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Abstract. We present a constructive algebraic integration theory. The theory is constructive
in the sense of Bishop, however we avoid the axiom of countable, or dependent, choice. Thus
our results can be interpreted in any topos. Since we avoid impredicative methods the results
may also be interpreted in Martin-L type theory or in a predicative topos in the sense of
Moerdijk and Palmgren.
We outline how to develop most of Bishop’s theorems on integration theory that do not
mention points explicitly. Coquand’s constructive version of the Stone representation theorem
is an important tool in this process. It is also used to give a new proof of Bishop’s spectral
theorem.
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1 Introduction

The intend of this note is to present the essence of integration theory algebraically, constructively
and without using countable choice. Instead of working in a fixed formal system we work informally
in Bishop-style mathematics [2], however the axiom of countable choice (CAC) is avoided, as was
proposed by Richman [19]. However, a predicative topos in the sense of Moerdijk and Palmgren [16],
Aczel’s CZF [1] or Martin-L type theory [15] [17] would be a quite suitable foundations for the
current article.

Richman [18] states that ‘measure theory and the spectral theorem [...] are major challenges for
a choiceless development [of constructive mathematics]’ and he expects ‘a choiceless development
of this theory to be accompanied by some surprising insights and a gain of clarity.’ We address this
challenge by using algebraic and point-free methods. It is somewhat surprising to see that to develop
the theory constructively without choice one is invited to state and prove stronger theorems, which
makes the general theory more satisfying and the proofs somewhat cleaner.

The main idea is that instead of using functions modulo an equivalence relation, we study
the algebraic structure of these spaces. That is, we study them as f-rings. This may be seen as a
point-free approach to integration theory. There is an alternative point-free approach where one
makes the shift from a measure space to a measure algebra — that is a Boolean algebra with a
measure — which in the concrete case is an algebra of sets modulo the null sets; see [8]. These two
approaches have counterparts in point-free approaches to topology. The present approach is similar
to the C*-algebra approach to topology in the sense that they both study ‘functions’ algebraically.
The Boolean algebra approach is similar to that in formal topology [20] [10] [12], where one uses
the algebraic properties of open sets, instead of using the open sets themselves.



Since we only use the algebraic structure our results apply more directly to other areas of
functional analysis, for instance to the theory of Abelian algebras of operators, as we shall see
in section 8. On the other hand it seems more difficult to relate to more concrete questions in
probability theory. It may be that the results on the measurability of Borel sets in [8] are more
relevant in this context. However, more research is needed before drawing such conclusions.

This note is a continuation of the work on algebraic integration theory in [23]. The difference
with the treatment in [23] is that we do not use the axiom of countable choice and the we start
with a general f-algebra instead of the f-algebra S(A) of simple functions on a Boolean algebra A.

This article is organized as follows first we give a short discussion of constructive mathematics
without choice. Then we define integration f-algebras and the space L1. Then L0 is defined as its
completion with respect to a certain metric. We define L2 and prove a Radon-Nikodym theorem.
Finally, in section 8 we give a new and apparently simpler proof of Bishop’s spectral theorem.

2 Completions

In the absence of countable choice the Cauchy and the Dedekind definition of the real numbers are
not provably equivalent. In fact, there is a sheaf model where the Cauchy reals are not complete [24]
(p. 788). A predicative choice-free definition of the Dedekind reals using Subset collection can be
found in [1], section 3.6. Using the Dedekind reals one defines the completion of a metric space using
locations as is explained by Richman [19] (sec. 5). A similar construction, the ‘flat completion’, can
be found in [25] using ideas from [13] and [3]. We repeat Richman’s definition here. We would like
to stress that, given a predicative definition of the Dedekind reals, this definition of the completion
is predicative in the sense that one does not need to quantify over the all possible subsets. Instead,
we use the set of uniformly continuous real valued functions on a metric space.

Let S be a metric space. By a location in S we mean a real valued function f on S with the
properties
1. f(x) ≥ |f(y)− d(x, y)| for all x, y ∈ S,
2. infx∈S f(x) = 0.

Note that (1) is equivalent to d(x, y) ≤ f(x) + f(y) and f(y) ≤ f(x) + d(x, y), and that it implies
that f is nonnegative and uniformly continuous. Moreover if x 6= y, that is, if d(x, y) > 0, then
either f(x) > 0 or f(y) > 0, so f vanishes on at most one point. Every point z in S gives rise to the
location f defined by f(x) = d(x, z). Note that f(y) = limf(x)→0 d(x, y). This is immediate from
the two properties of a location.

We can define a natural metric on the set Ŝ of locations in S. We define the metric d on Ŝ by

d(f, g) := sup
y∈S

|f(y)− g(y)| = inf
x∈S

|f(x) + g(x)|.

Then Ŝ is the completion of S. A metric space S is complete if the natural map from S to Ŝ is
onto, that is, if every location on S is given by a point of S.

Theorem 1. [Richman] If φ : A→ B is uniformly continuous on bounded subsets, then φ extends
uniquely to a map from Â to B̂ that is uniformly continuous on bounded subsets. If A is a closed
subset of B, and B is complete, then A is complete.

Richman [19] (p.14) already noted that locations correspond to regular sequences of inhabited
subsets. A sequence1 λn.Sn of subsets is regular when d(x, y) < 1/n + 1/m for all x ∈ Sn and
1 We use the notation λx.y for the function which assigns y to x. It is sometimes written as x 7→ y.



y ∈ Sm. Indeed, for any location f the sequence λn.{x : f(x) < 1/n} is regular. Conversely, given
a regular sequence one can define a location f by letting f(x) be the distance of x to the ‘limit’ of
the sequence.

3 Integration f-algebras

We give an algebraic description of some key results Bishop’s integration theory in [2]. We first
state some definitions.

Definition 1. A Riesz space is a vector space which has a lattice structure compatible with the
vector space structure. That is, f ≤ g implies that f + h ≤ g + h and f ≥ 0 implies αf ≥ 0
whenever α is a non-negative real number. We will only be concerned with Archimedean Riesz
spaces L, that is if there exists u in L such that for all n, |a| ≤ (1/n)u, then a = 0. From now on
we drop the adjective Archimedean.

Definition 2. An f-algebra 2 is a Riesz space which has an algebra structure compatible with the
vector space structure. That is, fg ≥ 0, whenever f, g ≥ 0, and if f ∧ g = 0, then hf ∧ g = 0 for all
h.

One can prove that a2 ≥ 0, |ab| = |a||b| and that if a∧b = 0, then ab = 0; see [11] (sec. 352–353).
We assume that our f-algebra is a sub-f-algebra of an f-algebra with a unit for the multiplication,
which we will denote by 1, and that the f-algebra is closed under the map λa.a ∧ 1. This unit is a
weak unit with respect to the order, that is if u ∧ 1 = 0, then u = 0, or alternatively, that 0 is the
greatest lower bound of {u ∧ (1/n)1}; see [11] (353P). Constructively, one may want to distinguish
the greatest lower bound from the infimum, the latter having more computational content, however
we avoid this problem by Definition 3.

We define x∧ q1 := q( 1
qx∧ 1), for q 6= 0 and write x∧ q instead of x∧ q1 whenever q is a scalar.

Definition 3. Let L′ be a f-algebra with a multiplicative unit 1 and let L be a sub-f-algebra of L′

which is closed under the map λa.a∧ 1. An integral I on L is a positive linear functional such that
I(a ∧ n) → I(a) and I(a ∧ 1/n) → 0 when n tends to ∞. An f-algebra with an integral is called an
integration f-algebra.

Note that this is not the usual definition of an integral on a Riesz space. The usual definition
requires that if infa∈A a = 0, then infa∈A I(a) = 0,which does not allow to define non-trivial integrals
on the space of test-functions on the unit interval.

Three important examples of integration f-algebras are:
• Bishop’s integration spaces [2];
• A space of test-functions with a positive linear functional: a Daniell integral (which is a special

case of the previous one);
• simple functions defined on a measure algebra (for instance [23]).

Given an integration algebra one can make a new integration f-algebra by considering the equality
defined by I(|a− b|) = 0. We will assume that this has been done.

When α is a positive real number, we write a ≤ α, or a is bounded above by α, for a ≤ a ∧ α.
We see that ab ≤ αb,whenever a ≤ α. An element of a of L is said to be bounded if there exists
2 For us, an f-algebra is always commutative. In fact, one can prove that an Archimedean f-algebra is

commutative; see [6]. In [9] it is indicated how this proof can be made constructive.



q ∈R such that |a|∧q = |a|, that is |a| ≤ q. Given any f-algebra one can consider it’s sub-algebra of
bounded elements, which is again an f-algebra. This algebra will be denoted by Lb. If 1 is contained
in Lb, then it is a strong unit — that is for all a in A, there is a rational number q such that |a| ≤ q1.

Let (L, I) be an integration f-algebra. As usual the integral I induces a norm λf.I(|f |) on L.
The completion of L with respect to this norm is denoted by L1(I). The space L1 is a normed Riesz
space, but it is not an algebra. An idempotent in L or L1 is called an integrable set.

We claim that much of Bishop’s integration theory can be developed for general integration
f-algebras as long as points are not mentioned in the statement of the theorem.

3.1 Segal’s integration algebras

Our definition of an integration f-algebra may be compared to a real commutative integration
algebra in the sense of Segal [21] [22].

Definition 4. An integration algebra is a real Abelian algebra A together with a linear functional
I such that
1. I(a2) ≥ 0 and I(a2) = 0 if and only if a = 0.
2. For all b ∈ A there exists α ∈ R such that I(ba2) ≤ αI(a2) for all a ∈ A. We say that b is

bounded by α and write b ≤ α.

Any integration f-algebra with a strong unit is an integration algebra. It was stressed by Segal
that the algebraic integration theory is the proper way to describe simultaneously observable events
in applications.

4 Profiles

We now consider Bishop’s profile theorem [2] a key theorem in the Bishop-Cheng integration theory.
The profile theorem states in an abstract and positive way the classical fact that an increasing
function on the real numbers can have at most countably many discontinuities. This theorem can
be translated to the present setting when we use dependent choice, see [23]. However, without choice
it seems difficult to prove this theorem. Indeed, it implies that the real numbers3 are uncountable.
In the appendix we show that this is not true in the sheaf model over the reals and hence that there
is no hope of proving it constructively without using choice.

To see that the profile theorem implies the uncountability of [0, 1] consider a sequence λn.qn of
points in the interval [0, 1] and define the integral I(f) :=

∑
n 2−nf(qn) on the space C[0, 1] of test

functions. The function f(x) := x is integrable. A smooth point for this function would be distinct
from all the points qn.

A consequence of the profile theorem is that every integrable function can be approximated
arbitrary closely from above and below by integrable simple functions. It is not clear to me whether
this theorem can be proved without choice. This approximation theorem is used for instance to
prove that for a test function φ, φ ◦ f is again integrable. Instead, we will derive this theorem using
the Stone representation theorem.

3 As mentioned before, without the axiom of countable choice the Dedekind reals may differ from the
Cauchy reals, the argument below does depend on the existence of a limit of a fast converging Cauchy
sequence. Such a limit exists in both the Dedekind and the Cauchy reals.



5 Stone representation theorem

When X is a locally compact space, then C(X) denotes the space of test-functions, that is, the
space of functions with a compact support.

We present Coquand’s constructive version [7] of the Stone representation theorem, which we
then specialize to f-algebras. The formal space mentioned in the theorem is a space in the sense of
formal topology [20] [10] or locale theory [12]. We recall that the objects of both the categories of
frames and locales are complete distributive lattices.

An ordered ring is a ring with an ordering which is preserved by + and ·. A ring R is divisible if
for every n ∈ N∗ and r ∈ R, there exists s ∈ R such that ns = r. To a divisible ordered Archimedean
ring R we associate a lattice Max(R), which intuitively may be thought of as the lattice of opens
of the maximal spectrum of the ring. However, instead of using non-constructive set-theoretic tools
(e.g. Zorn’s Lemma), proof-theoretic tools can be used to study the lattice of opens directly. The
lattice Max(R) will be generated by expressions of the form D(a), a in R, which may be thought
of as the opens {φ ∈ Max(R) : â(φ) > 0}. Here ·̂ denotes the Gelfand transform â(φ) := φ(a).
The locale Max(R) is the locale generated by the expressions D(a), a in R, subject to the following
relations:
1. D(a) ∧D(−a) = 0;
2. D(a) = 0 if a ≤ 0;
3. D(a+ b) ≤ D(a) ∨D(b);
4. D(1) = 1;
5. D(ab) = (D(a) ∧D(b)) ∨ (D(−a) ∧D(−b));
6. D(a) =

∨
r D(a− r).

A continuous function f on a frame X is defined by two families of elements of X, Ur, Ls, indexed
by the rationals satisfying the following properties:

∨
r

Ur =
∨
s

Ls = 1

Ur =
∨

r′>r

Ur′

Ls =
∧

s′<s

Ls′

Ur ∨ Ls = 1 ifr < s

Ur ∧ Ls = 0 ifs ≤ r

Intuitively, Ur stands for f−1(r,∞) and Ls stands for f−1(−∞, s). It is interesting to note the
similarity with the constructive definition of the reals as Dedekind cuts.

We can now formulate a constructive version of the Stone representation theorem which was
proved in [7]. We recall that a formal space A is completely regular if every a in A is the supremum of
all the elements that are really inside it. An open b is really inside an open a if there is a continuous
function f such that f = 0 on b and f = 1 outside a. In general, the equivalence of the present
definition of ‘completely regular’ with another common definition of ‘completely regular’ requires
the axiom of choice. However, in the present setting we will be only interested in certain spectra
where this property is unproblematic. In view of the following theorem we recall that compact
completely regular locales are the pointfree analogues of compact Hausdorff spaces.



Theorem 2. [Stone] Let R be a divisible ordered Archimedean and commutative ring with strong
unit. Let Max(R) be the formal space of ring homomorphisms φ : R → R such that φ(a) ≥ 0,
whenever a ≥ 0. The space Max(R) is compact Hausdorff and there is a positive ring homomorphism
·̂ : R→ C(Max(R)). Moreover, if â ≥ 0, then â = 0 if and only if a ≤ 1

n for all n.
Finally, the set {â : a ∈ R} is dense in C(Max(R)).

Every integration f-algebra L with a strong unit can be densely embedded into a formal C(X),
where X is the spectrum of L. This embedding is norm continuous, hence the integral can be
extended to an integral on C(X). Also every element can be presented as a point-free function.

6 Measurable functions

Measurable functions can be abstractly treated in at least two ways: either as an order-theoretic
limit of the sequence λn.f ∧n∨−n of integrable functions, or as the completion of L1 with respect
to a certain metric. The latter approach, the one we will use, has the advantage that |g| ∧ f is
integrable for all measurable functions g and all integrable functions f .

Let L be an integration f-algebra. We assume that L has a multiplicative unit, that is the integral
is finite. The σ-finite case is treated in [23], however in that article the axiom of dependent choice
is used. The restriction to finite integrals is not strictly necessary, but simplifies the presentation.

A pseudo-metric ρ on a set X is a binary function such that ρ(x, y) = ρ(y, x) and ρ(x, z) ≤
ρ(x, y) + ρ(y, z) for all x, y, z in X. For all h ∈ L+

1 we define a pseudo-metric by

dh(f, g) :=
∫
|f − g| ∧ h f, g ∈ L1.

Let h1, h2 ∈ L+
1 ; then

|dh1(f, g)− dh2(f, g)| ≤ ‖h1 − h2‖1
for all f, g ∈ L1.

Lemma 1. The uniform space (L1, {dh : h ∈ L+
1 }) is metrically equivalent to the uniform space

(L1, d1).

Proof. We prove that the injection map from (L1, {dh : h ∈ L+
1 }) to (L1, d1) is uniformly continuous.

In order to do so fix ε > 0 and h ∈ L+
1 . We pick c ∈ R such that

∫
(h − c)+ < ε/2. If f, g are

elements of L1 such that d(f, g) < ε/2c, then

dh(f, g) =
∫
|f − g| ∧ h ≤ c

∫
|f − g| ∧ 1 +

∫
(h− c)+ < ε.

We now consider the metric space (L, d1). We will write d for d1.

Definition 5. An element in the completion of the metric space (L, d) is called a measurable func-
tion. The collection of measurable functions will be denoted by L0. Convergence with respect to the
metric d is called convergence in measure.

Because d(|f |, |g|) ≤ d(f, g) on L, we can extend the operation λf.|f | from L to L0. We then
define the operations f+, f−, ∧, ∨ and the relation ≤ on L0, using | · |. They extend the already
defined operations and relations on L and the usual relations hold. For instance, to see that |f+g| ≤
|f |+ |g|, we have to show that |f |+ |g| − |f + g| ≥ 0, i.e. ||f |+ |g| − |f + g|| = |f |+ |g| − |f + g|.
But this holds on L and therefore on L0. It follows that L0 is a Riesz space. We will see later that
L0 is actually an f-algebra.



Theorem 3. Convergence in measure on a set dominated by an integrable function h implies con-
vergence in norm.

Proof. When |f |, |g| ≤ h, then
∫ |f − g| =

∫ |f − g| ∧ 2h = d2h(f, g). We see that on the set
{f | |f | ≤ h} norm convergence is equivalent to d2h-convergence. The latter is a consequence of
d-convergence by Lemma 1.

Corollary 1. [Dominated convergence] Let f be a measurable function, let λn.Fn be a regular
sequence of inhabited subsets of L1, and let g be an element of L1 such that for all n ∈ N and
f ∈ Fn, |f | ≤ g. Suppose that Fn → f in measure. Then Fn → f in norm.

We have not assumed that f ∈ L1 as Bishop and Bridges did.

Theorem 4. Let f be a measurable function and let g be an integrable function. If |f | ≤ g, then
f ∈ L1.

Proof. Let h ∈ L+
1 . If f ≤ g, then for all f ′ ∈ L1, dh(f ′ ∧ g, f) ≤ dh(f ′, f). Indeed,

|f ′ − f | ∧ h = (f ′ − f)+ ∧ h+ (f ′ − f)− ∧ h
≥ (f ′ ∧ g − f)+ ∧ h+ (f ′ ∧ g − f)− ∧ h
= |f ′ ∧ g − f | ∧ h.

Let λn.Fn is a regular sequence of inhabited subsets with limit f . Define F ′n := {f ∧g∨−g|f ∈ Fn}.
Then f = limn Fn = limn F

′
n. By Theorem 1 this last limit converges to f in norm. Since L1 is

complete, f is in L1.

Theorem 5. Let λn.fn be a regular increasing sequence of integrable functions. Then the sequence
λn.fn converges in measure to an integrable function if and only if limn→∞ I(fn) exists.

Proof. Suppose that l := limn→∞ I(fn) exists. Then
∫

(fn − fm) → l − l = 0 when n,m → ∞. So
the sequence λn.fn is Cauchy in norm and hence converges to some f ∈ L1.

Conversely, suppose that the sequence λn.fn converges in measure to an integrable function
f ∈ L1. We may assume that fn ≥ 0 for all n ∈ N. For all m,n ∈ N, such that m ≥ n,

∫
fm − fn =

∫
|fm − fn| ∧ f,

which converges to 0 when m,n→∞, because convergence in measure implies df -convergence. So
the sequence λm.

∫
fm converges.

Fix m ∈ R+. Define L≤m := {f ∈ L 1 : |f | ≤ m}.
Lemma 2. Multiplication from L≤m × L≤m to L0 is uniformly continuous.

Proof. We prove that the map λf.f2 is uniformly continuous from L≤m to L≤m. The lemma then
follows from the observation that fg = 1

2 ((f + g)2 − f2 − g2).
Let f, g ∈ L≤m, ε > 0 and suppose that d(f, g) ≤ ε. Then

|f2 − g2| ∧ 1 ≤ |f − g||f + g| ∧ 1
≤ 2m(|f − g| ∧ 1),

consequently d(f2, g2) ≤ 2mε.



The set L≤m is an ordered ring with a strong unit. Indeed, if f, g ≥ 0, then fg ≥ 0, since this
holds in L, multiplication is uniformly continuous and the set of positive elements is closed. By
Theorem 2 the ring L≤m can be embedded into a formal space of continuous functions. Since L≤m

is complete in the uniform topology this embedding is actually an isomorphism. Consequently, L≤m

is an f-algebra. Moreover, we can define φ ◦ f for each continuous function φ and f ∈ L≤m.

Definition 6. Let C be the uniform space of continuous functions on the reals with the sequence
λn.ρn of pseudometrics defined by ρn(f) := sup[−n,n] |f | for all n ∈ N and f ∈ C.

Let C0 denote the set of test-functions.

Theorem 6. The map ◦ : C × L0,m → L0 defined by ◦(φ, f) := φ ◦ f is uniformly continuous.

Proof. Let m ∈ R+ and fix ε > 0. Suppose that φ ∈ C and |φ| ≤ ε on [−m,m]. Then for all
f, g ∈ L0,m,

∫ |φ(f)−φ(g)|∧1 ≤ 2ε ·1. We see that the map ◦ is uniformly continuous on C×L0,m.

For each f ∈ L0 and for each test-function ψ with a support included in [−n, n] we define
ψ ◦ f := ψ ◦ (f ∧ n ∨ −n). This definition does not depend on the choice of n.

Theorem 7. For each f ∈ L0, the map ◦f : C0 → L0 defined by ◦f (ψ) := ψ ◦ f is uniformly
continuous and can therefore be extended uniquely to a uniformly continuous map from C to L0.

Proof. Fix a measurable function f and ε > 0. We assume that f ≥ 0, the general case is treated
by symmetry.

Compute M such that d(f, f ∧M) < ε. Define un := f ∧ (n + 1) − f ∧ n and ln := 1 − un.

Then 0 ≤ un, ln ≤ 1 and ûn = 1 on [f̂ ≥ n + 1] and l̂n = 1 on [f̂ < n]. Here ·̂ denotes the
Gelfand transform defined in Theorem 2 and [f̂ < n] is the formal open where f̂ is smaller than n.
Consequently, un+1 = un+1un, un ≥ un+1 and ln ≤ ln+1. Observe that if a + b = 1 and a, b ≥ 0,
then |φ| ∧ 1 = |φ|(a+ b) ∧ 1 ≤ |φ|a ∧ 1 + |φ|b ∧ 1, for all φ. So

|φf − φ′f | ∧ 1 ≤ |φf − φ′f |un ∧ 1 + |φf − φ′f |ln ∧ 1
≤ un−1 + |φf − φ′f |ln ∧ 1.

Since f ∧ (n+ 1)− f ∧ n = (f − f ∧ n) ∧ 1, we see that I(uM ) = d(f, f ∧M) ≤ ε. This takes care
of the first summand.

We now consider the second summand. For all bounded elements f, p and all test functions φ,
if fp = f, then φ(fp) = φ(f)p = φf, since this equality holds for all polynomials φ, and the set of
polynomials form a dense set. Consequently,

|φf − φ′f |ln ∧ 1 = |(φ− φ′)f |ln ∧ 1
= |(φ− φ′)(fln)|ln ∧ 1
≤ ‖φ− φ′‖[0,n].

So if we choose test functions φ, φ′ such that ‖φ− φ′‖[0,M ] ≤ ε, then I(|φf − φ′f |lM ∧ 1) ≤ ε and

I(|φf − φ′f | ∧ 1) ≤ I(uM ) + I(|φf − φ′f |lM ∧ 1)
≤ 2ε.

The previous theorem allows us to define the multiplication as in Lemma 2 by fg := 1
2 ((f +

g)2−f2−g2). Since λx.x2 is the uniform limit of λx.(x∧n∨−n)2 we see that f2 = lim(f ∧n∨−n)2

and similarly for the multiplication. Consequently, if f ∧ g = 0, then hf ∧ g = 0 for all h in L0,
since this holds for all bounded elements. It follows that L0 is an f-algebra, which, in general, does
not have a strong unit.



6.1 L∞

We saw in the previous section that L∞, the bounded elements of L0, form an f-algebra with a
strong unit. By Theorem 4, the restriction of the multiplication on L0×L0 to L1×L∞ has codomain
L1.

7 The Radon-Nikodym theorem

The space L2 of square integrable elements can be defined as usual by completing L with respect
to the norm induced by the inner product λfg.I(fg), L2 is a Hilbert space and a Riesz space. A
linear functional on a Hilbert space H is normable when its norm can be computed. The Riesz
representation theorem states that for any normable functional f there exists y ∈ H such that
f(x) = 〈x, y〉. A proof not using the axiom of countable choice can be found in [4] (p.3).

Let I and J be integrals on L, then I + J is also an integral L. The functional J is called
absolutely continuous with respect to I when J is a continuous linear functional on L1(I). It is
called normable when it is normable as a functional on L2(I + J).

We can prove to following version of the Radon-Nikodym theorem. The idea of the proof is
similar to the one in [2].

Theorem 8. Let I and J be integrals on the same unital f-algebra such that J is absolutely continu-
ous with respect to I and such that J is normable with respect to I. Then there exists a non-negative
I-integrable function h such that J(f) := I(fh).

Proof. The Riesz representation theorem supplies g ∈ L2(I + J) such that J(f) = (I + J)(fg).
Hence J(f(1− g)) = I(fg). We will prove that J(f) = I(fg/(1− g)).

Indeed, because 0 ≤ J ≤ I + J, we see that 0 ≤ g ≤ 1. Moreover, we know that J(f(1 − g)) =
I(fg).

Define the sequence an := J(gn) and bn := I(gn), then an = an+1 + bn+1. Since g ≤ 1, both of
these sequences are decreasing. Note that

a0 = an +
n∑

k=1

bk. (1)

Given ε > 0, determine δ such that J(f) ≤ ε whenever I(f) ≤ δ. By equation (1), for large n,
bn ≤ δ, so an ≤ ε. Consequently, an converges to 0, so bn is summable and g/(1− g) =

∑∞
k=1 g

k is
I-integrable.

Note that in the point-wise version of [2] quite some effort is spent on the convergence a.e. These
problems do not concern us here.

8 Bishop’s spectral theorem

In this section we obtain a spectral theorem for bounded integrable functions acting on a commuting
algebra of operators on a Hilbert space, which is very similar to Bishop’s spectral theorem [2]
(Thm. 7.8.22). This theorem defines an embedding of a space of bounded integrable functions into
a space of operators. The Stone representation theorem 2 can be used to define such an embedding



for continuous functions. The present proof of the spectral theorem for bounded integrable functions
seems to be technically simpler and more natural then the one by Bishop, since we use the spectral
theorem for continuous functions to prove the one for bounded measurable functions, as opposed
to the converse in Bishop’s treatment.

Let H be a Hilbert space with inner product (·, ·). For any finite dimensional subspace F of
H, with basis {f1, . . . , fn}, the functional TrF (A) on a bounded linear operator A is defined as∑

n(Afn, fn). The value of TrF (A) is independent of the choice of the basis. If the supremum of
TrF (A) over the finite dimensional subspaces F of H exists it is denoted by TrA, cf. [5].

In this paragraph we use the axiom of dependent choice (DC) to construct a basis, this is needed
only to construct the state — a generalized integral — so in case the state can be given in advance,
DC is not needed. Alternatively, we could have tried to force a generic state, but would have made
the connection with Bishop’s theorem less clear. Let λn.en be a countable basis for a Hilbert space
H. Let A be an algebra of commuting self-adjoint operators. Define the unique operator d such
that d(en) = 2−nen for all n ∈ N. Define I(a) := Tr(da). We claim that I is a faithful state, i.e. a
positive linear functional such that I(id) = 1 and if λn.an is a bounded sequence of self-adjoint
operators such that I(a2

n) → 0, then anx→ 0 for all x in H. Indeed,

I(a2
n) = Tr(da2

n)

=
∑

k

2−k(a2
nek, ek)

=
∑

k

2−k‖anek‖2.

It follows that if I(a2
n) → 0, then the sequence λn.anek converges for all k. Since the span of

{ek : k ∈ N} is dense and the sequence λn.an is bounded, the sequence λn.anx converges for all x
in H.

The pair (A, I) is an integration algebra. To check the second property, we observe Tr(dba2) ≤
‖b‖Tr(da2). The integral I is positive with respect to the usual order on operators defined by
a ≥op 0 if and only if (ax, x) ≥ 0 for all x in H. Moreover, if a ≥op 0, then I(ab2) ≥ 0 for all
b ∈ A, since (a(ben), (ben)) ≥ 0 for all n ∈ N and b ∈ A. We write a ≥I 0 when I(ab2) ≥ 0 for all
b ∈ A. Using elementary Hilbert space theory one can prove that (A,>op) is an f-algebra; see for
instance [9] for details. By Stone’s theorem A can be densely embedded into an f-algebra C(X) and
since I(id) = 1 the integral can also be extended to this f-algebra. We claim that ≥op, the usual
order on operators, and the order ≥I induced by the integral are the same. In fact, this proof works
for every integration f-algebra.

Lemma 3. Let (A, I) be an integration f-algebra. Suppose that I(ab2) ≥ 0, for all b ∈ A. Then a
is positive in the f-algebra A.

Proof. By the previous lemma if φ ≥ 0 in an f-algebra, then φ can be approximated uniformly from
below by a sum of squares. Since the algebra has a unit and the integral is positive, it follows that
I(aφ) ≥ 0, for all positive φ ∈ A. Let b = a+ and c = a−. Then I(aa−) ≥ 0, because a− ≥ 0. Since
aa− = (a+ − a−)a− = −(a−)2, we have −I((a−)2) ≥ 0, so I((a−)2) = 0. It follows that a− = 0.
That is a = a+ − 0 ≥ 0.

Consequently, I(ab2) ≥ 0 for all b ∈ A if and only if a is a positive in A. We see that the order
relations ≥op and ≥I agree.



We now obtain a theorem similar to Bishop’s spectral theorem. Recall that using DC one can
always construct a faithful state on a separable Hilbert space.

Theorem 9. Let A be a unital commuting algebra of self-adjoint operators on a Hilbert space with
a faithful state. Then there exists an integral J on the spectrum of A and bound preserving dense
embedding from A into L∞(J). If A is complete, then the embedding is an isomorphism. Moreover,
if λn.ân is a bounded sequence which converges in L∞(J), then λn.an converges strongly.

Proof. We consider A as an integration algebra as above. The Gelfand transform is a bound pre-
serving map from A into C(Max(A)). The state can be extended to an integral on C(Max(A)).

Finally, let ân be a bounded sequence in C(Max(A)) converging in L∞(J), then ân converges
in L2(J). Consequently, the sequence λn.an converges strongly.

9 Conclusions

We have shown how to develop a large part of Bishop’s integration theory in an algebraic and
pointfree setting. Coquand’s pointfree Stone representation theorem is the key result used both
in the development of integration theory and in the proof of the spectral theorem. We have not
used the axiom of countable or dependent choice, thus meeting Richman’s challenge to develop a
choicefree integration theory.

Since we have avoided choice the results may be interpreted in every topos and in particular in
sheaf models. This may be of interest in applications where one uses a ‘continuously’ varying family
of integration spaces, as one does, for example, in the theory of stochastic processes.

The proof of the spectral theorem presented above seems to be somewhat easier than the one
given by Bishop. The present approach also seems to be more natural in the sense that it starts
from the spectral theorem for continuous functions and then proceeds towards the theorem from
bounded measurable functions as opposed to Bishop who does the converse.

The present development is mostly directed towards the algebraic aspects of integration theory
and their applications in functional analysis. In probability theory sometimes one is more interested
in working with Borel sets directly, there the constructive and pointfree approach of Coquand and
Palmgren [8] may be more appropriate.
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A Uncountability of the reals

We show that the statement

∀x ∈ N→ R∃y ∈ R∀n ∈ N∃m ∈ N|xn − y| ≥ 1/m (2)

does not hold in the internal logic of the sheaf model over the reals4. See for instance [24] or [14]
for more information on sheaf models for intuitionistic logic.

4 I would like to thank Pino Rosolini for helping me find this counterexample.



Indeed, suppose that formula 2 would hold in this model. Then given an interval U and any
sequence x ∈ RN(U) ∼= U ×N→ R of functions there is a cover Vi of U and yi : Vi → R such that
for all n we can choose a cover Vi,k of Vi and mi,n,k such that

|x(n)− yi| ≥ 1/mi,n,k onVi,k (3)

for all i and k.
However, if we take U = R and choose a sequence of linear functions making a dense 45◦ grid.

y

Then classically by the intermediate value theorem on any inhabited open Vi there will be a function
xn that intersects yi. This contradicts formula 3. Using the approximate intermediate value theorem
we can make this argument constructive.


