Static Program Analysis
Part 10 — pointer analysis

https://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

https://cs.au.dk/~amoeller/spa/

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

Analyzing programs with pointers

How do we perform e.g. Exp — ...
constant propagation analysis alloc E
when the programming language &ld
. > |
?as pk;).mtters].c . * Exp
or object references:
J nul |
, Stm — ...
*X = 42; N
‘ky — _87; | Id:EXp!
Z = *X;

// 1s z 42 or -877

Heap pointers

* For simplicity, we initially ignore records

— al loc then only allocates a single cell

— only linear structures can be built in the heap

X

oo

—0—0—0—0—&

e Let’s also ignore functions as values for now

* We still have many interesting analysis challenges...

Pointer targets

The fundamental question about pointers:
What cells can they point to?

We need a suitable abstraction
The set of (abstract) cells, Cell, contains

— al loc-ifor each allocation site with index i
— X for each program variable named X

This is called allocation site abstraction

Each abstract cell may correspond to many
concrete memory cells at runtime

Points-to analysis

 Determine for each pointer variable X the set
pt(X) of the cells X may point to

*X = 42;
. . . *y = -87;
* A conservative (“may points-to”) analysis: , - «.
— the set may be too large S 2 G2 O S50E

— can show absence of aliasing: pt(X) N pt(Y) = &

 We'll focus on flow-insensitive analyses:
— take place on the AST
— before or together with the control-flow analysis

Obtaining points-to information

* An almost-trivial analysis (called address-taken):
— include allal loc-icells
— include the X cell if the expression &X occurs in the program

 Improvement for a typed language:

— eliminate those cells whose types do not match

* This is sometimes good enough

— and clearly very fast to compute

Pointer normalization

Assume that all pointer usage is normalized:

« X=alloc P wherePisnull or an integer constant
« X=&Y

e X=Y

o X=%Y

.« FX=Y

* X=null

Simply introduce lots of temporary variables...

All sub-expressions are now named

We choose to ignore the fact that the cells created at variable declarations
are uninitialized (otherwise it is impossible to get useful results from a
flow-insensitive analysis)

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

Andersen’s analysis (1/2)

* For every cell ¢, introduce a constraint variable [c]
ranging over sets of cells, i.e. [-]: Cell = P(Cell)

e Generate constraints:

h"
Y "

(For the conditional constraints, there’s no need to add a constraint for the cell x if &x does not occur in the program)

X=alloc P:
X=4&Y:

alloc-ie [X]
Y € [X]

Yl <1

c e [Y]

c € [X]

Xl
= [[c] < [X] for each ceCell
= [Y] < [[c] for each ceCell

(no constraints)

10

Andersen’s analysis (2/2)

The points-to map is defined as:
pt(X) = [X]

The constraints fit into the cubic framework ©
Unique minimal solution in time O(n3)
In practice, for Java: O(n?)

The analysis is flow-insensitive but directional

— models the direction of the flow of values in assignments

11

Example program

Var p!q!X!y!Z;
p = alloc null;

X =Y;
X = Z,
p = z;
P = Q;
q = &y;
X = *p;
p = &z;

Cell={p, q,%,y, z,allToc-1}

12

Applying Andersen

e Generated constraints:

alloc-1 e [p]

[yl < [X]

[z] < [X]

c € [P] = [z] < [c] for each ceCell
[a] < [P

y € [d]

c € [P] = [c] < [X] for each ceCell

Z € [p]

 Smallest solution:
pt(p)={alloc-1,y,z}

pt(q)={y}
pt(X) = pt(y) = pt(z) = @

13

A specialized cubic solver

At each load/store instruction, instead of generating
a conditional constraint for each cell,
generate a single universally quantified constraint:

" te [[x]]

" [xl < vl

= Vte [x]: [t] < [v]
" Vte [x]: [yl < [t]

Whenever a token is added to a set, lazily add new edges
according to the universally quantified constraints

Note that every token is also a constraint variable here
Still cubic complexity, but faster in practice

14

A specialized cubic solver

x.solc T: the set of tokens for x (the bitvectors)
x.succc V: the successors of x (the edges)

x.fromcV: the first kind of quantified constraints for x
x.toc V: the second kind of quantified constraints for x
W < TxV: a worklist (initially empty)

Implementation: SpecialCubicSolver

15

A specialized cubic solver

t € [x]
addToken(t, x)
propagate()

Ix] < [yl

addEdge(x, y)
propagate()

vt e [[x]|: [t] < [y

add y to x.from
for each t in x.sol
addEdge(t, y)

propagate()

vt e [[x]: vl < [t

add y to x.to
for each tin x.sol
addEdge(y, t)

propagate()

addToken(t, x):
if t € x.sol
add t to x.sol
add (t, x) to W

addEdge(x, y):
if X #y Ay & x.succ
add y to x.succ
for each t in x.sol
addToken(t, y)

propagate():
while W = &

pick and remove (t, x) from W

for each y in x.from
addEdge(t, y)

for each yin x.to
addEdge(y, t)

for each y in x.succ
addToken(t, y)

16

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

17

Steensgaard’s analysis

View assignments as being bidirectional
Generate constraints:

« X=alloc P: alloc-ie [X]

« X=4&Y: Y e [X]

« X=Y: [X] =1[Y]

« X=7%Y: c € [Y] = [[c] = [X] for each ceCell
¢« *X=Y: c € [X] = [Y] = [c] for each ceCell

Extra constraints:
cy, Gy [c] = [[ey] = [[c;] and [[c,] N [[c;] # D = [[e] = [[c,]

(whenever a cell may point to two cells, they are essentially merged into one)

Steensgaard’s original formulation uses conditional unification for X =Y:
c € [Y] = [[X] = [Y] for each ceCell (avoids unifying if Y is never a pointer)

18

Steensgaard’s analysis

Reformulate as term unification

Generate constraints:

- X=alloc P: 1X] =1[aTlloc-i]

« X=4&Y: 1X] = 1[Y]

. X=vY: IX] = [V]

o X=*Y: [Y]=Ta A [X] = a where ais fresh

¢ *X=Y: [X]=Ta A [Y] =a where ais fresh
Terms:

— term variables, e.g. [X], [a11oc-i], a (each representing the possible values of a cell)
— asingle (unary) term constructor T¢ (representing pointers)
— each [[c] is now a term variable, not a constraint variable holding a set of cells

Fits with our unification solver! (union-find...)
The points-to map is defined as pt(X) = {ceCell | [X] = 1[c] }
Note that there is only one kind of term constructor, so unification never fails,

Applying Steensgaard

* Generated constraints (as sets or terms, respectively):

alloc-1 e [p]

[yl = [xI]
[z] = [X]
c € [p] = [z] = [[c] for each ceCell
[al = [P]
y € [d]
c € [p] = [c] = [X] for each ceCell

Z € [p]
+ the extra constraints

[P]
[yl =[x
[=1x]
[P]
[q]
[q]
[P]

[2

[P]

=1[alloc-1]

=T, [2] = oy
=[Pl

=1y]

=Ta, [X] = a,

= 1[z]

e Smallest solution:

pt(p)={alloc-1,y,z}
pt(q)={alloc-1,y,z}

20

al
bl
cl
a2
b2
c2
bl

&b1l;
&cl;
&d1;
&b2;
&c?;
&d2;
&c?;

Another example

Andersen:

Steensgaard:

21

Recall our type analysis...

Focusing on pointers...
Constraints:

« Xx=alloc P: [X] = 1[P]
¢ X=4&Y: [X] = 1[Y]
* X=Y [X] = [Y]

¢ X=%Y: T11X] =[Y]
¢ *X=Y: [X] = 1[Y]

Implicit extra constraint for term equality:
T, =1t,=>t,=t,

Assuming the program type checks, is the solution
for pointers the same as for Steensgaard’s analysis?

23

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

24

Interprocedural pointer analysis

In TIP, function values and pointers may be
mixed together:

(***X)(l,Z,B)

In this case the CFA and the points-to analysis must
happen simultaneously!

The idea: Treat function values as a kind of pointers

25

Function call normalization

Assume that all function calls are of the form
X = Xo(X1 Y eens Xn)
Assume that all return statements are of the form

return X’;
As usual, simply introduce lots of temporary variables...

Include all function names in the set Cell

26

CFA with Andersen

For the function call Andersen’s anayy s,
alr ISis
X=Xg(Xyy ey X)) o com OSely connecge,y
ol-f] .
and every occurrence of Tlow anajys;s,

fxX, .., X)) {..returnx’; }
add these constraints:

felfl
f e Xl = (X1 < [X'] for i=1,....n A [X] < [X])

(Similarly for simple function calls)
Fits directly into the cubic framework!

27

CFA with Steensgaard

 For the function call
X=X0(X1, ey Xn)
and every occurrence of

fxX, .., X'){..returnx’; }
add these constraints:

felf
fe [X] = ([x] = [x] fori=1,...n A [X] = [X])

e (Similarly for simple function calls)

* Fits into the unification framework, but requires a
generalization of the ordinary union-find solver

28

Context-sensitive pointer analysis

foo(a) {
return *a;

}

bar() {

X = alloc null;
y = alloc null;
*X = alloc null;
*y = alloc null;

foo(x);
w = foo(y);

Q L]
Il

Are and w aliases?

29

Context-sensitive pointer analysis

* Generalize the abstract domain Cell = P(Cell) to
Context — Cell = P(Cell)
(or equivalently: Cell x Context — P(Cell))
where Context is a (finite) set of call contexts

* As usual, many possible choices of the set Context

— recall the call string approach and the functional approach

e We can also track the set of reachable contexts
(like the use of lifted lattices earlier):

Context — lift(Cell » P(Cell))

e Does this still fit into the cubic solver?

30

Context-sensitive pointer analysis

mk() {

return alloc null;

}

baz() {

var X,VY;
x = mk(Q);
y = mkQ;

Are X and Yy aliases?

[X] = {al1oc-1}
[Y] ={al10c-1}

31

Context-sensitive pointer analysis

We can go one step further and introduce
context-sensitive heap (a.k.a. heap cloning)

Let each abstract cell be a pair of

— alloc-i(the alloc with index i) or X (a program variable)

— a heap context from a (finite) set HeapContext

This allows abstract cells to be named by
the source code allocation site
and (information from) the current context

One choice:

— set HeapContext = Context
— atal loc, use the entire current call context as heap context

32

Context-sensitive pointer analysis
with heap cloning

Assuming we use the call string approach with k=1, so Context = {¢, c1, c2}, and HeapContext = Context

mk() {

return alloc null;

}

baz() {

var X,VY;
x = mk(Q);
y = mkQ;

Are X and Y aliases? [X] ={@lloc-1,c1)}
[[y]] ={(@alloc-1, c2) }

33

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

34

Records in TIP

Exp — ...
| {Id:Exp, ..., Id:Exp }

| Exp.ld

* Field write operations: see SPA...
* Values of record fields cannot themselves be records
e After normalization:

e X={F:iX{y o, FiX, }

e X=alloc{F:X,, .., F,:X, }

e X=Y.F

Let us extend Andersen’s analysis accordingly...

35

Constraint variables for record fields

* [[-1: (Cell U (Cell x Field)) — P(Cell)
where Field is the set of field names in the program

* Notation: [c.f] means [(c, f)]

36

Analysis constraints

o X={F:X,, .., F:X. }: [XJ<IXFIA..A[X]<[XF]

« X=alloc{F: X, .., F: X, }: alloc-ie[X] A
[XJclalloc-iFJA..A[X] < [alloc-iF]

e X=Y.F: [Y.F]c[X]

e X=Y: [Y]<|[X] A [Y.F] < [X.F] for each FeField

e X=%Y: ce[Y]= ([cJ<[X] A [c.F] < [X.F])
for each ceCell and FeField

e *X=Y: ce[X]= ([YI<[c] A [Y.F] < [c.F])
for each ceCell and FeField

See example in SPA

37

Objects as mutable heap records
Exp — ...

Id
alloc{Id:Exp, ..., Id:Exp }

(*Exp) .Id

nul 1
Stm — ...
| Id = Exp;

| (*Exp) .ld =Exp;

e E.XinJava correspondsto (*E) .XinTIP (or C)

* Can only create pointers to heap-allocated records (=objects),
not to variables or to cells containing non-record values

38

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

39

Null pointer analysis

Decide for every dereference *p,
is p different fromnul1?

(Why not just treat null as a special cell
in an Andersen or Steensgaard-style analysis?)

Use the monotone framework

— assuming that a points-to map pt has been computed

Let us consider an intraprocedural analysis

(i.e. we ignore function calls)

40

A lattice for null analysis

* Define the simple lattice Null:
?
|
NN
where NN represents “definitely not null”

and ? represents “maybe null”

e Use for every program point the map lattice:

Cell - Null

(here for TIP without records)

41

Setting up

* For every CFG node, v, we have a variable [v]:

— a map giving abstract values for all cells
at the program point after v

* Auxiliary definition:

JOIN(v) = U [w]

wepred(v)

(i.e. we make a forward analysis)

42

Null analysis constraints

* For operations involving pointers:

- X=alloc P:
« X=4&Y:

e X=Y:

e X=7%Y:

e *X=Y:

e X=null:

V]
V]
V]
V]
[v]

V]

e For all other CFG nodes:

* [lv] =JOIN(v)

= 777
= ?7?
= 777
= 777
= ?7?
= ?7?

where P is null or
an integer constant

43

Null analysis constraints

For a heap store operation *X =Y we need to
model the change of whatever X points to

That may be multiple abstract cells
(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell
alloc-i may describe multiple concrete cells

So we settle for weak update:
“X=Y: [v] = store(JOIN(v), X, Y)

where store(o, X, Y) = ola — o(a) U o(Y)]
aept(X)

44

Null analysis constraints

For a heap load operation X = *Y we need to
model the change of the program variable X

Our abstraction has a single abstract cell for X
That abstract cell represents a single concrete cell

So we can use strong update:
X=7Y: [v] = load(JOIN(v), X, Y)

where load(c, X, Y) = o[X ~ Lo(a)]
aept(Y)

45

Strong and weak updates

concrete execution:

1
a (null |
| |
b \\\+ |
I
. S g mk() {
e I return alloc null;
d | num }
abstract execution: I
al], a = mk(Q);
b — null b — mk();
c = alloc null;
C L
I~ 11 *b = C; // strong update here would be unsound!
d e o d — 7'\‘a;

is d null here?

The abstract cell al loc-1 corresponds to multiple concrete cells

Strong and weak updates

a = alloc null;
b = alloc null;

*a = alloc null;
*b = alloc null;
if (...) {
X = a,
} else {
X = b;
}
n =null;
is C null here? *X = Nn; // strong update here would be unsound!
C = *X;

The points-to set for X contains multiple abstract cells

Null analysis constraints

X=alloc P~ [v] =JOIN(v)[X = NN, alloc-1 » ?]
X = &y: [v] = JOIN(V)[X — NN] \y
could be improved...
X=Y: Iv] = JOIN(V)[X = JOIN(v)(Y)]
X=null: [v] = JOIN(V)[X — ?]

In each case, the assignment modifies
a program variable

So we can use strong updates,
as for heap load operations

48

Strong and weak updates, revisited

e Strong update: o[c ~ new-value]
— possible if ¢ is known to refer to a single concrete cell

— works for assignments to local variables
(as long as TIP doesn’t have e.g. nested functions)

e Weak update: ofc+ olc) U new-value]
— necessary if ¢ may refer to multiple concrete cells

— bad for precision, we lose some of the power of
flow-sensitivity

— required for assignments to heap cells
(unless we extend the analysis abstraction!)

49

Interprocedural null analysis

 Context insensitive or context sensitive, as usual...
— at the after-call node, use the heap from the callee

e But be careful!
Pointers to local variables may escape to the callee

— the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract state
at the call node

function f(by, .., b,

f
e — J

X 1 result = E;
\

50

Using the null analysis

* The pointer dereference *p is “safe” at entry of v if
JOIN(v)(p) = NN

* The quality of the null analysis depends on the
qguality of the underlying points-to analysis

51

Example program

p = alloc null;
q = &p;

n = null;

*q = n;

*p = n;

Andersen generates:
pt(p) ={alloc-1}

pt(q) = {p}
pt(n) =0

52

Generated constraints

[p=alloc null]=1[p~NN,alloc-1+- 7]

[q=&p] =
[n=null]

[*q=n] =

[p=alloc null][g~ NN]

= [a=&p]l[n = 7]
[n=nul1][p +~ [n=null](p)u [n=null](n)]

[*p=n] =

[*g=n][al loc-1- [*q=n](alloc-1) U [*g=n](n)]

53

Solution

[p=alloc null]=[p~NN,g—~NN,n—NN,alloc-1~ ?]
[g=&p] =[p~ NN,g~NN,n—NN,alloc-1- 7]
[n=null]=[p~=NN,g~NN,n~7,alloc-1+ 7]
[*g=n]=[p~?,q~=»NN,n—?,alloc-1~ ?]
[*p=n]=[p~?,q~»NN,n—7?,alloc-1~ ?]

e At the program point before the statement *qg=n
the analysis now knows that q is definitely non-null

e ...and before *p=n, the pointer p is maybe null

 Due to the weak updates for all heap store operations,
precision is bad for alloc-1 cells

54

Agenda

Introduction to pointer analysis
Andersen’s analysis
Steensgaard’s analysis
Interprocedural pointer analysis
Records and objects

Null pointer analysis
Flow-sensitive pointer analysis

55

Points-to graphs

Graphs that describe possible heaps:
— nodes are abstract cells
— edges are possible pointers between the cells

The lattice of points-to graphs is P(Cell x Cell)

ordered under subset inclusion
(or alternatively, Cell —» P(Cell))

For every CFG node, v, we introduce a constraint
variable [v]] describing the state after v

Intraprocedural analysis (i.e. ignore function calls)

57

Constraints

* For pointer operations:

e« X=alloc P;

« X=4&Y: [V]
e X=Y: [v]
CX=FY M
CX=Y M

« X=null: [v]

Iv] =JOIN(V)IX U { (X, alT1oc-i)}
= JOIN(WIX U { (X,)}
= JOIN(V.X U { (X, t) | (Y, t)eJOIN(v)}
= JOIN(VINX U { (X, t) | (Y, s)eo, (s, t)JOIN(v)}
= JOIN(v) U { (s, t) | (X, s)eJOIN(Vv), (Y, t)e JOIN(v)}
= JOIN(V) X i

note: weak update!

where ol X ={(s,t)ec | s = X}

JOIN(v) = U[w]

e For all other CFG nodes: wepred(v)

* [v] =JOIN(v)

58

Example program

var X,y,n,p,q;
X = alloc null;
*X = null; *y =
n = 1nput;
while (n>0) {

p = alloc nul

fcp = X; :':q —

X P = q;
n n-1;

¥

y=
Y

1; ¢
Y,

alloc null;

= alloc null;

59

Result of analysis

e After the loop we have this points-to graph:

P > a11;;j;\:> a11;;i;f\

d
< |
alloc-1

a1125:f’:>

* We conclude that X and y will always be disjoint

Points-to maps from points-to graphs

* A points-to map for each program point v:
pt(X)={t | (Xt) € [v] }

* More expensive, but more precise: X
— Andersen: pt(X)={y, z} X
— flow-sensitive: pt(X)={2z} /

&z;

61

Improving precision with
abstract counting

* The points-to graph is missing information:

— al loc-2 nodes always form a self-loop in the example

* We need a more detailed lattice:
P(Cell x Cell) x (Cell - Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes
Count=0 1 >1
* This permits strong updates on those 7
that describe precisely 1 concrete cell 1

62

Better results

* After the loop we have this extended points-to graph:

? ?
P ‘ 311;;j;\:> a11;;:;;i>

d
o ylm
alloc-1 alloc-2

b

* Thus, alloc-2 cells form a self-loop
e Bothalloc-1and alloc-2 permit strong updates

Escape analysis

Perform a points-to analysis baz() {
. var X;
Look at return expression e
Check reachability in the points-to }
graph to arguments or variables _
defined in the function itself main() {
var p;
p=baz();
None of those =1L
U return *p;

}

no escaping stack cells

69

	Slide 1
	Slide 2: Agenda
	Slide 3: Analyzing programs with pointers
	Slide 4: Heap pointers
	Slide 5: Pointer targets
	Slide 6: Points-to analysis
	Slide 7: Obtaining points-to information
	Slide 8: Pointer normalization
	Slide 9: Agenda
	Slide 10: Andersen’s analysis (1/2)
	Slide 11: Andersen’s analysis (2/2)
	Slide 12: Example program
	Slide 13: Applying Andersen
	Slide 14: A specialized cubic solver
	Slide 15: A specialized cubic solver
	Slide 16: A specialized cubic solver
	Slide 17: Agenda
	Slide 18: Steensgaard’s analysis
	Slide 19: Steensgaard’s analysis
	Slide 20: Applying Steensgaard
	Slide 21: Another example
	Slide 23: Recall our type analysis…
	Slide 24: Agenda
	Slide 25: Interprocedural pointer analysis
	Slide 26: Function call normalization
	Slide 27: CFA with Andersen
	Slide 28: CFA with Steensgaard
	Slide 29: Context-sensitive pointer analysis
	Slide 30: Context-sensitive pointer analysis
	Slide 31: Context-sensitive pointer analysis
	Slide 32: Context-sensitive pointer analysis
	Slide 33: Context-sensitive pointer analysis with heap cloning
	Slide 34: Agenda
	Slide 35: Records in TIP
	Slide 36: Constraint variables for record fields
	Slide 37: Analysis constraints
	Slide 38: Objects as mutable heap records
	Slide 39: Agenda
	Slide 40: Null pointer analysis
	Slide 41: A lattice for null analysis
	Slide 42: Setting up
	Slide 43: Null analysis constraints
	Slide 44: Null analysis constraints
	Slide 45: Null analysis constraints
	Slide 46: Strong and weak updates
	Slide 47: Strong and weak updates
	Slide 48: Null analysis constraints
	Slide 49: Strong and weak updates, revisited
	Slide 50: Interprocedural null analysis
	Slide 51: Using the null analysis
	Slide 52: Example program
	Slide 53: Generated constraints
	Slide 54: Solution
	Slide 55: Agenda
	Slide 57: Points-to graphs
	Slide 58: Constraints
	Slide 59: Example program
	Slide 60: Result of analysis
	Slide 61: Points-to maps from points-to graphs
	Slide 62: Improving precision with abstract counting
	Slide 64: Better results
	Slide 69: Escape analysis

