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Abstract. Floating point operations are fast, but require continuous ef-
fort on the part of the user in order to ensure that the results are correct.
This burden can be shifted away from the user by providing a library
of exact analysis in which the computer handles the error estimates. We
provide an implementation of the exact real numbers in the CoQ proof
assistant. This improves on the earlier CoQ-implementation by O’Connor
in two ways: we use dyadic rationals built from the machine integers and
we optimize computation of power series by using approximate division.
Moreover, we use type classes for clean mathematical interfaces. This
appears to be the first time that type classes are used in heavy compu-
tation. We obtain over a 100 times speed up of the basic operations and
indications for improving the CoqQ system.

1 Introduction

Real numbers cannot be represented exactly in a computer. Hence, in construc-
tive analysis [1] one approximates real numbers by rational, or dyadic numbers.
The real numbers are the completion of the rationals. This completion con-
struction can be organized in a monad, a familiar construct from functional
programming (Section 3). The completion monad provides an efficient combina-
tion of proving and computing [2]. In this way, O’Connor [3] implements exact
real numbers and the transcendental functions on them in CoQ.

A number of possible improvements in this implementation were already
suggested in [4]. First, we can use COQ’s new machine integers; see Section 2.
Second, we can use dyadic rationals (that are numbers of the shape n * 2¢ for
n,e € Z, also known as infinitary floats). Third, the implementation of power
series can be improved by using approximate division. Here we carry out all three
optimizations. Unfortunately, changing O’Connor’s implementation to use the
new machine integers was far for from trivial, as he used a particular concrete
representation of the rationals. To avoid this in the future, we provide an abstract
specification of the dense set as approximate rationals; see Section 4.

In Section 4 we provide some abstract order theory culminating in the theory
of approximate rationals. Section 5 deals with computing power series using
dyadics. Section 6 describes Wolfram’s algorithm to compute the square root of
a real number. We finish with some benchmarks in Section 7.

* The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).



2 The CoQ-system

The Coq proof assistant is based on the calculus of inductive constructions [5,
6], a dependent type theory with (co)inductive types; see [7,8]. In true Curry-
Howard fashion, it is both a pure functional programming language with an
expressive type system, and a language for mathematical statements and proofs.
We highlight some aspects of CoQ relevant for our development.

Types and propositions. Propositions in CoQ are types [9, 10], which themselves
have types called sorts. CoQ features a distinguished sort called Prop that one
may choose to use as the sort for types representing propositions. The distin-
guishing feature of the Prop sort is that terms of non-Prop type may not depend
on the values of inhabitants of Prop types (that is, proof terms). This regime of
discrimination establishes a weak form of proof irrelevance, in that changing a
proof can never affect the result of value computations. On a practical level, this
lets CoQ safely erase all Prop components when extracting certified programs to
OcAML or HASKELL. We should note however, that in practice, COQ’s extrac-
tion mechanism is still very hard to use for programs with the complexity, in
terms of depth of definitions, that we are interested in.

Equality, setoids, and rewriting Because the CoQ type theory lacks quotient
types (as it would make type checking undecidable), one usually bases abstract
structures on a setoid (‘Bishop set’): a type equipped with an equivalence rela-
tion [1, 11]. This leads to a naive set theory as described by Palmgren [12]. When
the user attempts to substitute a given (sub)term using an equality, the system
keeps track of, resolves, and combines proofs of equivalence [13].

The ‘native’ notion of equality in COQ, Leibniz equality, is that of terms being
convertible, naturally reified as a proposition by the inductive type family eq with
single constructor eq.refl : V (T : Type)(x : T), x = x, where a = b is notation for
eq T a b. Since convertibility is a congruence, a proof of a = b lets us substitute
b for a anywhere inside a term without further conditions. Our interest is in
more complicated equalities, so we diverge from C0Q tradition and reserve = for
setoid equality. Rewriting with = does give rise to side conditions. For instance,
consider formal fractions of integers as a representation of rationals. Rewriting a
subterm using such an equality is permitted only if the subterm is an argument of
a function that has been proven to respect the equality. Such a function is called
Proper, and that property must be proved for each function in whose arguments
we wish to enable rewriting.

Type classes. Type classes have been a great success story in the HASKELL
functional programming language, as a means of organizing interfaces of abstract
structures. CoQ’s type classes provide a superset of their functionality, but are
implemented in a different way.

In HASKELL and ISABELLE, type classes and their instances are second class.
They are handled as specialized syntactic constructs whose semantics are given



specifically by the type class apparatus. By contrast, the expressivity of depen-
dent types and inductive families as supported in C0Q, combined with the use
of pre-existing technology in the system (namely proof search and implicit argu-
ments) enable a first class type class implementation [14]: classes are ordinary
record types (‘dictionaries’), instances are ordinary constants of these record
types (registered as hints with the proof search machinery), class constraints are
ordinary implicit parameters, and instance resolution is achieved by augmenting
the unification algorithm to invoke ordinary proof search for implicit arguments
of class type. Thus, type classes in COQ are realized by relatively minor syntactic
aids that bring together existing facilities of the theory and the system into a
coherent idiom, rather than by introduction of a new category of qualitatively
different definitions with their own dedicated semantics.

We use the algebraic hierarchy based on type classes and its abstract speci-
fication of N, Z and @ [15]. Unfortunately, we should note that we have clearly
met the efficiency problems connected to the current implementation of type
classes in C0OQ. Luckily, these efficiency problems are limited to instance reso-
lution which is only performed at compile time. Type classes have only a very
minor effect on the computation time of type checked terms due to the absence
of code inlining; see Section 7 for timings.

Virtual machine and machine integers. CoQ includes a virtual machine [16],
vm_compute, based on OCAML’s virtual machine to allow efficient evaluation.
Both the abstract machine and its compilation scheme have been proved correct,
in CoQ, with respect to the weak reduction semantics. However, we still need to
extend our trusted core to a bigger kernel, as the implementation has not been
formally verified.

Machine integers were also added to the Coq system [17]. The usual evalu-
ation inside CoQ (compute) uses a special inductive type for cyclic integers, but
the virtual machine uses OCAML’s machine integers. This allows for a big speed-
up, for which we pay by having to trust (the virtual machine and) that OcaML
treats these integers correctly. The time difference between computation with
CoQ’s int and OCAML’s Big.int is about a factor of 20 [18] on primality tests.

3 Metric spaces

Having completed our brief description of the CoQ-system, we now turn to
O’Connor’s formalization of exact real numbers [2]. Traditionally, a metric space
is defined as a set X with a metric function d : X x X — R, satisfying cer-
tain axioms. The usual constructive formulation requires d be a computable
function. We use a more relaxed definition of a metric space that does not
require the metric be a function. A similar construction can be found in the
work by Richman [19]. The metric is represented via a (respectful) ball relation
B: Qi - X — X — Prop, where Prop is the type of propositions, satisfying
five axioms:

msp_refl : Vexe, B,z x



msp_sym : Vzye, B,z y > B,y z

msp_triangle : Vxyzei1e2, B,z y - B,y 2 =+ B, 1., T 2

msp_closed : Ve ye, (Vd, B.,s2y) = Bz y

mspeq : Vzy, (Ve, B,z y) 2z =1y
The ball relation B, x y expresses that the points « and y are within € of each
other. We call this a ball relationship because the partially applied relation
Bf x : X — Prop is a predicate that represents the closed ball of radius &
around the point . For example, the ball relation on Q is Bz y := [z —y| < e.

A metric space X is a prelength space if:

Vabedyde, € <61 +62—=B_ab—dc, Bs,ac AN By, cb.

This property states that if two points a and b within ¢ of each other, then there
exists curve of length d(a,b) in the completion of X that connects a and b. The
metric space Q is a prelength space.

We will introduce the completion of a prelength space as a monad. In order
to do this we will first introduce monads.

Monads. Moggi [20] recognized that many non-standard forms of computation
may be modeled by monads!. Wadler [21] popularized their use in functional
programming. Monads are now an established tool to structure computation
with side-effects. For instance, programs with input X and output Y which have
access to a mutable state S can be modeled as functions of type X x.§ — Y x .S,
or equivalently X — (Y x S)°. The type constructor MY := (Y x S)° is
an example of a monad. Similarly, partial functions may be modeled by maps
X —»Y,, where Y| :=Y + () is a monad.

The formal definition of a (strong) monad is a triple (90, return, bind) con-
sisting of a type constructor 2 and two functions:

return : X — INX
bind : (X — MY) - MX — MY

We will denote return z as &, and bind f as f. These two operations must satisfy
the following laws:

bind return a

a
a=fa
f(ga) = bind (fog)a
Completion monad. Given a metric space X, the completion €X of X is defined
by:

CX :={f: Q4 = X |Vere2, B, |, (fer) (fe2)}.

Given metric spaces X and Y, a function f : X — Y is uniformly continuous
with modulus py : Q4 — Q4 if:

Ve x1 o, BMfE Tr1 Ta — Ba (f.l?l) (fl‘g)

! In category theory one would speak about the Kleisli category of a (strong) monad.



Completion is a monad on the category of prelength spaces with uniformly con-
tinuous functions. The function return : X — €X defined by Aze, x is the
embedding of a prelength space in its completion. Moreover, a uniformly con-
tinuous function f : X — €Y with modulus py can be lifted to operate on
complete prelength spaces as bind f : €X — €Y defined by Azve, f(z (1r5)) 5.
The restriction to prelength spaces allows the present efficient definition of bind.

One advantage of this approach is that it helps us to work with simple rep-
resentations. Let R := €QQ. Then to specify a function from R — R, we define
a uniformly continuous function f : @ — R, and obtain f : R — R as the
required function. Hence, the completion monad allows us to do in a structured
way what was already folklore in constructive mathematics: to work with simple,
often decidable, approximations to continuous objects.

4 Abstract interfaces using type classes

An important part of this work is to further develop the algebraic hierarchy
based on type classes by Spitters and van der Weegen [15]. Especially, we have
formalized some order theory and developed interfaces for mathematical oper-
ations common in programming languages such as shift and power. This layer
of abstraction makes both proof engineering and programming more flexible: it
avoids duplication of code, it introduces a canonical way to refer to operations
and properties, both by names and notations, and it allows to easily swap dif-
ferent implementations of number representations and their operations. First we
will briefly recap the design decisions made in [15].

Algebraic structures are expressed in terms of a number of carrier sets, a
number of relations and operations, and a number of laws that the operations
satisfy. One way of describing such a structure is by a bundled representation:
one uses a dependently typed record that contains the carrier, operations and
laws. For example a semigroup can be represented as follows. (The fields sg_car
and sg_proper support our explicit handling of naive set theory in type theory.)

Record SemiGroup : Type := {

sg-car :> Setoid ;

Sg-op : sg_car — sg_car — sg_car ;

sg_proper : Proper ((=) = (=) = (=)) sgop ;

sg-ass : V x y z, sg-op x (sg-op y z) = sg-op (sg-op xy) z) }
However, this approach has some serious limitations, the most important one
being a lack of support for sharing components. For example, suppose we group
together two CommutativeMonoids in order to create a SemiRing. Now awkward
hacks are necessary to establish equality between the carriers. A second problem
is that if we stack up these records to represent higher structures the projection
paths become increasingly large.

Historically these problems have been an acceptable trade-off because un-
bundled representations, in which the carrier and operations are parameterized,
introduce even more problems. Spitters and van der Weegen have proposed a
use of COQ’s new type class machinery that resolves many of the problems of



unbundled representations. Our current experiment confirms that this is a viable
approach.
An operational type class is defined for each operation and relation.

Class Equiv A := equiv: relation A.
Infix "=" := equiv: type_scope.

Class RingPlus A := ring_plus: A — A — A.

Infix "+" := ring_plus.

Now an algebraic structure is just a type class living in Prop that is parametrized
by its carrier, relations and operations. This class contains all laws that the op-
erations should satisfy. Since the operations are unbundled we can easily support

sharing. For example let us consider the SemiRing interface.

Class SemiRing A {e plus mult zero one} : Prop := {
semiring_mult_monoid :> @CommutativeMonoid A e mult one ;
semiring_plus_monoid :> @CommutativeMonoid A e plus zero ;
semiring_distr :> Distribute (.x.) (4) ;
semiring_left_absorb :> LeftAbsorb (..) 0 }.

Without type classes it would be a burden to manually carry around the carrier,
relations and operations. However, because these parameters are just type class
instances, the type class machinery will perform that job for us. For example,

Lemma double ‘{SemiRing R} x : 2 x x = x + x.

The backtick instructs CoqQ to automatically insert implicit declarations, namely
e plus mult zero one. Furthermore, instance resolution will automatically find in-
stances of the operational type classes for the written notations.

This approach to interfaces proved useful to formalize a standard algebraic
hierarchy. Combined with category theory and universal algebra, N and Z are
represented as interfaces specifying an initial SemiRing and initial Ring [15]. These
abstract interfaces for the naturals an integers make it easier to change the
concrete representation in the future. No such simple specification for QQ seems
to exists, so we choose to specify it as the field of fractions of Z. More precisely,
Q is specified as a Field containing Z that moreover can be embedded into the
field of fractions of Z.

Inductive Frac R ‘{e : Equiv R} ‘{zero : RingZero R} : Type :=
frac { num : R ; den : R ; den_nonzero : den # 0 }.
Class RationalsToFrac (A : Type) := rationals_to_frac : V B ‘{Integers B}, A — Frac B.
Class Rationals A {e plus mult zero one opp inv} ‘{U : IRationalsToFrac A} : Prop := {
rationals_field :> @Field A e plus mult zero one opp inv ;
rationals_frac :> V '{Integers Z}, Injective (rationals_to_frac A Z) ;
rationals_frac_mor :> V ‘{Integers Z}, SemiRing_Morphism (rationals_to_frac A Z) ;
rationals_embed_ints :> V ‘{Integers Z}, Injective (integers_to_ring Z A) }.

4.1 Order theory

To abstract from N, Z, @ and IR and their various implementations, we provide
a basic library for order theory and its interaction with algebraic structures. For
example,



Class RingOrder ‘{Equiv A} '{RingPlus A} ‘{RingMult A} ‘{RingZero A}
(o : Order A) := {
ringorder_partialorder :> PartialOrder (<) ;
ringorder_plus :> ‘(OrderPreserving (z +));
ringordermult : ‘(0 < x—>Vy, 0<y—>0<xxy)}

To apply this to N, which is merely a semiring, we introduce the, apparently
new, notion of a SemiRingOrder. Every RingOrder is a SemiRingOrder.
Class SemiRingOrder ‘{Equiv A} '{RingPlus A} ‘{RingMult A} ‘{RingZero A}
(o : Order A) :={
srorder_partialorder :> PartialOrder (<) ;
srorder_plus : ‘(x <y« 3z, 0<zAy=x+2);
srordermult : ‘(0 <x > Vy, 0<y—=0<x=xy)}

This allows us to refer by canonical names to lemmas as those shown below for
N, Z, @ and the dyadics.

Lemma plus_.compat x1 y1 X2 y2 : x1 <y1 = x2 <y2 = X1 +x2 <y1 + V2.
Lemma sprecedes_1.2 : 1 < 2.

For instances of N, Z, Q) it is easy to define an order satisfying these interfaces:

Instance nat_precedes ‘{Naturals N} : Order N | 10 :=Axy, 3z, y =x + z

However, often we encounter an a priori different order on a structure, most likely
an order defined in CoQ’s standard library (like Nle on N). Therefore we prove
that an arbitrary order satisfying these interfaces while also being a TotalOrder
uniquely specifies the order on N, Z and Q. For example:

Context ‘{Naturals N} ‘{Naturals N2} {f : N — N2} ‘{!SemiRing_Morphism f}
{ol : Order N} ‘{ISemiRingOrder o1} ‘{!TotalOrder o1}
{02 : Order N2} ‘{!SemiRingOrder 02} ‘{!TotalOrder 02}.

Global Instance: OrderEmbedding f.

4.2 Basic operations

The operation nat_pow is most commonly defined as repeated multiplication and
the operation shiftl is defined as repeated multiplication by 2. However, if we
implement these operations that way, they become too slow for the purpose of
our work: efficient computation with real numbers. Instead we specify the desired
behavior of these operations. This approach allows for different implementations
for different number representations and avoids definitions and proofs becoming
implementation dependent.

We introduce interfaces that specify the behavior of the operations abs, shiftl,
shiftr, nat_pow, int_pow and Euclidean division. Again there are various ways of
specifying these interfaces: with X-types, bundled or unbundled. In general,
X -types are convenient for functions whose specification is easy, for example:
Class Abs A ‘{Equiv A} ‘{Order A} ‘{RingZero A} ‘{Grouplnv A}

=abssig V(x:A), {y:A|(0<x—=y=x)A(x<0—=y=—x)}

Definition abs ‘{Abs A} := A x : A, * (abs_sig x).



However, for more complex operations, such as shiftl, such an interface is differ-
ent from the usual mathematical specification because we cannot quantify over
all possible input values. Now there are two ways: a bundled or an unbundled
interface. Since these interfaces are not used for hierarchies the disadvantages of
the latter do not apply. Let us first describe the former approach.
Class ShiftL A B ‘{Equiv A} '{Equiv B} ‘{RingOne A}
‘{RingPlus A} ‘{RingMult A} ‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl: A - B — A ;

shiftl_proper : Proper ((=) = (=) = (=)) shiftl ;

shiftl_0 :> Rightldentity shiftl O ;

shiftl_S : V x n, shiftl x (1 + n) = 2 = shiftl x n }.
Infix "< " := shiftl (at level 33, left associativity).

Although this interface seems reasonable, it does not work well in CoQ. The simpl
tactic which is used to simplify a goal will unfold occurrences of shiftl to their
underlying definition (for example in case of BigN, the expression x < n becomes
BigN.shiftl x n). This is rather inconvenient because CoQ will then be unable to
use lemmas concerning < for rewriting. This problem is caused because shiftl is
a projection of a record, which is in fact a d-redex that will be unfolded by simpl.
Currently there seems to be no way to adjust the behavior of simpl to remove
this inconvenience. A similar problem was already observed in SSREFLECT [22].
Instead we use an unbundled interface, which has a lot in common with our
interfaces for algebraic structures. Now shiftl no longer contains a d-redex.

Class ShiftL A B := shiftl: A - B — A.
Infix "< " := shiftl (at level 33, left associativity).
Class ShiftLSpec A B (sl : ShiftL A B) ‘{Equiv A} '{Equiv B} ‘{RingOne A}
‘{RingPlus A} ‘{RingMult A} ‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {
shiftl_proper : Proper ((=) = (=) = (=)) (X) ;
shiftl_0 :> Rightldentity (<) 0 ;
shiftl, S :Vxn x< (1 +n)=2xx<n}.

We do not specify shiftl as shiftl x n = x x 2~ n since on the dyadics we cannot
take a negative power while we can shift by a negative integer.

4.3 Decision procedures

The Decision type class collects types with a decidable equality [15].

Class Decision P := decide: sumbool P (- P).

Using this type class we can declare a parameter ‘{V xy, Decision (x < y)} to
describe a decider for < and say decide (x < y) to decide whether x <y or not.
This type class allows to easily define additional deciders, like the one for the
strict order. We have to be careful however. Consider the order on the dyadics.

Global Instance dy_equiv: Equiv Dyadic := A x vy,
ZtoQ (mant x) * 2 ~ (expo x) < ZtoQ (mant y) * 2 ~ (expo y)

Now, decide (x < y) is actually @decide Dyadic (x < y) dyadic_dec, where dyadic_dec
is the computational conclusion of the decision. Due to eager evaluation, and



the absence of dead code removal, the second argument, x <y, is also evaluated.
Evaluation of this argument results in a conversion of x and y into Q, as described
above. But since this argument is just a proposition it is later thrown away. We
avoid this problem introducing a A-abstraction.

Definition decide_rel ‘(R : relation A) {dec : V x y, Decision (R x y)}
(xy : A) : Decision (R x y) := dec x y.

We can now define:

Context ‘{!PartialOrder (<) } {!TotalOrder (<) } {V x y, Decision (x < y)}.
Global Program Instance sprecedes_dec: V x y, Decision (x <y) | 9 :=Axy,
match decide_rel (<) y x with

| left E = right _
| right E = left _
end.

4.4 Approximate rationals

In order to make our implementation of the reals independent of the underlying
dense set, we provide an abstract specification of such a set. The interface of
this specification is called approxzimate rationals and is inspired by the notion of
approzimate fields which is used in the HASKELL implementation of the exact
reals by Bauer and Kavler [23]. We provide an implementation of this interface
by dyadics based on COQ’s machine integers.

Our interface describes an ordered ring containing Z that is dense in Q. Here
Z are the binary integers from CoQ’s standard library, and Q are the rationals
based on these binary integers. We do not parametrize by arbitrary integer and
rational implementations because they are hardly used for computation.

Also, for efficient computation, this interface contains the operations: ap-
proximate division, normalization, an embedding of Z, absolute value, power by
N, shift by Z, and decision procedures for both equality and order.

Class AppDiv AQ := app.div: AQ —» AQ — Z — AQ.
Class AppApprox AQ := app-approx : AQ — Z — AQ.
Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}

{AQtoQ : Coerce AQ Q_as_MetricSpace} ‘{!Applnverse AQtoQ}

{ZtoAQ : Coerce Z AQ} '{!AppDiv AQ} ‘{!AppApprox AQ}

‘{1Abs AQ} ‘{IPow AQ N} ‘{IShiftL AQ Z}

YV xy: AQ, Decision (x =y)} {Vxy:AQ, Decision (x <vy)} : Prop := {

aq-ring :> @Ring AQ e plus mult zero one inv ;
aq-order_embed :> OrderEmbedding AQtoQ ;
aq_ring_morphism :> SemiRing_Morphism AQtoQ ;
ag_dense_embedding :> DenseEmbedding AQtoQ ;
aqdiv : V x y k, By ("appdivxy k) ('x / 'y) ;
aqg-approx : V x k, Bk ("app_approx x k) ('x) ;
aq-shift :> ShiftLSpec AQ Z () ;

ag-nat_pow :> NatPowSpec AQ N (7) ;
ag_ints_mor :> SemiRing_Morphism ZtoAQ }.



O’Connor’s [2] keeps the size of the rational numbers small to avoid efficiency
problems. He introduced a function approx x € that yields the ‘simplest’ ratio-
nal number between x — ¢ and x + e¢. In our interface we modify the approx
function slightly: app-approx x k yields an arbitrary element between x — 2 and
x +2F. Using this function we define the compress operation on the real numbers:
compress := bind (A ¢, app-approx x (Qdlog2 €)) such that compress x = x.

In Section 5 we will explain our choice of using a power of 2 to specify the
precision of app_div and app_approx. In the remainder of this section we briefly
describe our implementation by the dyadics.

The dyadic rationals are numbers of the shape n * 2¢ for n,e € Z. In or-
der to remain independent of an integers implementation, we abstract over it.
For our eventual implementation of the approximate rationals we use C0OQ’s
machine integers, bigZ. Now given an arbitrary integer implementation Int it is
straightforward to define the dyadics. Here we will just show the ring operations.

Notation "x [ p" := (exist _ x p) (at level 20).
Record Dyadic := dyadic { mant : Int ; expo : Int }.
Infix "$" := dyadic (at level 80).
Global Instance dy_inject: Coerce Int Dyadic := A x, x $ 0.
Global Instance dy_opp: Grouplnv Dyadic := A x, —mant x $ expo x.
Global Instance dy_mult: RingMult Dyadic := A x y, mant x * mant y $ expo x + expo y.
Global Instance dy_0: RingZero Dyadic := ('0:Dyadic).
Global Instance dy-1: RingOne Dyadic := ('1:Dyadic).
Global Program Instance dy_plus: RingPlus Dyadic := A x y,
if decide_rel (<) (expo x) (expo y)
then mant x + mant y < (expoy — expo x) | - $ min (expo x) (expo y)
else mant x < (expo x — expo y) | - + mant y $ min (expo x) (expo y).

In this code shiftl has type Int — IntT— Int, where Int" is a X-type describing the
non-negative elements of Int. Therefore, in the definition of dy_plus we have to
equip expo y — expo x with a proof that it is in fact non-negative.

5 Power series

Elementary transcendental functions as exp, sin, In and arctan can be defined by
their power series. A power series is particularly suited for computation if its
coefficients are alternating, decreasing and have limit 0. For —1 < z <0,

x
exp r = Z ?
i=0
is of this form. To approximate exp z with error € we take the partial sum until
f—: < e. In order to implement this efficiently we use a stream representing the

series and define a function that sums the required number of elements. For
example, the series 1, a, a, a®, ... is defined by the following stream.

CoFixpoint powers_help (c : A) : Stream A := Cons c (powers_help (c * a)).
Definition powers : Stream A := powers_help 1.

10



Streams in CoQ, like lists in HASKELL, are lazy. So, in the example the multi-
plications are accumulated.

Since COQ only allows structural recursion it requires some work to convince
CoQ that our algorithm terminates. Intuitively, one would describe the limit as
an upperbound of the required number of elements using the Exists predicate.

Inductive Exists A (P : Stream A — Prop) (x : Stream) : Prop :=
| Here : P x — Exists P x
| Further : Exists P (tl x) — Exists P x.

This approach leads to performance problems. The upperbound, encoded in
unary format, may become very large while generally only a few terms are nec-
essary. Due to vm_compute’s eager evaluation scheme, this unary number will be
computed before summing the series. Instead we use LazyExists [24].

Inductive LazyExists A (P : Stream A — Prop) (x : Stream A) : Prop :=

| LazyHere : P x — LazyExists P x
| LazyFurther : (unit — LazyExists P (tl x)) — LazyExists P x.

O’Connor’s InfiniteAlternatingSum s returns the real number represented by the in-
finite alternating sum over s, where the stream s is decreasing, non-negative and
has limit 0. We have extended this in two ways. First, by generalizing some of the
work to abstract structures. Second, as we do not have exact division on approx-
imate rationals, we extended his algorithm to work with approximate division.
The latter required changing InfiniteAlternatingSum s to InfiniteAlternatingSum n d
which computes the infinite alternating sum of the stream Az, ZT This allows us
to postpone divisions. Also, we have to determine both the length of the partial
sum and the required precision of the divisions. To do so we find k such that:
€ €

B (app-div ny di (Iog2k) + ﬁ) 0. (1)

Now k is the length of the partial sum, and 53 is the required precision of
division. Using O’Connor’s results we have verified that these values are correct
and such a k indeed exists for a decreasing, non-negative stream with limit 0.

As noted in Section 4.4, we have specified the precision of division in powers
of 2 instead of using a rational value. This is allows us to replace (1) with:

B (appdiv nj, di (log e — (k+1)) +1 < (log € — (k4 1))) 0.

Here k is the length of the partial sum, and 2!, where | = log ¢ — (k + 1), is
the required precision of division. This variant can be implemented without any
arithmetic on the rationals and is thus much more efficient.

This method gives us a fast way to compute the infinite alternating sum, in
practice, only few extra terms have to be computed and due to the approximate
division the auxiliary results are kept as small as possible.

Using this method to compute infinite alternating sums we have so far imple-
mented exp and arctan. Furthermore, we extend the exponential to its complete
domain by repeatedly applying the following formula.

exp & = (exp(z < 1))? (2)
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Our tests have shown that reducing the input to a value between —2F < 2 <0

for 50 < k yields major performance improvements as the series will converge

much faster. For higher precisions setting it to 75 < k gives even better results.
By defining arctan on [0, 1), we can define

1 1 1
7 := 176 * arctan— + 28 * arctan—— — 48 * arctan—— + 96 * arct .
arc an57 + arc an239 arc an682 + arc an12943
Since we do not have exact devision on the approximate rationals, we here see
the purpose of parameterizing infinite sums by two streams.

6 Square root

We use Wolfram’s algorithm [25, p.913] for computing the square root. Its com-
plexity is linear, in fact it provides a new binary digit in each step. We aim to
investigate Newton iteration in future work.
Context ‘(Pa:1 < a<4).
Fixpoint AQroot_loop (n : nat) : AQ * AQ :=
match n with
| O = (a, 0)
|Sn =
let (r, s) := AQroot_loop n in
if decide_rel (<) (s + 1) r
then ((r — (s + 1)) < (2:2), (s + 2) <« (1:2))
else (r < (2:2), s < (1:Z))
end.
Three easy invariants allow us to prove this series converges to the square root.

Lemma AQroot_loop_invariantl (n : nat) :

snd (AQroot_loop n) x snd (AQroot_loop n) + 4 x fst (AQroot_loop n) =4 x4 " n x a.
Lemma AQroot_loop_invariant2 (n : nat) :

fst (AQroot_loop n) < 2 * snd (AQroot_loop n) + 4.

Lemma AQroot_loop_fst_bound (n : nat) :

fst (AQroot_loop n) <2~ (3 4 n).

7 Benchmarks

The first step in this research was to create a HASKELL prototype based on
O’Connor’s implementation of the real numbers in HASKELL [2]. The second
step was to implement this prototype in CoqQ. Currently, our CoQ development
contains the field operations, computation of power series, exp, arctan, 7 and the
square root. Apart from the square root, the correctness of these operations has
been verified in the CoQ system.

In this section we present some benchmarks comparing the old and the
new implementation, both in HASKELL and C0Q. All benchmarks have been
carried out on an Intel Core Quad 2.4 GHz with 8GB of memory running
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Expression Decimals | O’Connor | Krebbers/Spitters
sin (sin (sin 1)) 10,000 71s 5s
cos (10°%) 10,000 2.7s 0.6s
tan (v/2) + arctanh (sin 1) 500 133s 2.2s

Table 1. HASKELL, compiled with ghc version 6.12.1, using -02.

Expression Decimals | O’Connor | Krebbers/Spitters
m 300 55s 0.8s
exp (exp (exp (3))) 25 123s 0.23s
expm—T 25 52s 0.1s
arctan w 25 134s 1.0s

Table 2. CoQ trunk revision 13841.

DEBIAN GNU/LINUX with kernel 2.6.32. The sources of our developments can
be found at http://robbertkrebbers.nl/research/reals.

Table 1 shows some benchmarks in HASKELL with compiler optimizations
enabled (-02) and Table 2 compares our COQ implementation with O’Connor’s.
More extensive benchmarking shows that our HASKELL implementation gener-
ally benefits from a 15 times speed up while the speed up in C0OQ is usually
more than a 100 times. This difference is explained by the fact that O’Connor’s
HASKELL implementation already used fast integers, while his CoQ implementa-
tion did not. In the same times as shown in Table 2 for the old implementation,
the new implementation is able to compute the first 2,000 decimals of 7, 450
decimals of exp (exp (exp (3))), 425 decimals of exp 7 — 7 and 85 decimals of
arctan 7. This is an improvement of up to 18 times of the number of decimals.

It is interesting to notice that m and arctan benefit the least from our im-
provements, as we are unaware of an optimization similar to the squaring trick
for exp (Section 5, Equation 2).

We conclude this section with a comparison between the performance of
Wolfram’s algorithm in CoQ and HASKELL. The HASKELL prototype (without
compiler optimizations) is quite fast, computing 10,000 iterations (giving 3,010
decimals) of V2 takes 0.2s. In CoQ it takes 11.6s using type classes and 11.3s
without type classes. Here we exclude the time spend on type class resolution.
Thus type classes cause only a 3% performance penalty on computations.

Unfortunately, the CoQ-implementation is slow compared to HASKELL. Lau-
rent Théry suggested that this is due to the representation of the fast integers,
which uses a tree with a fixed depth and when the size of the integer becomes
too big uses a less optimal representation. Increasing the size of the tree rep-
resentation and avoiding an inefficiency in the implementation of shifts reduces
this time to 7.5s.
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8 Conclusions and Related work

We have greatly improved the performance of real number computation in CoQ
using COQ’s new machine integers. We produced highly structured and abstract
code using type classes with no apparent performance penalty. Moreover, COQ’s
notation mechanism combined with unicode characters gives nicely readable
statements and proofs. Type classes were a great help in our work. However, the
current implementation of instance resolution is still experimental and at times
too slow (at compile time). The use of canonical structures by the SSREFLECT
team does not suffer from these efficiency issues [26]. However, their library is
currently not suited for setoids which are crucial to us. We hope these issues
might be addressed by the integration of unification hints [27] into CoQ.

We needed to adapt our correctness proofs to prevent the virtual machine
from eagerly evaluating them. Lazy evaluation for Prop would have allowed us
to use the original proofs.

The experimental native_compute performs evaluation by compilation to native
OCAML code. This approach uses the OCAML compiler available and is interest-
ing for heavy compilation. Our first experiments indicate a 10 times speed up
with Wolfram iteration. Unfortunately, native_compute does not work with CoQ
trunk yet, so we were unable to test it with our implementation of the reals.

The FLocQ project [28] formalizes floating-points in CoQ. It provides a li-
brary of theorems on a multi-radix multi-precision arithmetic and supports ef-
ficient numerical computations inside COQ. However, the current library is still
too limited for our purposes, but in the future it should be possible to show that
they form an instance of our approximate rationals. This may allow us to gain
some speed by taking advantage of fine grained algorithms on the floats instead
of our more straightforward ones.

The encoding of real numbers as streams of ‘bits’ is potentially interesting.
However, currently there is a big difference in performance. The computation of
37 decimals of the square root of 1/2 by Newton iteration [29] took 12s. This
should be compared with our use of the Wolfram iteration, which gives only
linear convergence, but with which we nevertheless obtain 3,000 decimals in in
a similar time.

The present work is part of a larger program to use constructive mathematics
based on type theory as a programming language for exact analysis. This should
culminate in a numerical ODE-solver.
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