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ABSTRACT
Current practice in testing JavaScript web applications requires man-
ual construction of test cases, which is difficult and tedious. We
present a framework for feedback-directed automated test genera-
tion for JavaScript in which execution is monitored to collect in-
formation that directs the test generator towards inputs that yield
increased coverage. We implemented several instantiations of the
framework, corresponding to variations on feedback-directed ran-
dom testing, in a tool called Artemis. Experiments on a suite of
JavaScript applications demonstrate that a simple instantiation of
the framework that uses event handler registrations as feedback in-
formation produces surprisingly good coverage if enough tests are
generated. By also using coverage information and read-write sets
as feedback information, a slightly better level of coverage can be
achieved, and sometimes with many fewer tests. The generated
tests can be used for detecting HTML validity problems and other
programming errors.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

1. INTRODUCTION
JavaScript [6, 13] plays a central role in modern web applica-

tions. Although originally designed for simple scripting, modern
JavaScript programs are complex pieces of software that involve
intricate communication with users and servers. Compared to lan-
guages such as Java and C#, relatively little tool support is available
to assist JavaScript programmers with testing their applications. In
current practice, JavaScript programmers construct test cases either
manually or using unit testing tools with capture-replay facilities
such as Selenium, Watir, and Sahi. These tools provide functional-
ity for recording the GUI actions performed by a user in test scripts,
for running a suite of tests, and for visualizing test results. How-
ever, even with such tool support, testing remains a challenging
and time-consuming activity because each test case must be con-
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structed manually. Obtaining reasonable coverage of an application
may be difficult because of JavaScript’s event-driven style, which
often gives rise to a combinatorial explosion in the number of pos-
sible executions, and because of JavaScript’s extremely dynamic
nature [20], which makes it difficult for users to understand how to
write test cases that exercise a particular feature of an application.

The goal of our research is to develop scalable and effective al-
gorithms for automated testing of JavaScript applications to dis-
cover common programming errors of various kinds, including un-
caught exceptions (e.g., runtime errors resulting from the use of
undefined in a dereference or a function call), unusual type coer-
cions or misuses of the browser’s built-in libraries, invalid HTML,
AJAX HTTP errors, and violation of assertions. A prerequisite for
discovering such errors is that the generated tests obtain high code
coverage, which we focus on in this paper. We envision automated
testing used as part of the development process of future JavaScript
applications to improve code quality and reduce development time.

Several previous research projects have explored automated test-
ing of JavaScript applications. The Crawljax/Atusa project [17,18]
uses dynamic analysis to construct a model of an application’s state
space, from which a set of test cases is generated. This work relies
on a heuristic approach for detecting active user-interface compo-
nents, and crawls these in some random order. A limitation of this
heuristic approach is that it may be unable to detect all relevant
event handlers (as is evidenced by the fact that the tool provides
users with a domain-specific language to specify how to crawl an
application). The Kudzu project [22] combines the use of random
test generation to explore an application’s event space (i.e., the pos-
sible sequences of user-interface actions) with the use of symbolic
execution for systematically exploring an application’s value space
(i.e., how the execution of control flow paths depends on input val-
ues). Kudzu relies on an elaborate model for reasoning about string
values and string operations, which are frequently manipulated by
JavaScript applications. However, it remains to be determined if
high code coverage can perhaps be achieved with simpler tech-
niques, without requiring a sophisticated string constraint solver.

We present a new framework for automated testing of JavaScript
web applications. The framework takes into account the idiosyn-
crasies of JavaScript, such as its event-driven execution model and
interaction with the Document Object Model (DOM) of web pages.
The framework is parameterized by: (i) an execution unit to model
the browser and server, (ii) an input generator to produce new in-
put sequences, and (iii) a prioritizer to guide the exploration of the
application’s state space. By instantiating these parameters appro-
priately, various forms of feedback-directed random testing (e.g.,
in the spirit of Randoop [19]) can be performed. Here, the idea is
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1 <html>
2 <head>
3 <link rel="stylesheet" type="text/css" href="style.css">
4 <script type="text/javascript" src="ajax.js"></script>
5 <script type="text/javascript">
6 var ajax = new AJAX();
7 var active = false;
8 var clicked = false;
9 var contentObj;

10 function mouseoverArticle() {
11 if (this==clicked) return;
12 if (active && active!=this) {
13 if (active==clicked)
14 active.className=’selected ’;
15 else
16 active.className=’’;
17
18 }
19 this.className=’over’;
20 active = this;
21 }
22 function selectArticle() {
23 ajax.requestFile = this.id + ’.html’;
24 ajax.onCompletion =
25 function() {contentObj.innerHTML = ajax.response;};
26 ajax.run();
27 if (clicked && clicked!=this)
28 clicked.className=’’;
29 this.className=’selected ’;
30 clicked = this;
31 }

32 function init() {
33 var articles =
34 document.getElementById(’articles ’)
35 .getElementsByTagName(’li’);
36 for (var i=0; i<articles.length; i++) {
37 articles[i].onmouseover = mouseoverArticle;
38 articles[i].onclick = selectArticle;
39 }
40 contentObj = document.getElementById(’content ’);
41 }
42 window.onload = init;
43 </script>
44 </head>
45
46 <body>
47 <div id="content">
48 <p>Click on one of the articles to the right.</p>
49 </div>
50 <div>
51 <ul id="articles">
52 <li id="article1">one</li>
53 <li id="article2">two</li>
54 <li id="article3">three</li>
55 </ul>
56 </div>
57 </body>
58 </html>

Figure 1: A simple JavaScript program in an HTML page.

that when a test input has been generated, the system executes the
application on that input and observes the effects, which can then
be used to guide the generation of additional test inputs.

We implemented the framework in a tool called Artemis1, and
created several feedback-directed random test generation algorithms
by instantiating the framework with different prioritization func-
tions and input generators.

The contributions of this paper can be summarized as follows:

• We present a flexible framework for automated feedback-
directed test generation for JavaScript web applications.

• By instantiating the framework with different prioritization
functions and input generators we obtain several practical
test generation algorithms: events monitors the execution to
collect relevant event handlers, const additionally collects
constants, cov also considers coverage, and all additionally
takes reads and writes of variables and object properties into
account.

• An evaluation on a suite of JavaScript applications shows
that, surprisingly, even the simple events algorithm achieves
69% coverage on average when 100 tests are generated, which
significantly exceeds the 38% coverage obtained by only load-
ing each application’s main page. Furthermore, with the ex-
tended use of feedback information in the const, cov, and all
algorithms a slightly higher level of coverage (up to 72%)
can be reached, and sometimes with many fewer tests. We
also report on HTML validity errors and execution crashes
detected by the automatically generated tests.

The remainder of this paper is organized as follows. First, we
present a motivating example in Section 2. Then, Section 3 presents

1Artemis is the twin sister of Apollo [2], a tool for automated test-
ing of PHP applications.

the framework, and Section 4 describes several algorithms that were
obtained by instantiating the framework with suitable prioritiza-
tion functions and input generators. Section 5 presents our tool,
Artemis, and its evaluation on a range of JavaScript applications.
Section 6 discusses related work on automated testing. Finally,
Section 7 concludes and mentions ideas for future work.

2. MOTIVATING EXAMPLE
The JavaScript application shown in Figure 1 is a simplified ver-

sion of an example from www.dhtmlgoodies.com that demon-
strates dynamic loading of contents using AJAX.

It first registers an event handler for the load event (line 42).
That event handler (lines 32–41) in turn registers event handlers
for mouseover and click events for each li element appearing
in the element with ID articles. The mouseover events occur
when the user hovers the mouse over the elements, causing the
className to be modified and thereby changing the CSS prop-
erties (lines 10–21). The click events occur when the user clicks
on the elements, which causes the contents of the element with ID
content to be replaced by the appropriate article being selected
(lines 22–31). To save space we omit the associated CSS stylesheet
and the file ajax.js that contains basic AJAX functionality.

This simple example shows how triggering relevant events can
be crucial for exercising JavaScript applications. Lines 32–42 are
executed just by loading the page, without triggering any actual
events. One way to cover more code is to subsequently trigger a
click event on one of the li elements. That will execute lines
22–31, except line 28, which requires yet another click event to
be triggered on another li element. Also note that line 25 is not
executed directly but only via an AJAX response event that is made
possible by the call to the AJAX library on line 26. Obtaining full
coverage of lines 10–21 requires several additional events, in this
case of type mouseover, to be triggered at the right nodes.
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Simply triggering sequences of events produces an intractable
number of possible executions, and our tool relies on prioritization
functions to decide what sequences will yield the best tests. The
code of Figure 1 illustrates two such metrics that we will define pre-
cisely later. First, observe that mouseoverArticle reads the local
variable clicked and selectArticle writes that local variable.
Hence, it seems plausible that after triggering selectArticle, the
system should next try mouseoverArticle again to see if any-
thing different happens. In Section 4.1, we introduce a prioriti-
zation function that considers such information about Read/Write
Sets to identify sequences of events that are likely to increase cov-
erage. Second, note that mouseoverArticle has several condi-
tionals, and hence will likely need to be executed multiple times to
cover all the code. In general, calling a function is more likely to
increase coverage as it contains more conditional cases that have
not been executed yet. This is addressed in Section 4.1 by a priori-
tization function that considers Coverage to direct test generation.

3. THE FRAMEWORK
When a browser loads a web page, it parses the HTML contents

into a DOM structure and executes the top-level JavaScript code.
This may involve registration of event handlers that may be trig-
gered later and cause more code to be executed. Event handlers are
executed one at a time in a single-threaded fashion. Our framework
is tightly connected to this execution model.

3.1 Input Structure
Compared to automated test generation for other languages, such

as C [24] or PHP [2], the input to a JavaScript application has an
unusual structure. Each event is a simple record for which all possi-
ble parameter values are valid (i.e., there are no application specific
invariants that must be satisfied). On the other hand, we are faced
with highly nondeterministic sequencing of events. The following
definitions characterize the notion of a test input to a JavaScript
application accordingly.

DEFINITION 1. An event consists of: (i) an event parameter
map, which is a finite, partial map from strings (parameter names)
to numbers, booleans, strings, and DOM nodes, (ii) a form state
map, which provides string values for HTML form fields, and (iii)
an environment, which holds values for the current time of day, the
size of the screen, and various other constituents of the browser’s
state that, to some extent, can be controlled by the user.

DEFINITION 2. A test input consists of (i) a URL to a web page,
(ii) an entry state that describes the state of the server (e.g., databases
and session data) and the local browser (e.g., cookies), and (iii) a
sequence of events (according to Definition 1).

Among the parameters in event parameter maps are the type pa-
rameter describing the kind of event, and, in case of a UI event,
the target parameter referring to the node where the event oc-
curs. References to DOM nodes in test inputs are expressed as ac-
cess paths from the global object (window) to the node objects, for
example window.document.childNodes[1].childNodes[0].
Our notion of events encompasses not only activities performed by
the user, but also timer events and AJAX callbacks.

3.2 Execution Model
Some web applications consist of a single web page that is modi-

fied dynamically by the JavaScript code as the user interacts with it.
Other applications are divided into multiple pages that link to each
other, either explicitly with HTML <a href="..."> tags or im-
plicitly by JavaScript code that modifies window.location. Our

approach discovers such URLs to other pages during the execution
and uses them to create new test inputs.

JavaScript applications may also involve multiple interconnected
windows and frames shown simultaneously within the same browser.
Our algorithm starts with the URL for the main window. When the
algorithm executes test inputs for that URL, other windows and
frames may be created in the process, and the execution unit man-
ages all of them as a single, combined JavaScript DOM structure.

Because of the event capturing and bubbling mechanisms in
JavaScript [23], a single user event may result in multiple event
handlers being executed, and the events may be triggered at dif-
ferent nodes than where event handlers have been registered. All
execution is monitored to collect, in particular, registration and re-
moval of event handlers. This results in the construction of par-
tially initialized event parameter maps that contain the event type
(as the parameter named type) and the node where the event han-
dler is registered (the parameter currentTarget). The remaining
constituents of the event parameter maps that are controlled by the
user and not by the program (for example, the target property)
are filled in later.

3.3 Algorithm
Figure 2 shows pseudo-code for our main algorithm, along with

a summary of key operations performed by the algorithm. It takes
as input a URL u0 of the initial web page to be tested and an entry
state S0. The algorithm is parameterized by: (i) an execution unit E
that models the browser and the server, (ii) a test input generator G
that can produce new event sequences, and (iii) a prioritizer P that
guides the exploration. We do not detail how E , G, and P work
at this point. In Section 4 we present several instantiations of the
framework that correspond to variations on random testing.

The algorithm (Figure 2) maintains a set Results of test inputs
and error messages that have been generated, a set VisitedStates
of states that have been visited, and a priority queue Worklist con-
taining test inputs that have been generated but not yet executed.
Initialization of these data structures takes place on lines 2–4.

The algorithm starts by creating an initial test input on line 5,
which is added to the worklist with an appropriate priority using an
auxiliary procedure add (lines 42–43). This initial test input con-
sists of the URL u0 of the initial web page, the entry state S0, and
the singleton sequence ([type = "main"], [], binit). Here, main
is a pseudo-event type denoting the JavaScript code that constructs
the HTML DOM structure and executes the top-level script code,
followed by the onload event handler (and related handlers, such
as DOMContentLoaded). The initial form state map is empty, de-
noted [], and the browser environment is set to an initial, arbitrary
state binit .

The algorithm then enters an iterative phase (lines 6–39) that
continues until the worklist is empty or the allotted time is spent.
The execution of each test input from the worklist starts by setting
the state of the browser and the web server (line 9) and loading the
test input URL (line 10). The execution of the event sequence is
then performed by E (lines 11–16).

On line 17, a pair 〈c, E .getMessages()〉 is added to Results
containing the test input that was used in the current execution and
a description of any execution errors that were encountered during
that execution. This may involve, for example, checking that the
current page DOM consists of valid HTML. The loop on lines 18–
20 recomputes the priorities for all entries in the worklist. The pri-
orities may have changed as a result of new information that was
collected during the previous execution.

If the resulting state has not already been visited (line 26), new
test inputs are generated in three ways: (i) by modifying the last
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1. procedure mainE,G,P (URL u0, State S0):
2. Results := ∅
3. Worklist := ∅
4. VisitedStates := ∅
5. add(u0, S0, ([type = "main"], [], binit))
6. while Worklist �= ∅ ∧ ¬timeout do
7. c = (u, S, s1 · · · sn) = Worklist .removeNext()
8. // execute the sequence of events comprising test input c
9. E .initialize(S)

10. E .load(u)
11. for i = 1 to n do
12. let (pi, fi, bi) = si
13. E .setFormFields(fi)
14. E .setBrowserParameters(bi)
15. E .triggerEvent(pi)
16. end for
17. Results := Results ∪ {〈c, E .getMessages()〉}
18. for each c′ in Worklist do
19. Worklist .reprioritize(c′ with priority P.priority(c′))
20. end for
21. // make test inputs by modifying the last event in s

22. for each s′n in G.generateV ariants(sn) do
23. add(ui, S, s1 · · · sn−1 · s′n)
24. end for
25. let S = E .getState()
26. if S /∈ VisitedStates then
27. VisitedStates.add(S)
28. if ¬ E .hasFatalErrors() ∧ ¬ E .hasURLChanged() then
29. // make test inputs by extending s with a new event
30. for each p′ in E .getEventRegistrations() do
31. add(ui, S, s1 · · · sn · G.generateNew(p′))
32. end for
33. end if
34. // make test inputs starting from other URLs
35. for each ui in E .getURLs() do
36. add(ui, S, ([type = "main"], [], binit))
37. end for
38. end if
39. end while
40. return Results
41.

42. procedure add (TestInput c′):
43. Worklist .add(c′ with priority P.priority(c′))

E .initialize(S) Sets the state of the browser and the web server
according to S.

E .load(u) Loads the web page with the URL u into the browser.
This causes the HTML contents to be parsed into a DOM
tree and JavaScript code fragments to be identified. No
JavaScript code is executed yet, and additional dynamically
generated JavaScript code may be identified later.

E .setFormFields(f) Fills out form fields (text fields, check-
boxes, etc.) in the HTML DOM tree according to the form
state map f . Form fields not covered by the map are unmod-
ified.

E .setBrowserParameters(b) Sets the browser parameters as
specified by the environment b.

E .triggerEvent(p) Creates an event from parameters p and in-
vokes the appropriate event handlers. During execution, it
records information about runtime errors and other anoma-
lies, code coverage, and registration and removal of event
handlers.

E .getState() Returns the current state of the browser and server.

E .hasFatalErrors() Returns a boolean indicating whether the
most recent invocation of E .triggerEvent lead to an un-
caught JavaScript runtime exception.

E .hasURLChanged() Returns a boolean indicating whether the
page URL was changed by the most recent invocation of
E .triggerEvent .

E .getMessages() Returns the set of errors/warnings encountered
in the most recent event sequence execution.

E .getEventRegistrations() Returns a set of partially initialized
event parameter maps corresponding to the event handlers
that have been collected by E .triggerEvent since the last
call to E .initialize .

G.generateNew(r′) Generates a new event, given a partially ini-
tialized event parameter map p′.

G.generateVariants(sn) Generates a set of variants of the event
sn by modifying the event parameter map, the form state
map, or the environment.

P.priority(c′) Computes a priority for the test input c′. This de-
termines the order of exploration of the test inputs in the
worklist. When computing the priority, P may consult all
data gathered by E .

E .getURLs() Returns the set of URLs pointing to other pages of
the application (excluding frames), as collected by E . This
includes the URLs appearing in links in the DOM and direct
modifications of window.location.

Figure 2: Pseudo-code for the main algorithm, along with a description of auxiliary operations that it uses.

event in the current test input (producing an event sequence of the
same length, but with different parameters), as shown on line 22,
(ii) by extending the current test input with a new event (producing
a longer event sequence), as shown on line 31, and (iii) by starting
from a different page URL, as shown on line 36.

On line 31, G.generateNew(p′) creates an event from the given
partially initialized event parameter map p′ that was created by the
call to G.getEventRegistrations(), based on the current state of
the execution unit. On line 22, the call G.generateVariants(sn)
may modify the event parameter map of sn (for example, corre-
sponding to the situation where the user presses a different key-
board button), the form state map (if the user changes a form field),
and the environment (when the time has changed). The generation
and modification of events may be done randomly or using knowl-
edge obtained during previous executions.

The functions E .hasFatalErrors() and E .hasURLChanged()
are used on line 28 to prevent the extension of event sequences
that lead to runtime errors or change the page URL. The operation
E .getURLs() returns a set of URLs collected during the execution,
which are used to explore other pages of the application.

Finally, on line 40 the algorithm returns the computed set of pairs
of test inputs and error messages.

The algorithm can in principle generate all possible test inputs
and exercise all parts of the JavaScript application that are reach-
able by a single user, relative to the entry state. (We leave the gen-
eralization to multiple users to future work.) In practice, as we shall
see in Section 5, the success of the algorithm depends on the spe-
cific choices made for E , G, and P , which determine to what extent
the algorithm is capable of producing “interesting” sequences of
events that yield high coverage.
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4. FEEDBACK-DIRECTED
RANDOM TESTING

This section shows how the framework of Section 3 can be in-
stantiated with a suitable execution unit E , prioritizer P , and input
generator G to obtain concrete test generation algorithms. Speci-
fying an execution unit E requires description of: (i) what execu-
tion information is recorded by E .triggerEvent (e.g., information
about coverage and registered event handlers), and (ii) which kinds
of runtime errors are detected by E .triggerEvent and E .checkState .
Other aspects of the execution unit will be discussed in Section 5.1.

The heuristics presented in this section are feedback-directed in
the sense that the generation of new test inputs is guided by infor-
mation gathered during executions of the application on previously
generated test inputs.

4.1 Prioritization Functions
We define P.priority(c) for a test input c = (u, S, s1 · · · sn) as

the product2 of prioritization functions for particular heuristics, as
defined below. Also, let ei denote the set of event handlers (i.e.,
JavaScript functions) that are executed when the i’th event is trig-
gered during the execution of c.

Default Strategy
We begin by defining a naive prioritization function that assigns the
same priority to all sequences of events:

P0(c) = 1

In this strategy, the execution unit E keeps track of event handlers as
they are registered, unregistered, and executed. When the algorithm
discovers a new possible sequence of events on lines 31 and 22 of
Figure 2, these are added to the worklist with the same priority,
1. Then, since all worklist items have equal priority, the call to
removeNext on line 7 will randomly select an item, thus ensuring
that each has the same chance of being selected.

Coverage
Intuitively, executing sequences of event handlers for which we al-
ready have nearly 100% code coverage is likely to be less fruit-
ful than executing sequences of events for which coverage is low.
To take this into account, we define a prioritization function that
prefers sequences with relatively low branch coverage in their con-
stituent events.

To this end, the execution unit E is extended to keep track of the
set of branch points in each event handler. Here, a branch point
is either the entry of an event handler, or a location in the source
code from where control flow can proceed to two or more loca-
tions, based on some condition. A branch of a branch point is cov-
ered when it has been executed. For a set of event handlers e, we
use cov(e) to denote the number of covered branches in e divided
by the total number of branches that have been discovered so far
in e. Both these numbers may increase when more branch points
are discovered to be reachable in executions of e. A prioritization
function can now be defined as follows:

P1(c) = 1− cov(e1)× · · · × cov(en)

Note that all sets defined in this section, like cov(e), do not only
contain information for the given event handlers, but also for all
functions transitively invoked by the handlers.

2The weighting between the various heuristics and the constants
involved can be adjusted, of course, but the simple approach taken
here already appears to be quite effective in practice, as discussed
in Section 5.

Read/Write Sets
Sometimes, code in an event handler can only be covered if a prop-
erty is set to an appropriate value by a previously executed event
handler. To account for this, we want to define the priority of
a sequence of events s1, · · · , sn to be proportional to the num-
ber of properties that are known to be read by sn and that are
also known to be written during the execution of at least one of
s1, · · · , sn−1. To this end, we extend the execution unit E so
that, for each event handler set e, it keeps track of sets read(e)
and written(e) of names3 of variables and properties that were ob-
served to be read and written, respectively, during executions of
event handlers from e. We can now define the prioritization func-
tion as follows:

P2(c) =
|(written(e1) ∪ · · · ∪ written(en−1)) ∩ read(en)|+ 1

|read(en)|+ 1

The term “+1” in the numerator and denominator is introduced to
avoid divisions by zero in case no reads or writes have been ob-
served in event handlers.

Other Prioritization Functions
We also experimented with prioritization functions that assigned
lower or higher priorities depending on the length of the sequence
of events s, and depending on the number of variants of s (same
sequence of events, but with different parameter values) that exe-
cuted previously. As the results obtained with these heuristics were
inconclusive, we will not discuss them in detail.

4.2 Input Generators
We now discuss two alternative implementations of the input

generator G.

Default Strategy
Generating new events is done by G.generateNew on line 31. This
involves completing the event parameter map and giving values to
all form fields. The default input generation strategy, named G0,
chooses a reasonable default value for event parameters. For in-
stance, 0 is the default value for the button parameter of a new
mouse click event, meaning that the left button was clicked. For
simplicity, the currentTarget parameter is always set equal to
target in the basic strategy, meaning that events are triggered at
the same nodes where the event handlers are registered (see the dis-
cussion of capturing/bubbling in Section 3.2). Form fields are set
to the empty string for string inputs, and unselected for selection
elements.

Variants of an already executed event are created by G.generate-
Variants on line 22. In the default strategy, randomly chosen val-
ues are used for both event parameters and form fields. We seed
the random generator with values taken from a global set of con-
stants harvested from the program source. A single new variant is
produced in each invocation.

Dynamically Collected Constants
In the advanced input generation strategy, named G1, the execu-
tion unit E is extended to track constants. For each set of event
handlers e, the execution unit maintains a set const(e) which con-
tains all constants encountered while executing e. In this strategy,

3To simplify the implementation we only store the name of the
variable or property accessed. While this opens up the possibility
of sets containing the same string while actually referring to dif-
ferent variables or properties, this has not posed a problem in our
experiments.

5



prioritization input
function generator

events P0 G0

const P0 G1

cov P0 × P1 G1

all P0 × P1 × P2 G1

Table 1: Test generation algorithms. The prioritization func-
tions and input generators are the ones defined in Sections 4.1
and 4.2, respectively.

G.generateVariants makes use of these dynamically collected con-
stants to complete event parameter maps. When generating a vari-
ant of an event sequence s = s1 · · · sn we choose values for form
fields and event parameters from the set const(en). This makes the
choice of constants more targeted compared to the basic strategy
as only constants actually observed during executing are used, and
because a separate set of constants is used for each event handler.

4.3 Algorithms
We will consider four feedback-directed test generation algo-

rithms that we will name events, const, cov, and all for convenience.
These algorithms are constructed by instantiating the framework
of Section 3 with the prioritization functions and input genera-
tors presented above, as indicated in Table 1. Similar to previous
work [22], we use the amount of code loaded by the initial page
(triggering only the main pseudo-event) as a baseline for compari-
son and use initial to refer to this “algorithm”.

For the example from Figure 1 the algorithm detects all event
handlers during the first iteration. Using the all algorithm, 96%
coverage is obtained after 11 iterations, when only line 14 remains
uncovered. This particular line requires a subtle combination of
click and mouseover events, which is found after additional 17
iterations, resulting in 100% coverage after a total of 3 seconds
of execution. In comparison, the simpler algorithm events obtains
full coverage typically after around 35 iterations, and initial obtains
only 40% coverage. Since the framework randomly selects work
list entries among those with the highest priority, the exact iteration
numbers here vary slightly when running the tool.

5. IMPLEMENTATION AND EVALUATION
This section presents our implementation and an evaluation of

the events, const, cov, and all algorithms, as defined in Section 4.3.

5.1 Implementation
We implemented the framework and algorithms in a tool called

Artemis, based on a modified version of the Rhino JavaScript inter-
preter4 that records information about event handlers, coverage in-
formation, constants and read/write sets. We use the Envjs library5

for modeling the browser environment, which enables us to bypass
all visual rendering and simulate event delays without actual delays
during execution. Artemis keeps track of an application’s browser
state (cookies) and server state, so that these can be reset before
executing the application on a new input. Artemis server state re-
setting is presently restricted to PHP session state (while using the
Apache web server) and database state.

We comment on a few key implementation details: (i) the check
on line 26 relies on hashing to efficiently compare states; this check
is approximate (e.g., we choose to ignore the concrete values of
CSS properties) but we consider it unlikely that this affects cov-
erage significantly, (ii) for server-based applications, initial server

4http://www.mozilla.org/rhino
5http://www.envjs.com

state (including a populated database, if needed) must be provided
by the user, (iii) Artemis simulates a consistent temporal ordering
between events, and inserts some random (simulated) delays to trig-
ger time-dependent behaviors.

With respect to programming errors, Artemis currently detects
several types of runtime errors when E .triggerEvent is invoked,
including dereferencing null and undefined, and invoking val-
ues that are not functions. Invalid HTML is detected when
E .getMesssages is called. In other words, HTML is checked after
each event handler has completed, not during execution when the
page is allowed to be temporarily invalid.

5.2 Research Questions
Our primary objective is achieving good code coverage. In ad-

dition, we are interested in detecting programming errors such as
invalid HTML and runtime errors. In the remainder of this section,
our goal is to answer the following research questions:

• Does the events feedback-directed algorithm achieve signifi-
cantly better coverage than initial? If so, then the feedback-
directed framework itself with just the default instantiation is
useful.

• What level of code coverage is achieved by each of the test
generation algorithms under consideration, when each is al-
lowed to generate the same number of tests?

• How quickly does each of the feedback-directed algorithms
converge on the maximal coverage that it will achieve?

• How many HTML validity errors and runtime errors are de-
tected by the different algorithms?

5.3 Experimental Methodology
Measuring code coverage of JavaScript applications is challeng-

ing for several reasons: (i) JavaScript code in the wild is often com-
pacted, which in particular removes line breaks, making line cov-
erage meaningless, (ii) code can be dynamically generated within
the browser, either explicitly using, e.g., eval, or implicitly by dy-
namic construction of, e.g., script tags, and (iii) code can be gen-
erated dynamically on the server, for example by PHP or Java code.
Thus, it is not obvious how to associate meaningful source location
information with individual code fragments. This is problematic
as computing a coverage percentage requires us to determine how
many lines have been executed relative to the total number of exe-
cutable source lines.

Other work on automated testing for JavaScript is not very ex-
plicit about how coverage is measured [18, 22], which makes di-
rect comparisons difficult. We choose to perform the measure-
ments as follows: (i) we use original, non-compacted code where
available and pretty-print the code otherwise before testing6, (ii)
JavaScript code that is dynamically generated within the browser is
simply disregarded from the measurements. This has little effect on
our benchmarks (see Section 5) where the amount of executed dy-
namically generated code never exceeds one JavaScript statement,
(iii) we rely on the user to specify the URLs of all the .html and
.js files that contain the application’s JavaScript code. Known li-
braries, such as jQuery, are always excluded. The execution unit
can then measure which lines in which files have been executed
by the tests to calculate line and branch coverage. Note that the
purpose of step (iii) above is only to ensure a well-defined mea-
sure of total coverage by including all code that could possibly be
reached. While the cov and all algorithms uses coverage informa-
tion to guide test generation, they only use such information about

6See http://jsbeautifier.org.
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benchmark LOC functions coverage errors
initial events const cov all initial events all

3dModeller 393 30 17 74 74 74 74 8/0 13/0 13/0
AjaxPoll 250 28 8 78 78 78 78 10/0 15/0 15/0
AjaxTabsContent 156 31 67 88 88 89 89 6/0 9/0 9/0
BallPool 256 18 55 89 89 90 90 7/0 7/0 7/0
DragableBoxes 697 66 44 61 61 62 62 13/0 14/0 14/0
DynamicArticles 156 27 35 82 82 75 82 6/0 8/0 8/0
FractalViewer 750 125 33 62 63 75 75 13/0 13/0 16/0
Homeostasis 2037 539 39 62 62 62 63 6/0 6/1 6/1
HTMLEdit 568 37 40 53 53 60 63 9/0 12/0 12/0
Pacman 1857 152 42 44 44 44 44 8/0 17/0 17/0
AVERAGE 38 69 69 71 72

Table 2: Benchmark characteristics and summary of experimental results. For each subject program, the columns of the table
show, from left to right: the number of executable lines of code (LOC), the number of functions, the coverage achieved by the initial
algorithm, the coverage achieved by the events, const, cov, and all algorithms after generating 100 tests, and the number of HTML
errors / execution errors observed for the initial, events, and all algorithms after generating 100 tests.

already executed code. If the user is not interested in total coverage
but only in producing the test inputs, step (iii) can be skipped.

We assume that the user has full control over the application be-
ing tested, not only to compute coverage as discussed above, but
also to be able to restore the server state in E .load . In contrast,
previous approaches (e.g., [22]) ignore JavaScript files that are not
reached during the exploration, and are run against a live server,
without resetting the server state between executions, thereby mak-
ing their results difficult to reproduce and compare. One drawback
to our approach is that it requires access to the entire application, in-
cluding any server-side code, which may be unavailable, or which
may require significant effort to install. Thus, we cannot apply
Artemis to, e.g., FaceBook Chat since the entire application source
code is not available to us7.

5.4 Benchmarks
Table 2 shows the subject JavaScript programs on which we eval-

uate the test generation algorithms. All of these programs are pub-
licly available and represent a variety of different types of JavaScript
programs that uses the DOM API to manipulate the page. All the
programs are interactive and event-driven in nature. The bench-
marks include programs (3dModeller, FractalViewer) that use newer
HTML5 features such as the canvas element, and AjaxPoll has
a server side component written in PHP. All benchmarks and re-
sults and the complete example from Section 2 are available at
http://www.brics.dk/artemis.

5.5 Coverage
Table 2 also shows, for each benchmark, the percentage of exe-

cutable lines of code covered by the initial algorithm, and the per-
centage of code covered by each of the events, const, cov, and all
algorithms after generating 100 tests. Two conclusions are imme-
diately obvious:

• On average, the initial algorithm achieves 38% coverage,
which is significantly less than the average coverage achieved
by events (69%), const (69%), cov (71%), and all (72%).

• The coverage percentages achieved after 100 generated tests
are remarkably similar for the events, const, cov, and all algo-
rithms, with the difference exceeding 1% in only three cases:
On DynamicArticles, cov achieves 75% vs. 82% for the other
three algorithms, on FractalViewer, cov and all achieve 75%
coverage vs. 63% for events and const, and on HTMLEdit,
all achieves 63% coverage, which is significantly better than
the 53% reached by events and const.

7Moreover, the usage terms of FaceBook and most other commer-
cial applications prohibit automated access.

While Table 2 shows that the four feedback-directed algorithms
achieve nearly identical coverage after 100 generated tests in most
cases, the question remains how the algorithms fare when fewer
tests can be generated. To answer this question, Figure 3 shows, for
each of the benchmarks and for each of these algorithms, the cover-
age achieved as a function of the number of generated tests. From
these charts, it is clear that cov and all sometimes achieve their
maximal coverage with many fewer tests than events and const.
For example, on 3dModeller, all four algorithms achieve the same
maximal coverage of 74%, but all requires only 15 tests to reach
this level, whereas cov requires 45 tests, const requires 80 tests,
and events even 85 tests. Similar effects can be observed on several
other benchmarks. On the other hand, for some other benchmarks
(e.g., Pacman, DragableBoxes) the behavior of the four algorithms
is very similar. The Pacman benchmark is a bit of an outlier with
only 44% coverage reached by all algorithms. This is due to the fact
that Pacman is an interactive game that involves behaviors that are
only triggered by complex sequences of user events and timeouts.

5.6 Programming Errors
The last three columns of Table 2 show the number of HTML

errors and execution errors that were observed in each benchmark,
for the initial algorithm, and for events and all after 100 generated
tests. As can be seen from these results, HTML errors were ob-
served in all benchmarks, but only one execution error was found
(a dereference of undefined, in Homeostasis). The benchmark
programs have likely already been thoroughly tested, so we did
not expect to find significant errors, and most of the HTML errors
are indeed relatively harmless. Specific examples of the kinds of
HTML errors we found include misplaced body, li, and div el-
ements as well as attributes that are browser specific or otherwise
illegal according to the chosen DOCTYPE.

In several cases, events and all find significantly more HTML
errors than initial. Interestingly, this is even the case for Pacman,
where twice as many HTML errors are found despite the fact that
these algorithms achieve only 1% more coverage than initial. Note
also that the sole execution error was not found by initial, reaffirm-
ing that it is worthwhile to test parts of an application beyond what
can be reached after the initial page load.

5.7 Performance
The algorithms presented in this paper are quite efficient. On

each of our benchmarks, generating 100 test inputs with any of
the algorithms under consideration required at most 2 minutes. All
experiments reported on in this paper were conducted on a PC with
a 3.2Ghz CPU and 2GB of memory, running Linux.
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Figure 3: Coverage computed for each of the benchmarks, as a function of the number of generated tests.
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5.8 Summary
In summary, our conclusions of the experiments are:

• Each of the events, const, cov, and all algorithms achieves
significantly better coverage (69%, 69%, 71%, and 72%, on
average) than initial (38% on average).

• While the coverage achieved by events, const, cov, and all
after generating 100 tests tends to be very similar, cov and all
converge on their result significantly faster in several cases.

• The techniques find HTML validity errors in all benchmarks,
but all and events find significantly more than initial. Only
one execution error was found, and only the feedback-directed
algorithms managed to find it.

5.9 Threats to Validity
There are several reasons why the presented results might not

generalize. Our own most significant concern is that the selected
benchmarks might not be representative of real-world JavaScript
programs, because they are small, or because they lack a significant
server-side component. With respect to representativeness, we are
not aware of any bias in selecting these particular programs, some
of which have been analyzed by other researchers as well. With
respect to their sizes, it seems that the average JavaScript program
is significantly smaller than the average Java or C program, and
in our experience, the sizes of the applications that we analyzed,
though small, are fairly typical of JavaScript programs without a
significant server side.

6. RELATED WORK
Our framework is related to the feedback-directed random test-

ing technique by Pacheco et al. [19], implemented in the tool Ran-
doop. In their approach, which targets object-oriented APIs and not
JavaScript web applications, test inputs are sequences of method
calls. Such test inputs are constructed, starting from the empty
sequence, by extending an existing test input with a new method
call using parameters obtained during previous calls. Instead of
method call sequences, we consider event sequences as test inputs.
A key difference is that their approach assumes a fixed collection
of methods involved in the test inputs, whereas our technique in a
feedback-directed manner needs to discover which events are rel-
evant since event handlers can be added and removed during exe-
cution. Also, although we focus on random testing in this paper,
our general framework does permit more general forms of feed-
back, such as combined concrete and symbolic execution [7,22,24],
which we plan to investigate in future work.

Saxena et al. [22] present an automated approach for testing
JavaScript applications, implemented in the tool Kudzu. It com-
bines the use of random test generation to explore the application’s
event space (i.e., the possible sequences of user-interface actions)
with the use of symbolic execution for systematically exploring an
application’s value space (i.e., how the execution of control flow
paths depends on input values). The main goal of their work is to
find code injection vulnerabilities that result from untrusted data
provided as arguments to, for example, eval. The symbolic exe-
cution part relies on an elaborate model for reasoning about string
values and string operations. In contrast, our framework does not
divide the test input into an event space and a value space, and
it permits random test generation and feedback-directed mecha-
nisms to be combined less rigidly. In particular, our framework
is feedback-directed also for the event space. Most importantly, al-
though a direct comparison is not possible because of differences
in experimental methodologies, as discussed in Section 5, our al-
gorithms succeed in obtaining high code coverage without the use

of a sophisticated string constraint solver. One consequence of the
complexity of the approach by Saxena et al. can be seen in the ex-
perimental results reported in [22], which use a timeout of 6 hours.
In contrast, we operate with much shorter test generation times of
only a few minutes (see Section 5).

The Crawljax tool by Mesbah et al. [17] applies dynamic analy-
sis to construct a state-flow graph that models the states of an AJAX
application’s user-interface and the transitions between these states.
From this model, a set of equivalent static pages can be generated
that can be used for various applications (e.g., applying search en-
gines to their content, performing state-based testing, etc.). Crawl-
jax relies on a heuristical approach for detecting “clickables”, i.e.,
elements of the DOM that may correspond to active user-interface
components, and crawls the application by exercising these click-
ables in some random order. In contrast, our technique monitors
the code of an application as it executes and is capable of detect-
ing when event handlers are registered. Crawljax does not require
modifications to the JavaScript interpreter, but its heuristics-based
approach may be unable to detect all event handlers (as is evidenced
by the fact that the tool provides users with a domain-specific lan-
guage to specify how to crawl an application) or recognize when
event handlers are active. Furthermore, our feedback-directed tech-
nique is capable of exploring the state space of an application more
effectively by detecting when sequences of events are likely to trig-
ger interesting program behaviors. The approach by Duda et al. [5]
also builds finite-state models of AJAX applications. It uses a fixed,
breadth-first heuristic and is not feedback-directed.

In later work, Mesbah and van Deursen describe Atusa [18], a
tool that relies on Crawljax to create a model of the state space of
an AJAX application. Then, Atusa can check this state space model
for a number of common problems, including DOM invariants such
as: situations where the application causes the HTML DOM to
be malformed, situations where the DOM contains error messages
such as “404 Not Found” and state machine invariants such as
dead clickables (corresponding to URLs that are permanently un-
available) and situations where pressing the browser’s back-button
results in inconsistent behavior.

The event driven nature of JavaScript web applications is similar
to traditional GUI applications, which also rely on user-triggered
events to drive the program. Memon has described an approach to
automated testing of GUI applications that consist of hierarchically
organized modal dialogs [16]. In later work, Memon and Yuan
employed execution feedback to enhance coverage by taking inter-
actions between event handlers into account and refining test cases
iteratively in batches [25,26]. Although the underlying structure of
the GUI application code is different compared to JavaScript appli-
cations, it may be possible to adapt their notion of event semantic
interactions into our general framework, which we will explore in
future work. This idea has also been used in a semi-automated ap-
proach to state-based testing by Marchetto et al. [14, 15].

Static analysis for JavaScript has emerged as a complementary
technique for detecting errors [8, 9, 12], however this direction of
work is still at an early stage. The dynamic nature of JavaScript [20],
such as runtime code generation with eval and runtime HTML
parsing with innerHTML, makes it difficult to create precise and
scalable error detection tools based on static analysis alone. Yet
another approach to finding errors in JavaScript applications is con-
tract-driven testing [10], which, unlike our approach, requires the
programmer to provide extensive formal contracts.

A central aspect of our framework is its ability to support many
variations of prioritization and use of feedback. The topic of prior-
itization has been studied extensively for other domains than Java-
Script, for example by Rothermel et al. [21] and Bryce and Memon
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[4]. Our read/write sets heuristic can be seen as a variant of the
technique by Boonstoppel et al. [3].

7. CONCLUSION AND FUTURE WORK
The main contribution of this paper is a framework for feedback-

directed testing of JavaScript applications. We implemented the
framework in a tool called Artemis and created several effective test
generation algorithms by instantiating the framework with differ-
ent prioritization functions and input generators that employ sim-
ple feedback mechanisms. Our experimental results show that the
basic algorithm, events, produces surprisingly good coverage (69%
on average) if enough tests are generated. However, if test gen-
eration is directed by coverage information and read-write sets, as
embodied in our cov and all algorithms, a slightly better level of
coverage (72% on average) can be achieved, and sometimes with
many fewer tests. We have also demonstrated how the generated
tests can be used for detecting programming errors, in particular
HTML validity errors and crashes.

There are many possible avenues for future work, including other
feedback-directed testing strategies, such as a suitable variation on
symbolic execution [7, 24]. We are also interested in integrating
Artemis with Apollo [2] to extend automated testing to applica-
tions that span both server and client code, and in generalizing the
framework to accommodate for multiple concurrent users that in-
teract via a shared server. Furthermore, the framework can provide
a basis for studying fault localization techniques [1], test suite min-
imization [11], and detection of security vulnerabilities [8,9,22] for
JavaScript applications. Our tool currently models only one partic-
ular browser, characterized by the Envjs library, when generating
the test suite. However, the generated test suite can subsequently be
run on other browsers as, e.g., Selenium scripts, in order to uncover
browser incompatibilities. Alternatively, it may be worthwhile to
modify or replace Envjs to model other browsers.
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