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Abstract: We present a to following results in the constructive theory of operator
algebras. A representation theorem for finite dimensional von Neumann-algebras. A
representation theorem for normal functionals. The spectral measure is independent of
the choice of the basis of the underlying Hilbert space. Finally, the double commutant
theorem for finite von Neumann algebras and for Abelian von Neumann algebras.
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1 Operator algebras

The theory of operator algebras is an infinite-dimensional generalization of ma-
trix algebra theory and can be viewed as a non-commutative version of topology
or measure theory. As such it plays an important role in the representation the-
ory of groups and in the mathematical underpinnings of quantum mechanics.
There does not seem to be a definitive constructive theory of operator algebras,
although quite a few results have been obtained by Bridges and Dediu [10] [9].
We will continue these developments, mainly considering von Neumann alge-
bras. For the classical theory we used [15] [16] [17] [18] [22] [19] [12]. A quick
introduction to the subject with an eye on physical applications can be found
for instance in [18] or [17].

This paper is organized as follows. The first section includes a very short
discussion of non-commutative measure theory. The next two sections contain
preliminary result. Section 4 contains a representation theorem for von Neumann
algebras on a finite dimensional Hilbert space. Section 5 contains a representa-
tion theorem for normal functionals. In section 6 we discuss faithful states and
use them to prove that the measure in the spectral theorem does not depend on
the choice of the basis. We also use faithful states to obtain some connections
between the weak and the strong operator topology. In section 8 we prove a rep-
resentation theorem for Abelian von Neumann algebras. In section 9 we show
that the classical double commutant theorem can not be proved constructively,
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but we prove this theorem for Abelian von Neumann algebras with a weakly
totally bounded unit ball.

All results are constructive in the sense of Bishop. We will also use [1] as
the general reference text. In this paper all operators are (total and) bounded,
unless stated otherwise. The letter H will denote a (separable) Hilbert space.

2 Non-commutative measure theory

The theory of C*-algebras is sometimes, for example in [18], called
non-commutative topology for the following reason. Let X be a compact space.
The set C(X,C) of continuous complex-valued functions on X is an Abelian
C*-algebra. On the other hand, every Abelian C*-algebra A is isomorphic with
C(Σ), where Σ is the spectrum of A which is compact. In [1] this was proved
constructively for C*-algebras of operators on a Hilbert space. See [8] for a more
general result which does not require the norm to be computable. See Taka-
mura [27] for an introduction to the constructive theory of C*-algebras.

Many questions about the space X can be translated into questions about
C(X). So the theory of Abelian C*-algebras ‘is’ topology. Hence the theory of
general C*-algebras may be called non-commutative topology.

Similarly, we can translate questions about a measure space (X,µ) into ques-
tions about the *-algebra {Mh : h ∈ L∞(µ)}. HereMh denotes the multiplication
operator Mh defined by Mhf := h ·f, for all f ∈ L2. In fact, this algebra is a von
Neumann algebra, that is a *-algebra of operators on a Hilbert space satisfying
certain closedness properties. We will give a precise definition and examples in
section 4. Classically, every Abelian von Neumann algebra is isomorphic to such
a von Neumann algebra of multiplication operators. In this sense, the theory
of von Neumann algebras may be called non-commutative measure theory. In
section 8 we give a constructive result partially justifying this viewpoint.

Let us give a very short dictionary for non-commutative measure theory. A
non-commutative set or event is a projection. A non-commutative function or
random variable is a normal operator. A non-commutative integral or expecta-
tion is a positive linear functional (or state).

In the algebraic approach to quantum mechanics, the observables form a C*-
algebra or von Neumann algebra and the states are positive linear functionals
on this algebra, see for instance [13].

3 Preliminaries

Let B(H) be the quasi-normed space3 of bounded operators on the Hilbert space
H. The unit ball of H is denoted by H1. Let (en)n∈N be a basis for H and let A
3 Any quasi-normed space may be considered as a normed-space where the norm is a

generalized real number in the sense of Richman [21].
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be an operator on H . The trace Tr(A) is defined as
∑∞

n=1 〈Aen, en〉 , whenever
this limit exists. If A and B are bounded operators such that Tr(BA) and Tr(B)
exist, then Tr(AB) = Tr(BA) and Tr(B∗) = Tr(B).

We denote by L1 the space of, necessarily compact, operators A such that
Tr(|A|) exists. Then A �→ Tr(|A|) defines a norm on L1 The space L1 is called
the space of trace class operators . One can prove that for all A ∈ L1, Tr(A)
does not depend on the choice of the basis. The space L2 of Hilbert-Schmidt
operators consists of those compact operators A such that Tr(A∗A) exists. On
L2 we define an inner product by 〈A,B〉 := Tr(B∗A). The space L1 is a Banach
space and the space L2 is a Hilbert space. Remark that L1 ⊂ L2. See [3] for
more on the constructive theory of these classes of operators.

A subset B of B(H) is said to be bounded by M if for all A ∈ B and x ∈ H,

‖Ax‖ ≤M‖x‖. The unit ball B(H)1 of B(H) is the set of operators bounded by
1.

We state the definitions of and some results on several topologies on B(H).

Definition 1. We define four topologies on B(H) as follows.

1. The uniform (or norm) topology is the topology generated by the ‘operator
norm’, that is the topology of the quasi-normed space B(H).

2. The strong operator topology is the uniform topology generated by the col-
lection of semi-norms px(A) := ‖Ax‖, for all x ∈ H .

3. The weak operator topology is the uniform topology generated by the col-
lection of semi-norms px,y(A) := |〈Ax, y〉|, for all x, y ∈ H .

4. The normal (or ultra-weak) topology is the uniform topology generated by
the semi-norms pB(A) := |Tr(BA)|, for all trace-class operators B.

The space B(H) equipped with one of these last three topologies is a uniform
space, see [11] for a constructive theory of uniform spaces. Note that the quasi-
normed space (B(H), {px : x ∈ H1}) has a different topology than the uniform
space (B(H), {px : x ∈ H1}). The former has the norm topology, the latter
the strong topology. On finite dimensional Hilbert spaces all these topologies
coincide. We will now consider the general case. The following facts are well-
known classically and the usual proofs are constructive.

The uniform topology is the strongest of the four, the weak topology is the
weakest. The strong and normal topology are incomparable, but both are be-
tween the other two. On bounded sets the normal and the weak topologies co-
incide. The map T → T ∗ is not strongly continuous, but it is continuous in the
normal topology and weakly continuous. Constructively this map is only par-
tially defined. The maps A,B �→ BA and A,B �→ AB are strongly continuous
from B(H) × B(H)1 → B(H). The unit ball B(H)1 is totally bounded in the
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normal topology, and hence in the weak topology. On bounded sets the strong,
the weak and the normal topology are metrizable and separable, so a sequentially
closed set is closed.

4 Von Neumann algebras

In this section we introduce the notion of a von Neumann algebra and provide
some examples.

It is not clear yet what the ‘right’ constructive definition of a von Neumann
algebra is. A good definition would satisfy at least two demands. First, it should
be general enough to contain the important examples. Second, it should give a
flexible theory. Thus we will use the following definition which seems to be the
weakest definition that is still powerful enough to prove interesting theorems.

Definition 2. A von Neumann algebra (or vN-algebra) A is an algebra of oper-
ators on a Hilbert space H such that I ∈ A, A is closed in the strong-operator
topology and A is self-adjoint — that is, if T ∈ A and T ∗ exists, then T ∗ ∈ A.

A von Neumann algebra is supports all constructions in the spectral theo-
rem. That is, if a Hermitian operator is in a vN-algebra, then all its spectral
projections are also in the von Neumann algebra.

When A is a von Neumann algebra, we denote by A1 its unit ball, that is the
set A∩B(H)1. Bridges proposed to look at von Neumann algebras with a weakly
totally bounded unit ball. Classically, all von Neumann algebras satisfy this
condition. However, constructively this is not the case. Let P be any proposition.
Then, constructively, the von Neumann algebra

{cI : c ∈ C} ∪ {A ∈ B(H) : P}

can not be proved to have a located unit ball. Although it might be tempting to
define a vN-algebra to have a weakly totally bounded unit ball, we will not do
this.

We give some examples of von Neumann algebras.

– The matrix algebra of operators on Cn, which we denote by Mn, is a von
Neumann algebra. Every closed *sub-algebra of Mn is a von Neumann alge-
bra.

– The space B(H) is a von Neumann algebra.

– Let (X,µ) be a measure space. For h ∈ L∞(µ) we define the multiplication
operator Mh on L2(µ) by Mhf = h · f. The space {Mh : h ∈ L∞} is a
von Neumann algebra. To see that it is closed let (hn)n∈N be a sequence in
L∞ such that the sequence (Mhn)n∈N converges strongly to A ∈ B(H). Let

2099Spitters B.: Constructive Results on Operator Algebras



m be a bound for A. Let gn := hnχ[|hn|≤m]. Then the sequence (Mgn)n∈N

also converges strongly to A. Consequently, we may assume that the se-
quence (hn)n∈N is bounded. Finally we remark that strong convergence of
the bounded sequence (Mhn)n∈N implies convergence in measure of the se-
quence (hn)n∈N.

– Let G be a locally compact group. Define for each f ∈ L1(G) the convolution
operator T (f) on L2(G) by T (f)g := f ∗g, for all g ∈ L2(G). Define for each
f ∈ L1(G) the involution f̃ of f by f̃(x) := f(x−1), for almost all x ∈ G.

Then T (f)∗ = T (f̃) for all f ∈ L1. The strong closure of {T (f) : f ∈ L1} is
a von Neumann algebra.

– Finally, the observables in a quantum system can be modeled by the Her-
mitian elements of a von Neumann algebra. By translating the Heisenberg
picture and the Schringer picture of quantum mechanics into the language
of operator algebras von Neumann was able to show that these views are
equivalent, see [13] [23].

Classically, one can prove that every vN-algebra is weakly closed. We do not
know how to prove this constructively, but Corollary 12 contains a result in this
direction.

5 Finite dimensional von Neumann algebras

We prove a representation theorem for von Neumann algebras with a totally
bounded unit ball and which act on a finite dimensional Hilbert space. To do
this we use the Peter-Weyl representation theorem for compact groups.

Let H be a finite dimensional Hilbert space. Let A be a vN-algebra with a
weakly totally bounded unit ball. On a finite dimensional Hilbert space all the
topologies we considered onH and on B(H) coincide. Consequently, A1 is totally
bounded and even compact. We will show that the set of unitary operators in
B(H) is closed and conclude that they form a compact group. Indeed, if Un
is a sequence of unitary operators converging to an operator U, then U is an
isometry4. Since H is finite-dimensional, U is unitary. We conclude that the set
of unitary operators is closed.

We claim that the set of unitary operators in A1 is located. Since projecting
on the real part is a uniformly continuous operation, Asa

1 := {A ∈ A1 : A = A∗}
is totally bounded. The map H �→ ei2πH from Asa to the set of unitary operators
in A is uniformly continuous and surjective. To see that it is surjective, let U be a
unitary operator. Let µU be the spectral measure for U , then µU is concentrated
4 To see this we remark that U is unitary if and only if U and U∗ are isometries. If

Un converges to U, then U∗
n converges to U∗. Finally, we observe that the isometries

are closed.
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on the unit circle in C. For all but countably many points z in the unit circle,
{z} is µU -measurable and µU ({z}) = 0, see [30]. We may assume that −1 is
one such point. Let log be a holomorphic function on C − (−∞, 0] such that
exp ◦ log = id. Then ei2π( 1

i2π logU) = U.

We will now use the notation and the results from [7]. We see that the set
of unitary operators in A forms a compact group G which forms its own repre-
sentation π. By recalling the construction of the extension of the representation
of the group to a representation of group algebra, we see that for all f ∈ C(G),
π(f) ∈ A. Moreover, each A ∈ A can be approximated by a finite linear combi-
nation of projections in A. However, instead of approximating a given A in A
by projections we may approximate it by unitary operators: for any projection
P , the operator 2P − I is unitary. Consequently, π(C(G)) = A.

The Peter-Weyl theorem supplies a sequence (Hi)i∈N of finite-dimensional
subspaces of H such that H = ⊕∞

i=1Hi and π|Hi = B(Hi). Since H is finite-
dimensional, the sequence is actually finite. Finally, a linear subset of a finite
dimensional Hilbert space is finite dimensional if and only if its unit ball is
located, see [1] (Section 7.2). We have proved the following theorem.

Theorem 3. Let n ∈ N and let H := Cn. Let A be a self-adjoint located sub-
algebra of B(H) which contains the identity. Then there is a finite sequence
H1, . . . , HM of subspaces of H such that H = ⊕Mi=1Hi and APi ∼= B(Hi), where
Pi is the projection on Hi.

In Takesaki [28] (p.50) this theorem is proved along the same lines, but more
directly. A problem with a constructive interpretation of his proof is that in
order to apply the Gelfand representation theorem to the center of the algebra
we need to prove that it is separable.

Before we go deeper into the theory of general vN-algebras, we will first study
linear functionals on the von Neumann algebra B(H).

6 Normal functionals

In this section we give a representation of the normal functionals on B(H). We
simplify a result by Bridges and Dudley Ward.

Following Bridges and Dudley Ward we define a normal functional as a func-
tional which is uniformly continuous with respect to the normal topology on
bounded sets.

In the proof of the implication 1 ⇒ 2 in the following Theorem we use the
Riemann permutation theorem, see [29] (p.96):

Theorem 4. [CP] Let (xi)i∈N be a sequence of real numbers such that for
every permutation π of N,

∑∞
i=0 xπ(i) exists, then

∑∞
i=0 |xi| exists.
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This theorem depends on Brouwer’s continuity principle (CP) which holds
in the intuitionistic interpretation of Bishop’s mathematics, but not in classical
logic, and thus CP not available in the context of Bishop-style mathematics.
Since the Riemann permutation theorem holds in the three standard models of
Bishop’s mathematics it would be interesting to investigate its precise logical
status.

Theorem 5. Let φ be a linear functional on B(H). Then the following condi-
tions are equivalent:

1. φ is normal ;

2. there is a C ∈ L1 such that for all A ∈ B(H), φ(A) = Tr(CA);

3. there are sequences xn, yn in H such that
∑∞

n=1 ‖xn‖2 and
∑∞
n=1 ‖yn‖2 exist

and φ(A) =
∑∞

n=1 〈Axn, yn〉 , for all A ∈ B(H).

Proof. 1 ⇒ 2 (using CP): We assume that φ is normal. The unit ball of L2 is
totally bounded in the weak topology and thus in the normal topology. Since
φ is uniformly continuous on the unit ball, φ is normable as an L2-functional.
By the Riesz representation theorem there is an operator C in L2 such that
φ(A) = Tr(C∗A), whenever A ∈ L2. We claim that C ∈ L1. Indeed, let π be a
permutation of N and let Pn be the projection on span{eπ(i) : i ≤ n}. Then the
sequence (Pn)n∈N converges weakly to the identity operator I,so Tr(C∗Pn) =
φ(Pn) → φ(I). We see that

∑∞
i=0

〈
Ceπ(n), eπ(n)

〉
exists for all permutations π

of N. Consequently, by the Riemann permutation theorem,
∑∞
i=0 | 〈Cen, en〉 |

exists — that is, C is in L1. It follows that the functional A �→ Tr(C∗A) may be
extended to a normal functional ψ on B(H). Since, ψ agrees with φ on the unit
ball of L2, which is dense in B(H)1 with the normal topology, φ(A) = Tr(C∗A),
whenever A ∈ B(H).

A proof which does not use CP may be found in [5].
2 ⇒ 3 : Let C in L1 be such that φ(A) = Tr(CA), whenever A ∈ B(H).

Let �C and �C denote the real and the imaginary part of the operator C. The
operator �C is selfadjoint, so we can apply the spectral theorem to it. Let f, g be
the total continuous functions on R such that f(x) :=

√|x| and g(x) := x/f(x),
whenever x ∈ R − {0}. Then �C = f(�C)g(�C). So for all A ∈ B(H),

Tr((�C)A) = Tr(f(�C)Ag(�C)) =
∞∑
n=1

〈Ag(�C)en, f(�C)en〉 .

We define sequences (xn)n∈N and (yn)n∈N in H such that x2n := g(�C)en,
x2n+1 := ig(�C)en, yn := f(�C)en and y2n+1 := f(�C)en. These sequences
satisfy the conditions in 3.

3 ⇒ 1 : This implication is clear.
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This proof seems to be simpler then the proof by Bridges and Dudley Ward [5].
The previous theorem allows us to define a number of functionals that will

be useful later. Let φ be a normal functional on B(H). Constructively, the map
A �→ φ(A∗) is not totally defined, but there is a unique continuous extension of
this map to B(H) because the set of operators with an adjoint is weakly dense in
B(H). In this chapter we will tacitly assume that this extension has been made
and we will write φ(A∗) even if we are not able to compute A∗. A similar remark
holds for functions we now define. Let A be an operator. Define the functional
φA on B(H) by φA(B) := φ(BA). There is a trace class operator C such that
φA(B) := Tr(CBA) = Tr(ACB). Consequently, the functional φA is normal as
AC ∈ L1. The set of operators with an adjoint is weakly dense in B(H), so the
map A,B �→ φ(B∗A) = φA(B∗) can be uniquely extended to a continuous map
on B(H)2. Finally, an operator with an adjoint has an absolute value, so the
map A �→ φ(|A|) can be uniquely extended to a normal functional to B(H).

7 Faithful states

In this section we prove that the spectral measure of a given operator is indepen-
dent of the choice of the basis, simplifying a result by Bridges and Ishihara. We
introduce an inner product on B(H) and use it to obtain some results connecting
the weak and the strong topology.

Definition 6. A linear functional φ on a vN-algebra A is called positive if for
each A in A which has an adjoint, φ(A∗A) ≥ 0. A positive linear functional on
a vN-algebra is called a state .

Let A be a von Neumann algebra. We define for a moment a state φ to
be accurate if for all A ∈ A, φ(A∗A) = 0 implies A = 0. For such φ, define
the norm dφ(A) := φ(|A|) on A. Let us call the normal state φ faithful if it
is accurate and the identity map from (A1, dφ) to the uniform space A1 with
the weak operator topology is uniformly continuous. The inverse of this map is
continuous for any normal state φ. One can prove classically that an accurate
normal state is faithful. Usually one defines a state to be faithful if and only if it
is accurate. We chose to use the present definition of faithfulness because it seems
to correspond naturally with the constructive definition of absolute continuity
in [1]. To see this consider [0, 1] with Lebesgue measure µ and define the von
Neumann algebra A := {Mh : h ∈ L∞[0, 1]}. Suppose that ν is a measure on
[0, 1] such that all f ∈ L∞(µ) are ν-integrable and if f ∈ L∞(µ) and ν(f) = 0,
then µ(f) = 0. Then ν is an accurate state on the von Neumann algebra L∞(µ).
If µ is absolutely continuous relative to ν, then ν is a faithful state.

Any spectral measure is derived from a faithful normal state. Indeed, define
the trace class operator C such that for all n ∈ N, Cen := 2−nen and define the
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state φ(A) := Tr(CA), for all A ∈ B(H). It is easy to check that φ is accurate. We
show that φ is a faithful normal state. Let ε > 0 and x, y ∈ H1∩span{e1, . . . , em}
be given. Let A be an operator with an adjoint in A1 such that φ(|A|) < 2−mε.
Let B be the positive square root of |A|. Then φ(|A|) = Tr(CB2) < 2−mε and
for all n ≤ m, ‖Ben‖ < ε. So | 〈Ben, Bx〉 | ≤ ‖Ben‖ < ε,for all x ∈ H1 and
n ≤ m. By Theorem 1.1 in [4] for each x, y ∈ H1, there is a z ∈ H1 such that
| 〈Ay, x〉 − 〈|A|y, z〉 | < ε. Consequently, for all n ≤ m, | 〈Aen, x〉 | < 2ε, because
〈|A|en, x〉 = 〈Ben, Bx〉 . Finally, remark that the operators with an adjoint are
dense.

Theorem 7. Any two spectral measures are equivalent.

Proof. Let A be a Hermitian operator bounded by 1. Let φ be as defined above.
Remark that the measure µφ defined by µφ(f) := φ(f(A)), for all f ∈ C[−1, 1],
is a spectral measure for A. Suppose that ψ is defined in a similar way as φ,
but with respect to a different basis. Then the identity map from (B(H)1, dψ)
to (B(H)1, dφ) is uniformly continuous, because ψ is a faithful normal state. It
follows that the measures µφ and µψ are equivalent.

This is the main result obtained by Bridges and Ishihara in [2].
The key fact in the proof of the spectral theorem is that if A is a Hermi-

tian operator bounded by 1, µ is the spectral measure for A and (pn)n∈N is a
sequence of polynomials and µ(|pn|2) → 0, then the sequence (pn(A))n∈N con-
verges strongly. In fact, such a statement holds more generally. When ψ is a
faithful normal state and (An)n∈N is a bounded sequence of operators such that
ψ(A∗

nAn) → 0, then A∗
nAn →w 0. Consequently, ‖Anx‖2 = 〈A∗

nAnx, x〉 → 0,
whenever x ∈ H. That is, An →s 0.

7.1 Reformulating the spectral theorem

Theorem 7 suggests that instead of using a non-canonical measure in the spectral
theorem one could use Chan’s measurable spaces [6]. Intuitively, these measur-
able spaces are to measure spaces what uniform spaces are to metric spaces.
Thus instead of using one measure we have a family of them. In the context of
the spectral theorem we will use the family µx(A) := 〈Ax, x〉, where x ranges
over the unit sphere. We will now state the spectral theorem without reference
to a basis.

Let (X,L, µi) be a measurable space. Like Chan we assume that all the µi are
probability measures. Each µi defines a pseudo-metric di(f, g) := µi(|f − g| ∧ 1).
On bounded sets this collections pseudometrics define the same topology as the
uniform topology considered by the norms. Convergence with respect to these
pseudo-metrics we call convergence in measure. Let L∞ be the completion of
the bounded sets with respect to this topology. It is proved in [26] that this is
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actually equivalent to the ordinary definition of convergence in measure. Chan
defines measurable mappings using the notion of transition function. It seems
that one can instead use the notion of a uniformly continuous mapping between
uniform spaces with the pseudo-metrics defined above. This works well in our
case, but whether it can replace all Chan’s constructions in probabilty theory
requires further exploration.

Thus by analogy with the treatment in [25] we obtain the following theorem.
The formal space mentioned in the following theorem is a space in the sense
of formal, or pointfree, topology, see [25] and the references therein for details.
Alternatively, assuming Bishop’s Gelfand representation theorem and assuming
that the algebra A satisfies the conditions needed to apply it, we could use an
ordinary space.

Theorem 8. Let A be an Abelian algebra of operators on a Hilbert space. There
is an embedding ι of the algebra A into a space of continuous functions on a
formal compact space, its spectrum. The algebra C(Σ) may be equipped with a
measurable structure in such a way that the topology of convergence in measure
coincides with the weak operator topology on A. Consequently, if An is a bounded
sequence and ι(An) → ϕ in measure, then An converges strongly.

As already observed by Chan, we can not expect the profile theorem to apply
to measurable spaces in its full generality. However, there are a number of ways
to avoid this [6] [25]. Finally, one can always choose a faithful state, but this is
better postponed until it is really needed.

7.2 An inner product on B(H)

Let φ be a faithful normal state on B(H). Define the inner product 〈 , 〉φ on
B(H) by 〈A,B〉φ = φ(B∗A), whenever A,B ∈ B(H). In general the space B(H)
will not be complete with this inner product. We let Hφ denote its completion.
When ψ is another faithful normal state, then the inner products 〈 , 〉φ and 〈 , 〉ψ
are equivalent on bounded sets.

Lemma9. Let φ be a faithful normal state on B(H). Let (An)n∈N be a bounded
sequence in B(H) and let A ∈ B(H). Then An → A in the weak (strong) operator
topology if and only if An → A in the weak (strong) sense in Hφ.

Proof. Let (en)n∈N be a basis for H and define C as the operator such that
Cen = 2−nen, whenever n ∈ N. The state ψ defined by ψ(A) := Tr(CA), when-
ever A ∈ B(H), is faithful and normal. Because 〈 , 〉φ and 〈 , 〉ψ are equivalent
on bounded sets, we may assume that φ = ψ.

Define the trace-class operator Unm by Unmx = 〈em, x〉 en, whenever n,m ∈
N and x ∈ H. On bounded sets the weak operator topology is determined
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by the seminorms A �→ | 〈Aem, en〉 |, where n,m ∈ N. Since 〈Aem, en〉 =
2nTr(CU∗

nmA), we see that convergence in the weak topology implies weak con-
vergence in Hφ. Conversely, the functional A �→ Tr(CB∗A) is normal, for all
B ∈ B(H). Consequently, if the sequence (An)n∈N converges weakly to A, then
Tr(CB∗An) → Tr(CB∗A).

On bounded sets, the strong operator topology is determined by the norm
A �→ φ(A∗A) =

∑∞
n=1 2−n‖Aen‖2, so strong convergence in Hφ is equivalent to

convergence in the strong operator topology.

Corollary 10. A bounded convex inhabited subset of B(H) is weakly totally
bounded if and only if it is located in the strong topology.

Proof. This follows from Lemma 9 and Corollary 5 in [14].

In order to proceed we need a lemma. This lemma is sometimes proved clas-
sically by deriving a contradiction from the assumption that a point in the weak
closure is in the complement of the strong closure. Such an argument only seems
to work constructively when the set is located. Classically, the hypothesis that
the set is bounded is superfluous. It is not clear to me if this hypothesis is
necessary in constructive mathematics.

Lemma11. The weak closure and the strong closure of a bounded inhabited
convex subset of a Hilbert space are equal.

Proof. Let B be a bounded, inhabited and convex set. Suppose that (xn)n∈N

is a sequence in B converging weakly to x ∈ H . By considering the bounded
inhabited convex set {y− x : y ∈ B}, we may suppose that x = 0. Moreover, we
may assume that B is bounded by 1. For each i ∈ N, 〈xi, xn〉 → 0, so we can
choose a subsequence (yn)n∈N of (xn)n∈N such that for all i ∈ N and all j > i,

| 〈yi, yj〉 | ≤ 2−i−j . Then

‖y1 + y2 + . . .+ yn‖2 ≤
n∑
i=1

‖yi‖2 + 2
n∑
j=1

n∑
i=j+1

| 〈yi, yj〉 |

≤ n+ 2

We see that 1
n (y1 + · · · + yn) →s 0.

Corollary 12. Let C be convex inhabited bounded subset of B(H), then C is
weakly closed if and only if it is strongly closed.

Proof. This follows from Lemma 9 and Lemma 11.

From this lemma we would be able to prove that a von Neumann algebra
is weakly closed if we would be able to prove that every weakly converging
sequence is bounded.
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8 Representation of Abelian von Neumann algebras.

In this section we prove the following theorem.

Theorem 13. Let A be an Abelian von Neumann algebra containing a strong-
operator-dense C*-algebra of operators B. Then there is a compact space Σ and
a measure µ on Σ such that A is isomorphic with {Mh : h ∈ L∞(µ)}.

Proof. By the Gelfand representation theorem there is a compact set Σ such
that B is C*-isomorphic to C(Σ). Let ι : C(Σ) → B be this isomorphism and let
φ be a faithful normal state on B(H). Define a linear functional µ on C(Σ) by
µ(f) := φ(ι(f)), whenever f ∈ C(Σ). It is clear that µ is bounded by 1. We claim
that µ is positive. To prove this we observe that f ∈ C(Σ) is positive if and only
if f = |f | = (f̄ f)1/2. Now suppose that f ≥ 0. Then ι(f) is a positive operator,
since ι is an isomorphism and ι(|f |) = |ι(f)|. The functional µ is positive, since
φ is a state. Finally, since 1 ∈ C(Σ), the measure µ is finite.

Let (fn)n∈N be a bounded sequence in L∞ which converges in measure to
f ∈ L∞. We claim that ι(fn) →s ι(f). Since µ is finite, fn converges to f in
L2,so φι(|f − fn|2) converges to 0. Consequently ι(f − fn) converges strongly to
0 by Remark ??. We have proved that ι(fn) →s ι(f).

We claim that ι(L∞) is strong operator closed. Suppose that ι(fn) converges
strongly to an operator A. Let b be a bound for A. Define for all n ∈ N, gn :=
fnχ[|fn|≤b]. The sequence (ι(gn))n∈N also converges to A, since A is Abelian.
Each operator ι(gn) is normal, so ι(gn)∗ converges strongly to A and thus ι(|gn−
gm|2) converges to 0. Because φ is faithful, φι(|gn − gm|2) converges to 0. We
see that the sequence (gn)n∈N converges in L2. We let g be its limit. Since the
sequence (ι(gn))n∈N converges strongly to both ι(g) and A, they must be equal.

If an Abelian von Neumann algebra contains a dense set of operators with an
adjoint, then all elements have adjoints. This follows directly from the identity
‖Ax‖ = ‖A∗x‖ for normal operators A.

Classically, every von Neumann algebra on a separable Hilbert space contains
a separable C*-algebra which is strong-operator-dense [16] (Lemma 14.1.17).
Constructively, the examples we mentioned in the first section contain such a
C*-algebra.

– For matrix algebras the norm topology coincides with the weak-operator
topology, hence the von Neumann algebra of matrix operators is itself a
C*-algebra.

– When µ is a measure on a locally compact space X, then {Mh : h ∈ C(X)}
is strongly dense in {Mh : h ∈ L∞(µ)}. The operators {g �→ fg : f ∈ L1}
form a C*-algebra.
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– The algebra B(H) is the strong closure of the space of compact operators.

– Suppose that A is an Abelian von Neumann algebra with a weakly totally
bounded unit ball. We claim that A contains a strongly dense separable
C*-algebra.

The unit ball is located in the strong operator topology, by Corollary 10.
Consequently, there is a dense sequence of operators in A. All operators
in A are normal, so by the spectral theorem we may construct a sequence
of projections with a dense span. By adding projections we may also make
sure that the sequence also contains all ‘finite intersections’. Because the
strong operator topology is metrizable on B(H)1 we may make sure that if
P and Q are in the sequence, then either P = Q or P �= Q. Now let C be
the norm closure of all simple functions, i.e. all the operators of the form∑n

i=1 ciPi, where c1, . . . , cn are in C and P1, . . . , Pn are projections in the
dense sequence. The C*-algebra C is dense in the strong operator topology.

The presence of the strongly dense separable C*-algebra was needed in or-
der to apply Bishop’s Gelfand representation theorem. By using the pointfree
Gelfand representation theorem we can avoid this hypothesis, but still obtain a
similar result. However, instead of a compact space we would obtain a compact
formal space, see [8].

9 The Double Commutant Theorem

In this section we discuss the double commutant theorem. Subsection 1 contains
a short discussion of this classical theorem. Subsections 2 and 3 contain proofs
for the finite-dimensional and the Abelian case under the assumption that the
unit ball of the von Neumann algebra is weakly totally bounded.

Definition 14. Let A be an algebra of operators on a Hilbert space. The com-
mutant A′ of A is the set {B ∈ B(H) : ∀A ∈ A[AB = BA]}.

Let A be an algebra of operators. Then A′ is a weakly closed algebra and
A ⊂ A′′. If B is another algebra of operators and A ⊂ B, then B′ ⊂ A′. If we
take B = A′′, we see that A′′′ ⊂ A′. But on the other hand A′ ⊂ (A′)′′. So
A′ = A′′′.

One of the fundamental theorems in the classical von Neumann algebra the-
ory is the double commutant theorem (DCT), which states that if A is a von
Neumann algebra, then A = A′′. This theorem makes a connection between the
algebraic property A = A′′ and the analytical, or topological, property A is
weakly closed. Either of these properties may be used to define a von Neumann
algebra classically.
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It is impossible to prove the DCT constructively. Indeed, let P be any state-
ment and define

A := {A ∈ B(H) : P ∨ ¬P} ∪ {cI : c ∈ C}.

Let A be an element of A′. Then P ∨ ¬P implies that ∃c ∈ C[A = cI] and
thus So ¬¬∃c ∈ C[A = cI], because ¬¬(P ∨ ¬P ). Since if such c exists it must
be equal to 〈Ae1, e1〉 , we conclude that ∃c ∈ C[A = cI]. We conclude that
A′ = {cI : c ∈ C} and thus A′′ = B(H). If A = A′′, then P ∨¬P. So the double
commutant theorem implies the principle of excluded middle.

9.1 A classical proof

We will start with a sketch of a classical proof of the Double Commutant The-
orem.

Let A be a von Neumann algebra and let B be an element of A′′, x ∈ H

and ε > 0. We want to find A ∈ A such that ‖(A − B)x‖ < ε. The space clAx
is A-invariant. Let P be a projection on clAx. One can show that P ∈ A′, so
PB = BP. It follows that Bx ∈ clAx, which is what we wanted to prove. Once
we know how to find such an operator A for all x in H we can use a method
called amplification (see for instance [20] (4.6.3,4.6.7)) to show that for all finite
sequences x1, . . . , xn and all ε > 0, there is A ∈ A such that for all i ≤ n,

‖(A−B)xi‖ < ε. That is, B is in the strongly closed set A.
The problem one encounters constructively is that clAx is in general not

located. Hence one can not compute the projection P above. In fact, all we need
in the proof is that Ax is located for all x in a dense set. To see that we can
not hope to prove that Ax is located, for all x ∈ H instead of just for all x in a
dense set, consider the vN-algebra

A := {
(
a 0
0 b

)
: a, b ∈ C} ⊂M2.

Let c ∈ C and define x := e1 + ce2. To compute the projection on Ax we need
to know whether c = 0 or c �= 0. This example is due to Bridges.

The proof of the DCT gives us a way to find operators in the commutant. It
also shows that a vN-algebra is weakly closed, since the commutant of an algebra
is always weakly closed.

9.2 DCT, the finite dimensional case

Let A be a von Neumann algebra on a finite dimensional Hilbert space. Suppose
that A has a totally bounded unit ball. Then we can compute A′ explicitly using
Theorem 3, see for instance [28] (p.53). It is easy to see that A′′ = A.
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9.3 DCT, the commutative case

Let A be an Abelian vN-algebra and suppose that A1 is weakly totally bounded.
Recall that when A1 is weakly totally bounded, then 〈A1x, y〉 is totally bounded,
for all x, y ∈ H . Consequently, A1x is weakly totally bounded, for all x, and
hence it is located, see [14]. In Lemma 17 we will see that Ax is located for all
x in a dense set. As we observed in Section 9.1 this is enough to complete a
constructive proof of the DCT.

All elements in an Abelian vN-algebra are normal, so we can apply the spec-
tral theorem to them. Let AM := {A ∈ A : A is bounded byM}, whenever
M ∈ R+.

Lemma15. Let A be an Abelian von Neumann algebra. Fix N > 1. Let x, y be
elements of H such that ‖y‖ = 1. Let A be an operator such that |ρ(y,ANx)2 −
ρ(y,Ax)2| < ε. When M ∈ (1, N) is admissible for A, there is a projection
P ∈ A with ‖x− Px‖ ≤ 2

M , AP ∈ AM and |ρ(y,ANPx)2 − ρ(y,APx)2| < ε.

Proof. Let P be χ{x:|x|≤M}(A) as defined in the spectral theorem; then P ∈ A
and AP ∈ AM . Fix η > 0 such that |ρ(y,ANx)2 − ρ(y,Ax)2| < ε + η; then
because AP ∈ PAM ⊂ AM , either ρ(y,APx)2−ρ(y,ANx)2 < ε or ρ(y,APx)2 ≥
ρ(y,Ax)2. In the former case there is nothing to prove, because AP ∈ AM ⊂ AN ,
so we may assume that ρ(y,APx)2 ≥ ρ(y,Ax)2, that is ‖APx−y‖2 ≥ ‖Ax−y‖2.

Hence

‖y‖2 − 2Re〈APx, y〉 + ‖APx‖2 ≥ ‖y‖2 − 2Re〈Ax, y〉 + ‖Ax‖2,

so ‖A(I −P )x‖2 ≤ 2|〈A(I −P )x, y〉| ≤ 2‖A(I −P )x‖‖y‖. Consequently, ‖A(I −
P )x‖ ≤ 2, because ‖y‖ = 1. Now

4 ≥ ‖A(I − P )x‖2 ≥M2‖(I − P )x‖2,

so ‖x− Px‖2 ≤ 4/M2.
Finally, remark that by the Pythagorean theorem,

‖y −Az‖2 − ρ(y,ANz)2 = ‖Py − PAz‖2 − ρ(Py, PANz)2

+‖P⊥y − P⊥Az‖2 − ρ(P⊥y, P⊥ANz)2,

whenever z ∈ H. So choosing z := Px, we get

‖y −APx‖2 − ρ(y,ANPx)2 ≤ ‖Py − PAx‖2 − ρ(Py, PANx)2

+‖P⊥y‖2 − ‖P⊥y‖2

< ε+ 0.

Classically, AMx is a closed convex set, so for each y ∈ H there is a point in
AMx which is closest to y. If Ax is an approximation to the point in ANx which
is closest to y, then by the previous lemma A(Px) is an approximation for the
point in AN (Px) which is closest to y.
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Lemma16. Let A be an Abelian von Neumann algebra and let K ∈ N and
x1, y ∈ H. Then there are a sequence (Pn)n∈N of projections in A and a sequence
(An)n∈N of operators in A such that x∞ := limm→∞(Πm

n=1Pn)x1 exists, ‖x∞ −
x1‖ ≤ 1/K and the sequence (‖y−Anx∞‖)n∈N converges to infA∈A ‖y−Ax∞‖.

Proof. Let ε > 0 and N ∈ N. For z ∈ H, let us call A an ε-approximation
for the distance from y to ANz, if A ∈ AN and ‖y − Az‖2 − ρ(y,ANz)2 < ε.

Let A1 be a 1-approximation for the distance from y to A2Kx1. Let A2 be a
1/2-approximation for the distance from y to A22Kx1. Compute a projection P2

as in Lemma 15 with M = 2K, N = 22K, A = A2 and x = x1. Set x2 := P2x1.
Continue in this way as follows. Let An+1 be a 2−n-approximation for the

distance from y to A2n+1Kxn and compute Pn+1 as in Lemma 15 with M = 2nK,
N = 2n+1K, A = An+1 and x = xn and set xn+1 := Pn+1xn.

For all n ∈ N, ‖Pn+1xn − xn‖ ≤ 2−(n+1)/K. We define x∞ := limn→∞ xn.
Then ‖x∞−x1‖ ≤ ∑∞

n=1 2−(n+1)/K = 1/K. To see that the sequence (Anx∞)n∈N

converges observe that

‖An+1x∞ −Anx∞‖2 = lim
m≥n+2

‖(Πm
i=n+2Pi)(An+1xn+1 −Anxn)‖2

≤ ‖An+1xn+1 −Anxn‖2

≤ 21−n + 21−n.

This last inequality holds, because for all n ∈ N, An+1xn+1 = An+1Pn+1xn ∈
A2n+1Kxn and the operators AnPn+1 and An+1Pn+1 are 21−n-approximations
to for the distance from y to A2nKPn+1xn.

Proposition17. Let A be an Abelian von Neumann algebra. The set Ax is
located for all x in a dense set.

Proof. Let x ∈ H and ε > 0. We claim that there is z ∈ H such that ρ(x, z) < ε

and the projection P[Az] exists.
Define by the previous lemma x1 ∈ H such that ρ(x, x1) < ε/2 and the

projection of e1 on clAx1 exists. Continue in this way as follows. Define xn+1 ∈ H

such that ρ(xn, xn+1) < ε/2n+1 and the projection of en+1 on cl(Axn+1) exists.
Recall from the proof of Lemma 15 that for all N ∈ R+, P ∈ A and A ∈ AN :

ρ(y,APx) − ρ(y,ANPx) ≤ ρ(y,Ax) − ρ(y,ANx).

We see from the construction of xn+1 that for all i ≤ n, the projection of ei on
clAxn+1 exists.

Define x∞ := limn→∞ xn; then for all n ∈ N, the projection of en on clAx∞
exists. Because a projection is linear and contracts the norm we see that we can
compute the projection of y on clAx∞, for all y ∈ H.
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From this last proposition we can obtain the double commutant theorem for
Abelian vN-algebras with a weakly totally bounded unit-ball:

Theorem 18. Let A be an Abelian von Neumann algebra with weakly totally
bounded unit ball, then A′′ = A.

Acknowledgement

Most of this research was done while visiting Douglas Bridges from January 2000
to July 2000. This visit was partially supported by the Netherlands Organization
for Scientific Research (NWO), the Marsden Fund of the Royal Society of New
Zealand, and the University of Nijmegen. Most results previously appeared in
chapter 9 of my PhD-thesis [24]. I would like to thank Wim Veldman for his
advice during this PhD-project.

References

1. Errett Bishop and Douglas Bridges. Constructive analysis, volume 279 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1985.

2. Douglas Bridges and Hajime Ishihara. Absolute continuity and the uniqueness of
the constructive functional calculus. Mathematical Logic Quarterly, 40(4):519–527,
1994.

3. Douglas Bridges, Fred Richman, and Peter Schuster. Trace-class operators. Hous-
ton Journal of Mathematics, 28:565–583, 2002.

4. Douglas S. Bridges. A constructive look at positive linear functionals on L(H).
Pacific Journal of Mathematics, 95:11–25, 1981.

5. D.S. Bridges and N.F. Dudley Ward. Constructing ultraweakly continuous func-
tionals on B(H). Proceedings of the American Mathematical Society, 126(11):3347–
3353, November 1998.

6. Y.K. Chan. Notes on constructive probability theory. Annals of Probability, 2:51–
75, 1974.

7. Thierry Coquand and Bas Spitters. A constructive proof of the Peter-Weyl theo-
rem. Mathematical Logic Quarterly, 4:351–359, 2005.

8. Thierry Coquand and Bas Spitters. Formal topology and constructive mathemat-
ics: the Gelfand and Stone-Yosida representation theorems. Journal of Universal
Computer Science, Vol.11, No.12, 1932–1944, 2005.

9. L.S. Dediu. The Constructive theory of Operator Algebras. PhD thesis, University
of Canterbury, 2000.
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18. Paul-André Meyer. Quantum probability for probabilists. Springer-Verlag, 1993.
19. Gerard J. Murphy. C*-algebras and operator theory. Academic press, 1990.
20. Gert Pedersen. Analysis Now, volume 118 of Graduate texts in mathematics.

Springer Verlag, New York, 1980.
21. Fred Richman. Generalized real numbers in constructive mathematics. Indaga-

tiones Mathematicae, 9:595–606, 1998.
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