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Analyzing programs with pointers

How do we perform e.g. Exp — ...
constant propagation analysis alloc E
when the programming language &ld
. > |
?as pk;).mtters].c . * Exp
or object references:
J nul |
, Stm — ...
*X = 42; N
‘ky — _87; | Id:EXp!
Z = *X;

// 1s z 42 or -877



Heap pointers

* For simplicity, we initially ignore records

— al loc then only allocates a single cell

— only linear structures can be built in the heap

X

oo

—0—0—0—0—&

e Let’s also ignore functions as values for now

* We still have many interesting analysis challenges...



Pointer targets

The fundamental question about pointers:
What cells can they point to?

We need a suitable abstraction
The set of (abstract) cells, Cell, contains

— al loc-ifor each allocation site with index i
— X for each program variable named X

This is called allocation site abstraction

Each abstract cell may correspond to many
concrete memory cells at runtime



Points-to analysis

 Determine for each pointer variable X the set
pt(X) of the cells X may point to

*X = 42;
. . . *y = -87;
* A conservative (“may points-to”) analysis: , - «.
— the set may be too large S 2 G2 O S50E

— can show absence of aliasing: pt(X) N pt(Y) = &

 We'll focus on flow-insensitive analyses:
— take place on the AST
— before or together with the control-flow analysis



Obtaining points-to information

* An almost-trivial analysis (called address-taken):
— include allal loc-icells
— include the X cell if the expression &X occurs in the program

 Improvement for a typed language:

— eliminate those cells whose types do not match

* This is sometimes good enough

— and clearly very fast to compute



Pointer normalization

Assume that all pointer usage is normalized:

« X=alloc P wherePisnull or an integer constant
« X=&Y

e X=Y

o X=%Y

.« FX=Y

* X=null

Simply introduce lots of temporary variables...

All sub-expressions are now named

We choose to ignore the fact that the cells created at variable declarations
are uninitialized (otherwise it is impossible to get useful results from a
flow-insensitive analysis)
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Andersen’s analysis (1/2)

* For every cell ¢, introduce a constraint variable [c]
ranging over sets of cells, i.e. [-]: Cell = P(Cell)

e Generate constraints:

h"
Y "

(For the conditional constraints, there’s no need to add a constraint for the cell x if &x does not occur in the program)

X=alloc P:
X=4&Y:

alloc-ie [X]
Y € [X]

Yl <1

c e [Y]

c € [X]

Xl
= [[c] < [X] for each ceCell
= [Y] < [[c] for each ceCell

(no constraints)
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Andersen’s analysis (2/2)

The points-to map is defined as:
pt(X) = [X]

The constraints fit into the cubic framework ©
Unique minimal solution in time O(n3)
In practice, for Java: O(n?)

The analysis is flow-insensitive but directional

— models the direction of the flow of values in assignments
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Example program

Var p!q!X!y!Z;
p = alloc null;

X =Y;
X = Z,
p = z;
P = Q;
q = &y;
X = *p;
p = &z;

Cell={p, q,%,y, z,allToc-1}
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Applying Andersen

e Generated constraints:

alloc-1 e [p]

[yl < [X]

[z] < [X]

c € [P] = [z] < [c] for each ceCell
[a] < [P

y € [d]

c € [P] = [c] < [X] for each ceCell

Z € [p]

 Smallest solution:
pt(p)={alloc-1,y,z}

pt(q)={y}
pt(X) = pt(y) = pt(z) = @
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A specialized cubic solver

At each load/store instruction, instead of generating
a conditional constraint for each cell,
generate a single universally quantified constraint:

" te [[x]]

" [xl < vl

= Vte [x]: [t] < [v]
" Vte [x]: [yl < [t]

Whenever a token is added to a set, lazily add new edges
according to the universally quantified constraints

Note that every token is also a constraint variable here
Still cubic complexity, but faster in practice
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A specialized cubic solver

x.solc T: the set of tokens for x (the bitvectors)
x.succc V:  the successors of x (the edges)

x.fromcV: the first kind of quantified constraints for x
x.toc V: the second kind of quantified constraints for x
W < TxV: a worklist (initially empty)

Implementation: SpecialCubicSolver
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A specialized cubic solver

t € [x]
addToken(t, x)
propagate()

Ix] < [yl

addEdge(x, y)
propagate()

vt e [[x]|: [t] < [y

add y to x.from
for each t in x.sol
addEdge(t, y)

propagate()

vt e [[x]: vl < [t

add y to x.to
for each tin x.sol
addEdge(y, t)

propagate()

addToken(t, x):
if t € x.sol
add t to x.sol
add (t, x) to W

addEdge(x, y):
if X #y Ay & x.succ
add y to x.succ
for each t in x.sol
addToken(t, y)

propagate():
while W = &

pick and remove (t, x) from W

for each y in x.from
addEdge(t, y)

for each yin x.to
addEdge(y, t)

for each y in x.succ
addToken(t, y)
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Steensgaard’s analysis

View assignments as being bidirectional
Generate constraints:

« X=alloc P: alloc-ie [X]

« X=4&Y: Y e [X]

« X=Y: [X] =1[Y]

« X=7%Y: c € [Y] = [[c] = [X] for each ceCell
¢« *X=Y: c € [X] = [Y] = [c] for each ceCell

Extra constraints:
cy, Gy [c] = [[ey] = [[c;] and [[c,] N [[c;] # D = [[e] = [[c,]

(whenever a cell may point to two cells, they are essentially merged into one)

Steensgaard’s original formulation uses conditional unification for X =Y:
c € [Y] = [[X] = [Y] for each ceCell (avoids unifying if Y is never a pointer)
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Steensgaard’s analysis

Reformulate as term unification

Generate constraints:

- X=alloc P: 1X] =1[aTlloc-i]

« X=4&Y: 1X] = 1[Y]

. X=vY: IX] = [V]

o X=*Y: [Y]=Ta A [X] = a where ais fresh

¢ *X=Y: [X]=Ta A [Y] =a where ais fresh
Terms:

— term variables, e.g. [X], [a11oc-i], a (each representing the possible values of a cell)
— asingle (unary) term constructor T¢ (representing pointers)
— each [[c] is now a term variable, not a constraint variable holding a set of cells

Fits with our unification solver! (union-find...)
The points-to map is defined as pt(X) = {ceCell | [X] = 1[c] }
Note that there is only one kind of term constructor, so unification never fails,



Applying Steensgaard

* Generated constraints (as sets or terms, respectively):

alloc-1 e [p]

[yl = [xI]
[z] = [X]
c € [p] = [z] = [[c] for each ceCell
[al = [P]
y € [d]
c € [p] = [c] = [X] for each ceCell

Z € [p]
+ the extra constraints

[P]
[yl =[x
[ =1x]
[P]
[q]
[q]
[P]

[2

[P]

=1[alloc-1]

=T, [2] = oy
=[Pl

=1y]

=Ta, [X] = a,

= 1[z]

e Smallest solution:

pt(p)={alloc-1,y,z}
pt(q)={alloc-1,y,z}

20



al
bl
cl
a2
b2
c2
bl

&b1l;
&cl;
&d1;
&b2;
&c?;
&d2;
&c?;

Another example

Andersen:

Steensgaard:
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Recall our type analysis...

Focusing on pointers...
Constraints:

« Xx=alloc P: [X] = 1[P]
¢ X=4&Y: [X] = 1[Y]
* X=Y [X] = [Y]

¢ X=%Y: T11X] =[Y]
¢ *X=Y: [X] = 1[Y]

Implicit extra constraint for term equality:
T, =1t,=>t,=t,

Assuming the program type checks, is the solution
for pointers the same as for Steensgaard’s analysis?
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Interprocedural pointer analysis

In TIP, function values and pointers may be
mixed together:

(***X)(l,Z,B)

In this case the CFA and the points-to analysis must
happen simultaneously!

The idea: Treat function values as a kind of pointers

25



Function call normalization

Assume that all function calls are of the form
X = Xo(X1 Y eens Xn)
Assume that all return statements are of the form

return X’;
As usual, simply introduce lots of temporary variables...

Include all function names in the set Cell

26



CFA with Andersen

For the function call Andersen’s anayy s,
alr ISis
X=Xg(Xyy ey X)) o com OSely connecge,y
ol-f] .
and every occurrence of Tlow anajys;s,

fxX, .., X)) {..returnx’; }
add these constraints:

felfl
f e Xl = (X1 < [X'] for i=1,....n A [X] < [X])

(Similarly for simple function calls)
Fits directly into the cubic framework!
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CFA with Steensgaard

 For the function call
X=X0(X1, ey Xn)
and every occurrence of

fxX, .., X' ){..returnx’; }
add these constraints:

felf
fe [X] = ([x] = [x] fori=1,...n A [X] = [X])

e (Similarly for simple function calls)

* Fits into the unification framework, but requires a
generalization of the ordinary union-find solver

28



Context-sensitive pointer analysis

foo(a) {
return *a;

}

bar() {

X = alloc null;
y = alloc null;
*X = alloc null;
*y = alloc null;

foo(x);
w = foo(y);

Q L]
Il

Are  and w aliases?

29



Context-sensitive pointer analysis

* Generalize the abstract domain Cell = P(Cell) to
Context — Cell = P(Cell)
(or equivalently: Cell x Context — P(Cell))
where Context is a (finite) set of call contexts

* As usual, many possible choices of the set Context

— recall the call string approach and the functional approach

e We can also track the set of reachable contexts
(like the use of lifted lattices earlier):

Context — lift(Cell » P(Cell))

e Does this still fit into the cubic solver?
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Context-sensitive pointer analysis

mk() {

return alloc null;

}

baz() {

var X,VY;
x = mk(Q);
y = mkQ;

Are X and Yy aliases?

[X] = {al1oc-1}
[Y] ={al10c-1}

31



Context-sensitive pointer analysis

We can go one step further and introduce
context-sensitive heap (a.k.a. heap cloning)

Let each abstract cell be a pair of

— alloc-i(the alloc with index i) or X (a program variable)

— a heap context from a (finite) set HeapContext

This allows abstract cells to be named by
the source code allocation site
and (information from) the current context

One choice:

— set HeapContext = Context
— atal loc, use the entire current call context as heap context

32



Context-sensitive pointer analysis
with heap cloning

Assuming we use the call string approach with k=1, so Context = {¢, c1, c2}, and HeapContext = Context

mk() {

return alloc null;

}

baz() {

var X,VY;
x = mk(Q);
y = mkQ;

Are X and Y aliases? [X] ={@lloc-1,c1)}
[[y]] ={(@alloc-1, c2) }

33
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Records in TIP

Exp — ...
| {Id:Exp, ..., Id:Exp }

| Exp.ld

* Field write operations: see SPA...
* Values of record fields cannot themselves be records
e After normalization:

e X={F:iX{y o, FiX, }

e X=alloc{F:X,, .., F,:X, }

e X=Y.F

Let us extend Andersen’s analysis accordingly...

35



Constraint variables for record fields

* [[-1: (Cell U (Cell x Field)) — P(Cell)
where Field is the set of field names in the program

* Notation: [c.f] means [(c, f)]

36



Analysis constraints

o X={F:X,, .., F:X. }: [XJ<IXFIA..A[X]<[XF]

« X=alloc{F: X, .., F: X, }: alloc-ie[X] A
[XJclalloc-iFJA..A[X] < [alloc-iF]

e X=Y.F: [Y.F]c[X]

e X=Y: [Y]<|[X] A [Y.F] < [X.F] for each FeField

e X=%Y: ce[Y]= ([cJ<[X] A [c.F] < [X.F])
for each ceCell and FeField

e *X=Y: ce[X]= ([YI<[c] A [Y.F] < [c.F])
for each ceCell and FeField

See example in SPA
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Objects as mutable heap records
Exp — ...

Id
alloc{Id:Exp, ..., Id:Exp }

(*Exp) .Id

nul 1
Stm — ...
| Id = Exp;

| (*Exp) .ld =Exp;

e E.XinJava correspondsto (*E) .XinTIP (or C)

* Can only create pointers to heap-allocated records (=objects),
not to variables or to cells containing non-record values

38
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Null pointer analysis

Decide for every dereference *p,
is p different fromnul1?

(Why not just treat null as a special cell
in an Andersen or Steensgaard-style analysis?)

Use the monotone framework

— assuming that a points-to map pt has been computed

Let us consider an intraprocedural analysis

(i.e. we ignore function calls)

40



A lattice for null analysis

* Define the simple lattice Null:
?
|
NN
where NN represents “definitely not null”

and ? represents “maybe null”

e Use for every program point the map lattice:

Cell - Null

(here for TIP without records)

41



Setting up

* For every CFG node, v, we have a variable [v]:

— a map giving abstract values for all cells
at the program point after v

* Auxiliary definition:

JOIN(v) = U [w]

wepred(v)

(i.e. we make a forward analysis)

42



Null analysis constraints

* For operations involving pointers:

- X=alloc P:
« X=4&Y:

e X=Y:

e X=7%Y:

e *X=Y:

e X=null:

V]
V]
V]
V]
[v]

V]

e For all other CFG nodes:

* [lv] =JOIN(v)

= 777
= ?7?
= 777
= 777
= ?7?
= ?7?

where P is null or
an integer constant

43



Null analysis constraints

For a heap store operation *X =Y we need to
model the change of whatever X points to

That may be multiple abstract cells
(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell
alloc-i may describe multiple concrete cells

So we settle for weak update:
“X=Y: [v] = store(JOIN(v), X, Y)

where store(o, X, Y) = ola — o(a) U o(Y)]
aept(X)

44



Null analysis constraints

For a heap load operation X = *Y we need to
model the change of the program variable X

Our abstraction has a single abstract cell for X
That abstract cell represents a single concrete cell

So we can use strong update:
X=7Y: [v] = load(JOIN(v), X, Y)

where load(c, X, Y) = o[X ~ Lo(a)]
aept(Y)

45



Strong and weak updates

concrete execution:

1
a ( null |
| |
b \\\+ |
I
. S g mk() {
e I return alloc null;
d | num }
abstract execution: I
al ], a = mk(Q);
b — null b — mk();
c = alloc null;
C L
I~ 11 *b = C; // strong update here would be unsound!
d e o d — 7'\‘a;

is d null here?

The abstract cell al loc-1 corresponds to multiple concrete cells



Strong and weak updates

a = alloc null;
b = alloc null;

*a = alloc null;
*b = alloc null;
if (...) {
X = a,
} else {
X = b;
}
n =null;
is C null here? *X = Nn; // strong update here would be unsound!
C = *X;

The points-to set for X contains multiple abstract cells



Null analysis constraints

X=alloc P~ [v] =JOIN(v)[X = NN, alloc-1 » ?]
X = &y: [v] = JOIN(V)[X — NN] \y
could be improved...
X=Y: Iv] = JOIN(V)[X = JOIN(v)(Y)]
X=null: [v] = JOIN(V)[X — ?]

In each case, the assignment modifies
a program variable

So we can use strong updates,
as for heap load operations
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Strong and weak updates, revisited

e Strong update: o[c ~ new-value]
— possible if ¢ is known to refer to a single concrete cell

— works for assignments to local variables
(as long as TIP doesn’t have e.g. nested functions)

e Weak update: ofc+ olc) U new-value]
— necessary if ¢ may refer to multiple concrete cells

— bad for precision, we lose some of the power of
flow-sensitivity

— required for assignments to heap cells
(unless we extend the analysis abstraction!)

49



Interprocedural null analysis

 Context insensitive or context sensitive, as usual...
— at the after-call node, use the heap from the callee

e But be careful!
Pointers to local variables may escape to the callee

— the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract state
at the call node

function f(by, .., b,

f
e — J

X 1 result = E;
\

50



Using the null analysis

* The pointer dereference *p is “safe” at entry of v if
JOIN(v)(p) = NN

* The quality of the null analysis depends on the
qguality of the underlying points-to analysis
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Example program

p = alloc null;
q = &p;

n = null;

*q = n;

*p = n;

Andersen generates:
pt(p) ={alloc-1}

pt(q) = {p}
pt(n) =0
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Generated constraints

[p=alloc null]=1[p~NN,alloc-1+- 7]

[q=&p] =
[n=null]

[*q=n] =

[p=alloc null][g~ NN]

= [a=&p]l[n = 7]
[n=nul1][p +~ [n=null](p)u [n=null](n)]

[*p=n] =

[*g=n][al loc-1- [*q=n](alloc-1) U [*g=n](n)]

53



Solution

[p=alloc null]=[p~NN,g—~NN,n—NN,alloc-1~ ?]
[g=&p] =[p~ NN,g~NN,n—NN,alloc-1- 7]
[n=null]=[p~=NN,g~NN,n~7,alloc-1+ 7]
[*g=n]=[p~?,q~=»NN,n—?,alloc-1~ ?]
[*p=n]=[p~?,q~»NN,n—7?,alloc-1~ ?]

e At the program point before the statement *qg=n
the analysis now knows that q is definitely non-null

e ...and before *p=n, the pointer p is maybe null

 Due to the weak updates for all heap store operations,
precision is bad for alloc-1 cells
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Points-to graphs

Graphs that describe possible heaps:
— nodes are abstract cells
— edges are possible pointers between the cells

The lattice of points-to graphs is P(Cell x Cell)

ordered under subset inclusion
(or alternatively, Cell —» P(Cell))

For every CFG node, v, we introduce a constraint
variable [v]] describing the state after v

Intraprocedural analysis (i.e. ignore function calls)
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Constraints

* For pointer operations:

e« X=alloc P;

« X=4&Y: [V]
e X=Y: [v]
CX=FY M
CX=Y M

« X=null: [v]

Iv] =JOIN(V)IX U { (X, alT1oc-i)}
= JOIN(WIX U { (X, )}
= JOIN(V.X U { (X, t) | (Y, t)eJOIN(v)}
= JOIN(VINX U { (X, t) | (Y, s)eo, (s, t)JOIN(v)}
= JOIN(v) U { (s, t) | (X, s)eJOIN(Vv), (Y, t)e JOIN(v)}
= JOIN(V) X i

note: weak update!

where ol X ={(s,t)ec | s = X}

JOIN(v) = U[w]

e For all other CFG nodes: wepred(v)

* [v] =JOIN(v)
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Example program

var X,y,n,p,q;
X = alloc null;
*X = null; *y =
n = 1nput;
while (n>0) {

p = alloc nul

fcp = X; :':q —

X P = q;
n n-1;

¥

y=
Y

1; ¢
Y,

alloc null;

= alloc null;
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Result of analysis

e After the loop we have this points-to graph:

P > a11;;j;\:> a11;;i;f\

d
< |
alloc-1

a1125:f’:>

* We conclude that X and y will always be disjoint



Points-to maps from points-to graphs

* A points-to map for each program point v:
pt(X)={t | (Xt) € [v] }

* More expensive, but more precise: X
— Andersen: pt(X)={y, z} X
— flow-sensitive: pt(X)={2z} /

&z;
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Improving precision with
abstract counting

* The points-to graph is missing information:

— al loc-2 nodes always form a self-loop in the example

* We need a more detailed lattice:
P(Cell x Cell) x (Cell - Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes
Count=0 1 >1
* This permits strong updates on those 7
that describe precisely 1 concrete cell 1
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Better results

* After the loop we have this extended points-to graph:

? ?
P ‘ 311;;j;\:> a11;;:;;i>

d
o ylm
alloc-1 alloc-2

b

* Thus, alloc-2 cells form a self-loop
e Bothalloc-1and alloc-2 permit strong updates



Escape analysis

Perform a points-to analysis baz() {
. var X;
Look at return expression e
Check reachability in the points-to  }
graph to arguments or variables _
defined in the function itself main() {
var p;
p=baz();
None of those =1L
U return *p;

}

no escaping stack cells
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