Definition 1. Let \(F : \mathcal{C} \rightarrow \mathcal{C} \) be a functor.

- A fixed point of the functor \(F \) is an object \(X \) such that \(F(X) \cong X \).
- An algebra for the functor \(F \) is a pair \((X, \phi)\) where \(X \) is an object of \(\mathcal{C} \) and \(\phi : FX \rightarrow X \) is a morphism. The object \(X \) is called the carrier of the algebra.

The algebra \((L, \gamma)\) is initial if for any other algebra \((X, \phi)\) there exists a unique morphism \(f \) such that the following diagram commutes:

\[
\begin{array}{ccc}
F(L) & \xrightarrow{F(f)} & F(X) \\
\downarrow{\gamma} & & \downarrow{\phi} \\
L & \xrightarrow{f} & X
\end{array}
\]

- A coalgebra for the functor \(F \) is a pair \((X, \phi)\) where \(X \) is an object of \(\mathcal{C} \) and \(\phi : X \rightarrow FX \) is a morphism. The object \(X \) is called the carrier of the coalgebra.

The coalgebra \((L, \gamma)\) is final if for any other coalgebra \((X, \phi)\) there exists a unique morphism \(f \) such that the following diagram commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & L \\
\downarrow{\phi} & & \downarrow{\gamma} \\
F(X) & \xrightarrow{F(f)} & F(L)
\end{array}
\]

Remark 1. The dual concepts, of a final algebra and initial coalgebra, are not particularly useful.

Exercise 1. Show that if \((L, \gamma)\) and \((L', \gamma')\) are initial algebras for \(F \) then there exists a unique isomorphism \(f \) such that

\[
\begin{array}{ccc}
F(L) & \xrightarrow{F(f)} & F(L') \\
\downarrow{\gamma} & & \downarrow{\gamma'} \\
L & \xrightarrow{f} & L'
\end{array}
\]

commutes, i.e., initial algebras are unique up to isomorphism.

Formulate and prove an analogous result for final coalgebras.
Exercise 2. Show that if \((L, \gamma)\) is an initial algebra (resp. final coalgebra) for the functor \(F\) then \(\gamma\) is an isomorphism.

Hint: \((F(L), F(\gamma))\) is also an algebra (resp. coalgebra) for \(F\).

Remark 2. The previous exercise shows that initial algebras and final coalgebras of \(F\) are in particular its fixed points.

Exercise 3. Some functors have neither an initial algebra nor a final coalgebra.

- Show that the power set functor described in the first assignment has no fixed point. Recall that this functor maps the set \(X\) to its power set \(P(X)\) and it maps a function \(f: X \to Y\) to the image function \(\mathcal{P}(X) \to \mathcal{P}(Y)\).

- Conclude that it has neither an initial algebra nor a final coalgebra.

Definition 2. A colimit of type \(\omega\) is a colimit of a diagram of type \((\mathbb{N}, \leq)\) where \((\mathbb{N}, \leq)\) is the poset of natural numbers with less than or equal relation considered as a category.

A limit of type \(\omega^{\text{op}}\) is a limit of a diagram of type \((\mathbb{N}, \geq)\) where \((\mathbb{N}, \geq)\) is the poset of natural numbers with greater than or equal relation considered as a category.

Exercise 4. Suppose \(C\) has an initial object \(0\) and colimits of type \(\omega\). Suppose \(F: C \to C\) preserves colimits of type \(\omega\). Define the sequence of objects \(F_n\) and arrows \(i_n: F_n \to F_{n+1}\) as follows.

\[
F_0 = 0 \\
F_{n+1} = F(F_n) \\
i_0 = !_{F(0)} \\
i_{n+1} = F(i_n)
\]

These thus define the following diagram

\[
\begin{array}{ccccccc}
F_0 & \xrightarrow{i_0} & F_1 & \xrightarrow{i_1} & F_2 & \xrightarrow{i_2} & F_3 & \xrightarrow{i_3} & \cdots \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}
\]

Show that the colimit \(L\) of this diagram is the carrier of the initial algebra for \(F\). This means that you need to define a map \(\gamma: F(L) \to L\) and show it satisfies the universal property described in Definition 1.

Exercise 5. Suppose \(C\) has a terminal object \(1\) and limits of type \(\omega^{\text{op}}\). Suppose \(F: C \to C\) preserves limits of type \(\omega^{\text{op}}\). Define the sequence of objects \(F_n\) and arrows \(p_n: F_{n+1} \to F_n\) as follows.

\[
F_0 = 1 \\
F_{n+1} = F(F_n) \\
p_0 = !_{F(1)} \\
p_{n+1} = F(p_n)
\]

These thus define the following diagram

\[
\begin{array}{ccccccc}
F_0 & \xleftarrow{p_0} & F_1 & \xleftarrow{p_1} & F_2 & \xleftarrow{p_2} & F_3 & \xleftarrow{p_3} & \cdots \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}
\]

Show that the limit \(L\) of this diagram is the carrier of the final coalgebra algebra for \(F\).

Hint: Use duality.

Exercise 6. Let \(A\) be a set and let \(F: \text{Sets} \to \text{Sets}\) be the functor given on objects as

\[F(X) = 1 + A \times X\]

and on arrows as

\[F(f) = \text{id}_1 + \text{id}_A \times f\]
• Show that the carrier of the initial algebra of \(F \) is the set of finite sequences of elements of the set \(A \). Call this set \(L_A \). This means that you must define a function \(F(L_A) \to L_A \) and show it has the universal property stated in Definition 1.

• Show that the carrier of the final coalgebra of \(F \) is the set of all sequences (finite and infinite) of elements of the set \(A \).

• Let \(A \) be the set of natural numbers. Use the initial algebra property of \(L_\mathbb{N} \) to define the function \(\text{sum} : L_\mathbb{N} \to \mathbb{N} \) which maps a sequence to the sum of its elements.

\textbf{Remark 3.} For the functor \(F \) in the previous exercise, given any other algebra \((X, \phi)\) the unique map \(f \) making

\[
\begin{array}{ccc}
F(L) & \xrightarrow{F(f)} & F(X) \\
\downarrow \gamma & & \downarrow \phi \\
L & \xrightarrow{f} & X
\end{array}
\]

commute is what is usually called \(\text{fold}_\phi \) in functional programming. It is the basic structural recursion operation associated with \(L \).