
— reading of uninitialized variables return &x;

— division by zero

— escaping stack cells main() {
\ var p:

(why not?) p=baz();
*p=1;
return *p;

}

e Other kinds of static analysis may catch these

34

