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Pointfree integration theory

Problem 1
Gian-Carlo Rota (similar remarks by Kolmogorov)
(`Twelve problems in probability no one likes to bring up')
Number 1: `The algebra of probability'
About the pointwise de�nition of probability:
`The beginning de�nitions in any �eld of mathematics are always
misleading, and the basic de�nitions of probability are perhaps the most
misleading of all.'
Problem: Probability should not be build up from points: impossible
events! → develop `pointless probability' (work by Caratheory and von
Neumann)
von Neumann - towards Quantum Probability



Constructive maths

Constructive mathematics
Two important interpretations:

1 Computational: type theory, realizability, E�, ...

2 Geometrical: (sheaf) toposes, ...

Research in constructive maths (analysis) mainly focuses on 1, where we
have DC

Problem 2
Develop constructive maths without (countable) choice

Richman

`Measure theory and the spectral theorem are major challenges for a
choiceless development of constructive mathematics and I expect a
choiceless development of this theory to be accompanied by some
surprising insights and a gain of clarity.'

We will address both of these problems simultaneously.
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Point Free Topology

Choice is used to construct
ideal points (real numbers, max. ideals).
Avoiding points one can avoid
choice and non-constructive reasoning

Pointfree topology aka locale theory, formal topology (formal opens)

These formal objects model basic observations
Topology: lattice of sets closed under unions and �nite intersections
Pointfree topology: lattice closed under joins and �nite meets
pointfree topology=complete Heyting algebra



Constructive integration theory

See Palmgren's talk.

Riemann

Lebesgue

Daniell - Positive linear functionals

Bishop integration spaces



Riemann

Riemann considered partions of the domain

∫
f = lim

∑
f (xi )|xi+1 − xi |



Lebesgue

Lebesgue considered partitions of the range

Need measure on the domain:∫
f = lim

∑
siµ(si ≤ f < si+1)



Daniell

Consider integrals on algebras of functions.
Classical Daniell theory
integration for positive linear functionals on space of continuous functions
on a topological space
Prime example: Lebesgue integral

∫
Linear:

∫
af + bg = a

∫
f + b

∫
g

Positive: If f (x) ≥ 0 for all x , then
∫
f ≥ 0.

Other example: Dirac measure δt(f ) := f (t).
Can be extended to a quite general class of underlying topological spaces
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Bishop's integration theory

Bishop follows Daniell's functional analytic approach to integration theory

Complete C (X ) wrt the norm
∫
|f |

Lebesgue-integral is the completion of the Riemann integral.
One obtains L1 as the completion of C (X ).

C (X ) → L1

↘

↓
L1

L1: concrete functions
L1: L1 module equal almost everywhere
Work with L1 because functions `are easy'.
Secretly we work with L1.
Do this overtly with an abstract space of functions, see later.
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Integral on Riesz space

We generalize Bishop/Cheng and metric Boolean algebras
Integral on Riesz space

De�nition

A Riesz space (vector lattice) is a vector space with `compatible' lattice
operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g .

Prime (`only') example:
vector space of real functions with pointwise ∨,∧.
Also: the simple functions.

We assume that Riesz space R has a strong unit 1: ∀f ∃n.f ≤ n · 1.
An integral on a Riesz space is a positive linear functional I
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Integrals on Riesz space

Most of Bishop's results generalize to Riesz spaces!
However, we �rst need to show how to handle multiplication.
Once we know how to do this we can treat:

1 integrable, measurable functions, Lp-spaces

2 Riemann-Stieltjes

3 Dominated convergence

4 Radon-Nikodym

5 Spectral theorem



Pro�le theorem

The pro�le theorem is crucial is Bishop's development
However, it implies that the reals are uncountable.

Theorem (Rosolini/S)

The (Dedekind) reals are not uncountable (in Sh(R) ).

i.e. can not be proved with CAC
Substitute for the pro�le theorem...

`Every Riesz space can be embedded in an algebra of continuous
functions'

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of representations.
The space Max(R) is compact Hausdor� and there is a Riesz embedding
·̂ : R → C (Max(R)). The uniform norm of â equals the norm of a.

We will replace Max(R) by a formal space.

Substitute for the pro�le theorem

Towards spectral theorem

To de�ne multiplication
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Entailment

Pointfree de�nition of a space using entailment relation `
Used to represent distributive lattices
Write A ` B i� ∧A ≤

∨
B

Conversely, given an entailment relation de�ne a lattice:
Lindenbaum algebra

Topology is a distributive lattice
order: covering relation
`Domain theory in logical form'
Topology = theory of (�nite) observations (Smyth, Vickers, Abramsky ...)
Stone's duality :
Boolean algebras and Stone spaces
distributive lattices and coherent T0 spaces
Points are models
space is theory, open is formula
model theory → proof theory
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Spectral theorem

Pointfree Stone-Yosida implies Bishop's version of the Gelfand
representation theorem (Coquand/S:2005) answering Richman's
challenge.
... and the classical theorem (by a direct application of AC).
Bishop proves the representation theorem using ε-eigenvalues, which has
computational content, to prove that a bound is preserved, which has no
computational content.
We avoid such excursions.

We have proved the Stone-Yosida representation theorem:

Theorem

Every Riesz space can be embedded in an algebra of continuous functions
on its spectrum qua formal space.

Any integral can be extended to all the continuous functions. Thus we
are in a formal Daniell setting!
We can now develop much of Bishop's integration theory in this abstract
setting.
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Two Problems
Observational integration theory

Stone

Another application

An f-algebra is a Riesz space with multiplication.

Theorem

Every f-algebra is commutative.

Several proofs using AC.
`Constructive' (i.e. no AC) proof by Buskens and van Rooij.
Mechanically translation to a simpler constructive proof (no PEM, AC)
which is entirely internal to the theory of Riesz spaces.

Bas Spitters Formal topology applied to Riesz spaces



Summary

Observational mathematics

Topology

Measure theory

Integration on Riesz spaces (towards Richman's challenge).

`functions' instead of `opens'

Most of Bishop's results can be generalized to this setting!

New (easier) proof of Bishop's spectral theorems using Coquand's
Stone representation theorem (pointfree topology)

The reals are not uncountable.

Pointfree is natural in constructive maths without choice

There's more...



Literature

Formal Topology and Constructive Mathematics: the Gelfand and
Stone-Yosida Representation Theorems (with Coquand)

Constructive algebraic integration theory without choice

Constructive algebraic Integration theory

Coquand - About Stone's notion of spectrum J. Pure Appl. Algebra,
197(1-3):141-158, 2005



Varieties

Constructive mathematics (Brouwer, Markov, Bishop, ...) mostly deals
with complete separable metric spaces,
images of Baire space (NN with product topology)
Example: [0, 1] limits of Cauchy sequences/ image of 3N

see also reverse maths, explicit maths, Weihrauch's TTE
Has surprisingly large range, but invites sequential reasoning
(representation dependent)



Sequences, trees, spaces

Richman: DC is often used to pick a path (choice sequence) in a tree/
subset of Baire space.
Proposal: consider the trees of all paths directly.
Example: construction of all zeros of a polynomial in the FTA.

The tree represents a topological space.
Here we give a formal description of this space.
Basic opens for �nite paths.
Now: consider the formal space of `all' choices.
Again the idea was obtained in both worlds:
Brouwer's theory of spreads and in topos theory
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