
CONSTRUCTIVE ALGEBRAIC INTEGRATION THEORY

BAS SPITTERS

Abstract. For a long time people have been trying to develop probability
theory starting from ‘finite’ events rather than collections of infinite events. In
this way one can find natural replacements for measurable sets and integrable
functions, but measurable functions seemed to be more difficult. We present a
solution. Moreover, our results are constructive (in the sense of Bishop).

1. Introduction

In modern, set-theoretic, probability theory we represent the event that the
start of a sequence of coin tosses is ‘head’ by the set of all infinite sequences of
0s and 1s beginning with a 0. From a conceptual point of view it would be more
satisfying to model it by just one event, which one can take to be a primitive
notion. In fact, this is the way probability theory started: the finite events were
taken as primitive and infinite events were derived notions. This problem has
been stressed ever since the introduction of set-theoretic methods in probability
theory, see for instance [7, 4].

The focus on finite events, instead of infinite ones, is also characteristic for
formal topology [9]. Ideas from formal topology have been used by Coquand
and Palmgren [5] to develop the foundations of constructive algebraic probabil-
ity theory. Their theory does not contain a theory of integrable or measurable
functions. In this article we will develop a theory of these functions.

Another reason for developing measure theory in this way is that we feel that
Bishop’s integration theory is not entirely satisfactory. It uses the set of all
partial functions. Not only is the construction of this set impredicative, but it
also seems to be unlikely that Bishop’s approach is useful when viewing Bishop-
style mathematics as a high-level programming language [1, 8].

The present theory can be can also be seen as an alternative for Bishop and
Bridges’ approach [2] to measurable functions. In fact, this is the way in which it
was presented in [11]. We feel that the theory presented here is both technically
and conceptually simpler than the theory in [2].

In this article we reason constructively, but we will not assume any axioms
that are classically false, so all our results are acceptable in Bishop-style mathe-
matics [2].
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2. Preliminaries

The set of natural numbers will be denoted by N. The set of real numbers
will be denoted by R. Apartness is denoted by 6=. Finally, if A ⊂ R, then R∼A
denotes the set {x ∈ R | ∀a ∈ A [a 6= x]}.

For other definitions we refer to Bishop and Bridges [2].

3. Measurable sets

We will now briefly sketch the Boolean ring approach to measurable sets taken
by Coquand and Palmgren.

A commutative ring1 A is Boolean if x2 = x, for each x in A. For a Boolean
ring we define for all x, y ∈ A, x ∧ y := xy, x ∨ y := x + y + xy and x ≤ y as
x = x∧ y. A binary relation 6= on A is a strong apartness relation if the following
hold for all x, y, z ∈ A :

(1) ¬x 6= x;
(2) x 6= y ⇒ y 6= x;
(3) ¬x 6= y ⇒ x = y;
(4) x 6= y ⇒ x+ z 6= y + z;
(5) xy 6= 0 ⇒ x 6= 0 or y 6= 0;
(6) x+ y 6= 0 ⇒ x 6= 0 or y 6= 0.

A measure on a Boolean ring A with a strong apartness relation 6= is a function
µ : A→ [0,∞) such that for all x, y in A:

(1) µ(x ∨ y) = µ(x) + µ(y)− µ(x ∧ y),
(2) µ(x) > 0 ⇒ x 6= 0.

The measure is positive if for all x ∈ A :
(3) x 6= 0 ⇒ µ(x) > 0.

A simple, but important, observation is that when µ is positive the function
ρ : A×A→ [0,∞), defined by ρ(x, y) := µ(x+ y) is a metric on A and that the
operations · and + are uniformly continuous with respect to this metric.

One can prove that the completion A of A with respect to this metric is again a
measure ring. The completion A is σ-complete and µ is σ-additive in the following
sense: if (ak)k∈N is a sequence in A and a := limn→∞

∨n
k=1 ak exists with respect

to the metric, then a is the smallest upper bound for the sequence (ak)k∈N and
µ(a−

∨n
k=1 ak) → 0 when n→∞.

One can also prove that a measure space in the sense of Bishop and Bridges [2]
is a Boolean ring and that its completion is complete as a metric space.

4. Integrable functions

In this section we define the space of integrable functions as the completion of
the metric space of “simple functions”.

1We do not assume that a ring has a unit.
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Let A be a fixed measure ring and µ a positive measure on A. We define
the set S(A) of simple functions as follows. An element of S(A) consists of a
finite lists of pairs ((ci, ai))

n
i=1, where for all i ∈ {1, . . . , n}, ci ∈ R and ai ∈ A

and for all i, j ∈ {1, . . . , n}, ai ∧ aj = 0 when i 6= j. We will suggestively
denote ((ci, ai))

n
i=1 as

∑n
i=1 ciχai

. One may think of a finite linear combination
of characteristic functions. Let ∗ be any of the operations {+,−, ·,∧,∨} on R.
Define the function ∗ on S(A) as follows:

(
n∑

i=1

ciχai
) ∗ (

m∑
j=1

djχbj
) :=

n∑
i=1

m∑
j=1

(ci ∗ dj)χai∧bj
.

One may check that the usual relations between the operations hold. Let f be
any continuous function on R, define the function f on S(A) by f(

∑n
i=1 ciχai

) =∑n
i=1 f(ci)χai

. In particular, we have defined the absolute value function on S(A)
in this way. Define the linear functional I on S(A) such that I(χa) = µ(a).
Moreover, define a semi-norm on S(A) by ‖f‖ = I(|f |). We make S(A) into
a normed space by identifying elements which have distance 0. From now on
we assume that S(A) is a normed space. The functions +,−,∧,∨ and | · | are
uniformly continuous with respect to the norm and · is continuous. Define L1(A)
to be the the completion of S(A) with respect to the norm. Elements of L1(A)
are called integrable functions.

It is convenient to identify A with the subset {χa : a ∈ A} of L1(A). The set
A coincides with the set {g ∈ L1(A) : g = g2} of idempotents in L1(A).

Using the theory of profiles [2] one can prove the following theorem.

Theorem 4.1. If f ∈ L1(A), then there is a countable set T ⊂ R and a partial
function t 7→ gt ∈ A defined on R∼T such that for all t ∈ ∼T, fgt ≥ tgt.
Moreover, for each admissible t > 0 and each ε > 0, there exists δ > 0 such that

|µ(gt − gs)| < ε

whenever s > 0 is admissible and |t− s| < δ.

We will suggestively denote gt by [f ≥ t].

Proof. The proof is an adaptation of the proof of Theorem 6.4.11 in [2]. Here we
indicate the key steps.

Define the functions h(x0, x1, .) : {x ∈ R : x ≥ 0} → [0, 1] by

h(x0, x1, x) := (x1 − x0)
−1(min(x, x1)−min(x, x0)) (0 < x0 < x1).

As explained above one can define h(b) first for all simple functions b and then
extend it too all integrable functions b.

We may assume that f ≥ 0. There is a sequence xn of positive numbers such
that if t > 0 and t 6= xn for all n, then {t} is smooth relative to the (I, f)-profile.
Consider such admissible t > 0. Choose N such that t > 2−N . For each integer
n ≥ N define

φn = h(t− 2−n, t− 2−n−1, f)
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and
ψn := h(t+ 2−n, t+ 2−n−1, f).

It is not difficult to show that φ := limφn and ψ := limψn are well-defined.
Observe that φ = ψ, because 0 ≤ ψ ≤ φ and I(ψ) = I(φ).Moreover φn ≥ φ2

n ≥ ψn

for all n, so φ ≥ φ2 ≥ ψ = φ, that is φ = φ2. The rest of the proof is similar to
the proof of Theorem 6.4.11 in [2]. The result is obtained by taking gt equal to
φ. �

5. Uniform spaces

We briefly discuss uniform spaces, a convenient generalization of metric spaces.

Definition 5.1. Let X be a set. A pseudometric ρ on X is a map from X ×X
to R such that for all x, y, z ∈ X, ρ(x, y) ≥ 0, ρ(x, y) = ρ(y, x) and ρ(x, z) ≤
ρ(x, y) + ρ(y, x). A uniform space (X,M) consists of a set X and a set M of
pseudometrics on X, such that the relation 6= defined on X ×X by

x 6= y ⇔ ∃ρ ∈M [ρ(x, y) > 0]

is a tight2 apartness relation on X. A function f : X → Y from a uniform space
(X,M) to a uniform space (Y,N) is uniformly continuous if for each d in N and
each ε > 0 there are ρ1, . . . , ρm in M and δ > 0 such that for all x, y ∈ X,

∀i ≤ m [ρi(x, y) < δ] → d(f(x), f(y)) < ε.

If f is a uniformly continuous function from (X,M) to (Y,N) with an inverse
which is also uniformly continuous, then f is called a metric equivalence and X
and Y are metrically equivalent.

The family of subsets

Ux,ε,ρ1,...,ρk
:= {y ∈ X : ∀i ≤ k[ρi(x, y) < ε]}

with ε > 0, x ∈ X and ρ1, . . . , ρk a finite sequence in M forms a neighborhood
structure on X as defined in [2, Section 3.3]. The words open, closed and dense
refer to this neighborhood structure.

Bishop’s construction of the completion of a general uniform space [2, p.124]
seems to use quantification over the class of all subsets of a set. Since we feel this
class can not be surveyed as a whole, and since this construction is not possible in
certain formal systems for constructive mathematics we prefer not to use it. We
follow Bishop’s advice ‘[...] to avoid pseudo-generality. (Separability hypotheses
are freely employed.)’ [2, p.3].

Definition 5.2. Let (X,M) be a uniform space. The uniform space (X,M) is
complete if (X,M) is metrically equivalent to a uniform space (Y, {d}) and the
metric space (Y, d) is complete. A uniform space (Y,N) is a completion of (X,M)
if (X,M) is dense in (Y,N) and (Y,N) is complete.

2that is ¬a 6= b implies a = b.
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Any two completions of a uniform space are metrically equivalent, so we can
talk about the completion of a uniform space.

6. Measurable functions

For a positive measure on a locally compact space, the space of integrable
functions is the metric completion of the space of test functions, see [2, Cor.
6.2.17]. In this section this idea is extended to measurable functions. It is possible
to define a metric on a σ-finite measure space so that the set of measurable
functions is the completion of the set of test functions with respect to this metric.
Instead of a metric we prefer to use a uniform structure.

To show how our approach works we will rewrite Sections 6.7 and 6.8 of Bishop
and Bridges [2]. New definitions for ‘measurable function’ and ‘convergence in
measure’ will be used. These new definitions will be shown to be equivalent to
the ones used in [2].

Let (A, µ) be a fixed separable3 measure ring and denote L1(A) by L1. We will
sometimes write

∫
for I. When V is vector space with an order ≥ and zero vector

0, define V + := {v ∈ V : v ≥ 0}.
For all h ∈ L+

1 we define a pseudo-metric by

dh(f, g) :=

∫
|f − g| ∧ h f, g ∈ L1.

If h1, h2 ∈ L+
1 , then for all f, g ∈ L1,

|dh1(f, g)− dh2(f, g)| ≤ ‖h1 − h2‖1.

So the uniform space (L1, {dh : h ∈ L+
1 }) is metrically equivalent to the uniform

space (L1, {dh : h ∈ K}) when K is a dense subset of L+
1 . Let {h1, h2, . . .} be a

dense set in L+
1 . Define the metric d by d(f, g) :=

∑∞
n=1 2−n(dhn(f, g)∧ 1), for all

f, g ∈ L1; then (L1, {dh : h ∈ L+
1 }) is equivalent to (L1, {d}).

One may wonder why we use a uniform space instead of a metric space. There
is in general no canonical metric space equivalent to (L1, {dh : h ∈ L+

1 }), so
we prefer not to pick one. This makes the development of the theory is a little
smoother. In the case that (A, µ) is finite, that is the ring A contains a unit 1,∫
|f − g| ∧ 1 is a canonical metric, so the theory can be slightly simplified.
Convergence in the uniform space (L1, {dh : h ∈ L+

1 }) is called convergence in
measure. So a sequence (fn)n∈N in L1 converges to f in L1 in measure if and
only if for all finite sequences h1, . . . , hm ∈ L+

1 and each ε > 0, there exists N
such that

dhi
(fn, f) < ε (for all n ≥ N and i ∈ {1, . . . ,m}).

3Separability is assumed to avoid complications with the completion of a uniform space, as
indicated in section 5.
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Because
∨m

i=1 hi ≤
∑m

i=1 hi ≤ m
∨m

i=1 hi, in order to show that a sequence
(fn)n∈N in L1 converges to f in L1, it is enough to show that for all h ∈ L+

1 , and
each ε > 0, there is N such that

dh(fn, f) < ε (for all n ≥ N).

A sequence (fn)n∈N in (L1, {dh : h ∈ L+
1 }) is Cauchy in measure if for all h ∈ L+

1

and each ε > 0 there is N ∈ N such that dh(fn, fm) < ε, for all n,m ≥ N.

Definition 6.1. An element in the completion of the uniform space (L1, {dh :
h ∈ L+

1 }) is called a measurable function. The collection of measurable functions
will be denoted by L0.

We allow ourselves the poetic license to call an element of L0 a function, but
in Section 7 we show that elements of L0 may be identified with a.e. defined
functions.

Because for all h ∈ L+
1 : dh(|f |, |g|) ≤ dh(f, g) on S(A), we can extend the

operation f 7→ |f | from S(A) to L0. We then define the operations f+, f−,
∧, ∨ and the relation ≤ on L0, using | · |. They extend the already defined
operations and relations on L and the usual relations hold. For instance, to
see that |f + g| ≤ |f | + |g|, we have to show that |f | + |g| − |f + g| ≥ 0, i.e.
||f |+ |g| − |f + g|| = |f |+ |g| − |f + g|. But this holds on S(A) and therefore on
L0.

Theorem 6.2. [Dominated convergence] Let f be a measurable function, let
(fn)n∈N be a sequence in L1, and let g be an element of L1 such that for all
n ∈ N, |fn| ≤ g. Suppose that fn → f in measure. Then fn → f in norm.

Proof. Because
∫
|fm−fn| =

∫
|fm−fn|∧2g = d2g(fm, fn) → 0 when m,n→∞,

we see that there exists f ′ in L1 such that fn → f ′ in norm and hence in measure,
so f ′ = f and fn → f in norm. �

We have not assumed that f ∈ L1 as Bishop and Bridges did.

Theorem 6.3. Let f be a measurable function and let g be an integrable function.
If |f | ≤ g, then f ∈ L1.

Proof. Let h ∈ L+
1 . If f ≤ g, then for all f ′ ∈ L1, dh(f

′∧g, f) ≤ dh(f
′, f). Indeed,

|f ′ − f | ∧ h = (f ′ − f)+ ∧ h+ (f ′ − f)− ∧ h
≥ (f ′ ∧ g − f)+ ∧ h+ (f ′ ∧ g − f)− ∧ h
= |f ′ ∧ g − f | ∧ h.

If (fn)n∈N is a sequence in L1 and fn →dg f , then fn∧ g → f in measure. Now
apply Theorem 6.2 and use the completeness of L1. �

Lemma 6.4. The uniform space (L1, {dh : h ∈ L+
1 }) is metrically equivalent to

the uniform space (L1, {da : a ∈ A}).
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Proof. We prove that the injection map from (L1, {dh : h ∈ L+
1 }) to (L1, {da :

a ∈ A}) is uniformly continuous. In order to do so fix ε > 0 and h ∈ L+
1 .

Because the simple functions are dense we can pick an a ∈ A and c ∈ R such
that

∫
(h− ca)+ < ε/2. If f, g are elements of L1 such that da(f, g) < ε/2c, then

dh(f, g) =

∫
|f − g| ∧ h ≤ c

∫
|f − g| ∧ a+

∫
(h− ca)+ < ε. �

Theorem 6.5. Let (fn)n∈N be an increasing sequence of integrable functions.
Then the sequence (fn)n∈N converges in measure to an integrable function if and
only if limn→∞ I(fn) exists.

Proof. Suppose that l := limn→∞ I(fn) exists. Then
∫

(fn−fm) → l− l = 0 when
n,m → ∞. So the sequence (fn)n∈N is Cauchy in norm and hence converges to
some f ∈ L1.

Conversely, suppose that the sequence (fn)n∈N converges in measure to an
integrable function f ∈ L1. We may assume that fn ≥ 0 for all n ∈ N. For all
m,n ∈ N, such that m ≥ n,∫

fm − fn =

∫
|fm − fn| ∧ f,

which converges to 0 when m,n→∞. So the sequence (
∫
fm)m∈N converges. �

Definition 6.6. A measure ring (A, µ) is σ-finite if there is a sequence (an)n∈N

such that a := limn→∞
∨n

k=1 ak exists in L0 and a is a unit with respect to the
multiplication in L0.

Because we assumed A to be separable, it follows that A is σ-finite.

Theorem 6.7. Let (A, µ) be a σ-finite measure ring. Let f be a measurable
function. Then there exist a countable set T ⊂ R and a partial function t 7→ gt

defined on R∼T such that for all t ∈ ∼T, gt is a measurable function such that
gt = g2

t , fgt ≤ tgt and f(1− gt) ≥ t(1− gt).
Moreover, for each admissible t > 0 and each ε > 0 and h ∈ L+

1 , there exists
δ > 0 such that

dh(gt, gs) < ε

whenever s > 0 is admissible and |t − s| < δ. Finally, gt → 1 in measure as
t→∞.

Intuitively, for all t ∈ ∼T, gt may be identified with [f ≤ t] or [f < t].

Proof. We first assume that there is N ∈ N such that 0 ≤ f ≤ N = N · 1. Let a
be in A. Then fa is integrable by Theorem 6.3. Theorem 4.1 supplies a countable
set T such that for all t ∈ R+ ∼ T, [fa ≤ t] is integrable.

We may drop the assumption that f is bounded, by noting that if N ∈ N and
t ∈ [−N/2, N/2] is admissible for fa, then [fa ≤ t] = [(fa∧N/2)+N/2 ≤ t+N/2]
and (fa ∧ N/2) + N/2 is bounded by N . We see that for all a ∈ A, there is a
countable set Ta of exceptions.
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Observe that for every pair of integrable sets a, b and h ∈ L+
1 and every t which

is admissible for fa and fb,

dh([fa ≤ ta], [fb ≤ tb]) ≤ dh(a, b).

It follows that if (am)m∈N is a sequence in A satisfying the conditions of Defini-
tion 6.6, then

gt := lim
N→∞

[(
N∨

n=1

am)f ≤ t]

exists for all t ∈ R∼
⋃∞

n=0 Tan . It is clear that gt has the properties mentioned in
the theorem. �

Fix m ∈ R+. Define S(A)m := {f ∈ S(A) : |f | ≤ m} and L0,m := {f ∈ L0 :
|f | ≤ m}.

Lemma 6.8. Consider S(A) with the uniform structure inherited from L0. Mul-
tiplication from S(A)m × S(A)m to S(A) is uniformly continuous. Since S(A)m

is dense in L0,m, the multiplication can be uniquely extended to a uniformly con-
tinuous function from L0,m × L0,m to L0.

Proof. We prove that the map f 7→ f 2 is uniformly continuous from S(A)m to
S(A). The lemma then follows from the observation that fg = 1

2
((f + g)2− f 2−

g2).
By Lemma 6.4 we may consider the uniform space (S(A), {da : a ∈ A}). Let

f, g ∈ S(A)m, ε > 0 and suppose that da(f, g) ≤ ε. Then

|f 2 − g2| ∧ a = |f − g||f + g| ∧ a
≤ 2m(|f − g| ∧ a),

so da(f
2, g2) ≤ 2mε. �

Let p be a polynomial on R and f a measurable function. We define p◦f using
Lemma 6.8.

Theorem 6.9. Let P be the set of polynomials on R. Let C be the uniform space
of continuous functions with the sequence of pseudometrics (ρn)n∈N defined by
ρn(f) := sup[−n,n] |f | for all n ∈ N and f ∈ C. The map ◦ : P × L0,m → L0

defined by ◦(p, f) := p ◦ f is uniformly continuous and can therefore be uniquely
extended to a uniformly continuous map from C × L0,m to L0. Moreover, for
each f ∈ L0 and each test-function ψ with support included in [−n, n] we define
ψ ◦ f := ψ ◦ (f ∧ n ∨ −n). The map ◦f : C0 → L0 defined by ◦f (ψ) = ψ ◦ f
is uniformly continuous and can therefore be extended uniquely to a uniformly
continuous map from C to L0. Here C0 denotes the set of test-functions.

Proof. Let m ∈ R+ and fix ε > 0 and a ∈ A. Suppose that p ∈ P and |p| ≤ ε on
[−m,m]. Then for all f, g ∈ L0,m,

∫
a
|p(f)−p(g)|∧1 ≤ 2εµ(a), because this holds
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for all simple functions f, g bounded by m. We see that the map ◦ is uniformly
continuous on P × L0,m.

Fix a measurable function f. We assume that it is positive. Let ψ be a test-
function. We use the notation of Theorem 6.7. For each t ∈ R, which is admissible
for f , fgt is bounded by t. We write ψ(fgt) for ψ ◦ (fgt). Let s be admissible for
f and such that s < t. Then ψ(fgt)gs = ψ(fgs). So

ψ(fgt)− ψ(fgs) = ψ(fgt)(gt − gs) + ψ(fgt)gs − ψ(fgs) = ψ(fgt)(gt − gs).

It follows that for every integrable set a, da(ψ(fgt), ψ(fgs)) ≤ da(gt, gs). Finally,
remark that gt → 1 as t→∞. Consequently, for each a, we can fix t ∈ R+ such
that for all t′, t′′ ≥ t, da(gt′ , gt′′) ≤ ε. Consequently, for all test functions ψ, ψ′ if
ρt(ψ − ψ′) ≤ ε, then da(ψ(f), ψ′(f)) ≤ ε+ 2εµ(a). �

7. Equivalence with the other definitions.

Coquand and Palmgren showed that the algebra of integrable sets of a complete
integration space is a metrically complete measure ring. It follows that L1 in the
sense of Bishop and Bridges is isomorphic as an ordered normed space with our
L1. We prove a similar result for measurable functions.

Proposition 7.1. A sequence (fn)n∈N of integrable functions that is Cauchy in
measure in the sense of [2] is dh-Cauchy for every h ∈ L+

1 .

Proof. By Theorem 6.4 we may restrict ourselves to the case h = a, where a ∈ A.
Suppose that the sequence (fn)n∈N is Cauchy in the sense of [2]. Let ε > 0.
Choose an integrable set b ⊂ a and N ∈ N such that for all n,m > N : |fm−fn| <
ε/µ(A) on b and µ(a− b) < ε. Now∫

a

|fm − fn| ∧ 1 =

∫
a−b

|fm − fn| ∧ 1 +

∫
b

|fm − fn| ∧ 1

≤ 2ε.

�

Proposition 7.2. Let (fn)n∈N be sequence of integrable functions that is Cauchy
in the uniform space (L1, {dh : h ∈ L+

1 }). Then (fn)n∈N is Cauchy in measure in
the sense of [2].

Proof. Let a be an integrable set. Suppose that f, g ∈ L1 and da(f, g) < α2

and α is admissible for |f − g|. Define b := [|f − g| ≤ α] and observe that
µ(a− b) ≤ α2/α = α.

Let ε > 0 be admissible for all integrable functions |fn − fm|, where n and m
range over N. Choose N such that for all n,m ≥ N, da(fn, fm) < ε2. Then for
all n,m ≥ N there is an integrable set b such that µ(a− b) < ε and |fn−fm|χb ≤
ε. �
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8. Convergence almost everywhere

As we have already seen convergence in norm and convergence in measure are
topological properties which can be treated conveniently in a point-free way. One
would hope that the same is true for convergence almost everywhere, that is, that
there is a collection of open sets such that a sequence (fn)n∈N of measurable func-
tions converges almost everywhere to a measurable function f if and only if for
all open U, if f ∈ U, then for all sufficiently large n, fn ∈ U . This is not the case
as the following adaptation of a classical example shows. Our example uses the
extended fan-theorem, an intuitionistic principle which is inconsistent with clas-
sical mathematics, but can be added consistently to Bishop-style mathematics.
See for instance [12] or [3] for more on this principle.

Identify a finite sequence a in {0, 1} with the set {α ∈ {0, 1}N : α starts with a}
and define the measure µ on {0, 1}N, by µ(χa) := 2−n, where n is the length of
a. For all α ∈ {0, 1}N, the sequence n 7→ χᾱn converges to the 0-function almost
everywhere. Fix an open neighborhood U ⊂ L1 of the 0-function. Then for all
α, there is an N ∈ N such that for all n ≥ N, χᾱn ∈ U. By the extended fan
theorem there is NU such that for all α and for all n ≥ NU , χᾱn ∈ U. Hence U
contains all functions associated with finite sequences that are sufficiently long.

Define the sequence f1, f2, . . . by χ0, χ1, χ00, χ01, χ10, χ11, χ000, . . . As we just
showed, for all open U containing 0 there is N ∈ N such that for all n ≥ N,
fn ∈ U, but the sequence (fn)n∈N does not converge almost everywhere to the
0-function; in fact it does not converge at any point. It follows that convergence
in measure is not a topological property. This example also shows that almost
uniform convergence is not a topological property.

We have been deliberately vague about what a topology is. But the argument
above should work in any framework for constructive topology, for instance the
one in [13].

9. Final remarks

We presented an algebraic treatment of integration theory including a theory
of measurable functions. We mentioned a problem of this approach: it does not
include convergence a.e. We conjecture that this can be avoided in a number of
cases by considering convergence in measure instead of convergence a.e.

Treating integration theory algebraically has a been advocated by a number
of researchers: A. Weil [14], Kolmogorov [7], Caratheodory [4], Segal [10], Frem-
lin [6]. The present approach seems to be new. It was well-known that the
topology of convergence in measure is metrizable, but I have been unable to find
a treatment of the set of measurable functions as a completion, even in classical
mathematics.

One difference between our approach and the ones mentioned above is that
we studied the measure space together with a measure, rather then the measure
space on its own.
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