
Lecture Notes for Cryptographic Computing

6. Homomorphic Encryption

Lecturers: Claudio Orlandi, Peter Scholl, Aarhus University

October 23, 2023

Exercises marked with a ∗ are the most important ones and should be prioritized

This week, we look at the basics of homomorphic encryption. We will start with Paillier’s cryptosystem,
an additively homomorphic encryption scheme. The presentation here is somewhat reminiscent of [DJ01].
In the second half, we will see some intuition for how to build a fully homomorphic encryption scheme.

1 Paillier’s Cryptosystem

Paillier can be seen as a variant of the RSA encryption scheme that works modulo N2 instead of N , where
N = pq is a product of two large primes.

Paillier allows to encrypt any message in ZN . The encryption scheme is built using two “mappings”
from ZN into ZN2 . Intuitively, the first mapping takes care of the messages and ensures that the scheme is
homomorphic. The second mapping takes care of the randomness and makes sure that the scheme is secure.
The fact that the two mappings can be combined in ZN2 makes the magic happens.

The first mapping is an additively homomorphic map from ZN into ZN2 . It works as follows:

α(x) = (1 + xN) mod N2

ä Exercise 1.

(*) Verify that the mapping is homomorphic i.e.,

α(x) · α(y) mod N2 = α(x+ y mod N)

and therefore also
α(x)y mod N2 = α(x · y mod N)

It is not hard to see that this mapping is not particularly secure. In fact, the mapping is invertible!

ä Exercise 2.

(*) Find the inverse mapping α−1(·) such that, for all elements of ZN2 in the image of α it is possible
to compute x. In other words, how do you compute x ∈ ZN from (1 + xN) mod N2?

The second mapping that we call β also maps elements from ZN into ZN2 , and is essentially the same
as RSA encryption, but modulo N2, where the public exponent e is fixed to N .

β(r) = rN mod N2

1

ä Exercise 3.

Verify that the mapping is multiplicatively homomorphic i.e., β(x) · β(y) = β(x · y) mod N2

The security of Paillier encryption is based on the assumption that it is hard to distinguish between
uniformly random elements in ZN2 and the output of β(r) on an uniformly random r.

On the other hand it is very easy to distinguish β(r) from random elements in ZN2 if one knows the
factorization of N : from the factorization of N one can compute φ(N) = (p − 1)(q − 1) and then one can
test if a given y is in the image of β by checking if

yφ(N) = 1 mod N2

To see why this is the case, see that if y = β(r) then

β(r)φ(N) = (rN)φ(N) = rN ·φ(N) = rφ(N
2) = 1 (mod N2) (1)

because every element of a group raised to the group order is 1. However most element of ZN2 will not give
1 if raised to φ(N)!

Now we are ready to describe Paillier cryptosystem:

Key Generation: Sample primes p, q of the same length and compute N = p · q. Using the Chinese
Remainder Theorem, let sk ∈ Z such that

sk =

{
0 mod φ(N)

1 mod N

Output sk and pk = N .

Encryption: On input a message m ∈ ZN , sample a random r ∈ Z∗N , and output

C = α(m) · β(r) = (1 +mN)rN mod N2

Decryption: Compute m = α−1(Csk mod N2) mod N

ä Exercise 4.

(*) Use the Chinese Remainder Theorem to write down a formula for the secret key, sk.
Use this, together with Exercises 1,2 and equation (1), to check that decryption works correctly.

ä Exercise 5. (“RSA Decrypting” β)

Let N = pq where p, q are two prime numbers with the same number of bits. First, check that e = N
is a valid choice of a public exponent for the RSA cryptosystem. Remember that the condition is that
gcd(e, φ(N)) = 1. This ensures that it is possible to find d s.t.

d ·N = 1 mod φ(N)

Now, notice that it is not possible to directly decrypt β, because N is NOT coprime with φ(N2).
However, check that

β(r) mod N = (rN mod N2) mod N = rN mod N

2

and therefore it is possible to invert β and recover the randomness used in Paillier encryption. This is
useful in some applications.

The security of Paillier encryption follows immediately from the assumption that β(r) is indistinguishable
from a random element of ZN2 .

It is straightforward to check that Paillier is additively homomorphic using Exercises 1,3. In particular:

E(m1, r1) · E(m2, r2) = α(m1)β(r1)α(m2)β(r2)

= α(m1 +m2)β(r1 · r2)

= E(m1 +m2, r1 · r2) mod N2

Arithmetic BeDOZa-protocol: We have already seen how to replace the dealer for the Boolean BeDOZa
using OT. Here we show that we can replace the dealer in BeDOZa with a two-party multiplication protocol
based on Paillier cryptosystem if we are using the BeDOZa protocol over ZN where N is the public key for
a Paillier’s cryptosystem such that only Alice knows the factorization of N .

Remember how multiplications work in BeDOZa: Alice has (xA, yA) ∈ ZN × ZN ; Bob has (xB , yB) ∈
ZN × ZN ; at the end Alice and Bob get random (zA, zB) ∈ ZN × ZN such that

zA + zB mod N = (xA + xB)(yA + yB) = xAyA + xByB + xAyB + xByA

Alice can compute xAyA locally (resp. Bob xByB), but interaction is needed to compute xAyB and xByA.
To compute random shares of xAyB they run the following protocol:

1. Alice sends U = EN (xA) to Bob.

2. Bob samples a random sB ∈R ZN and compute

V = UyBEN (−sB) mod N2

and sends V to Alice.

3. Alice computes sA = Dφ(N)(V).

Now due to the homomorphic properties of E it holds that sA + sB = xAyB mod N . Shares of the other
product xByA can be computed similarly.

This protocol offers security against passive adversaries: the simulator for a (passively) corrupted Bob
would just set U = E(0) and now the view of Bob in the real world and in the ideal world is indistinguishable
because of the security of Paillier encryption scheme. If Alice is (passively) corrupted, the simulator would
encrypt V = E(sA), and this is distributed identically as V in the real protocol.

Intuitively Bob cannot learn anything about xA from the ciphertex U unless he breaks the security of
Paillier cryptosystem, while Alice does not learn anything about yB because given that sB is uniformly
random, sA is uniformly distributed in ZN in Alice’s view. The protocol can be “compiled” for active
security by throwing enough zero-knowledge proofs in the multiplication protocol (note that the ZK for this
relation can be made quite efficient) and MACs to ensure that the the parties don’t change their shares for
the internal and output wires. See for instance [BeDOZa11] to see how this can be done.

ä Exercise 6. (OT from HE)

Can you build a one-out-of-two OT protocol secure against passive adversaries using Paillier encryption?
Hint 1: Modify the multiplication protocol from above
Hint 2: Replace xA with Alice choice bit b, yB with (m1 −m0) and −sB with m0

3

2 Fully-Homomorphic Encryption Scheme

Here we will review some of the fundamental ideas that allow to construct fully-homomorphic encryption
schemes.

Defining FHE: Intuitively a fully homomorphic encryption scheme (FHE for short) is like a standard
encryption scheme (Gen,Enc,Dec) but with an extra algorithm Eval that takes as input a vector of ciphertexts
and a function f and outputs an encryption of the function applied to the plaintexts i.e., let (pk, sk) ←
Gen(1k) then the correctness requirement states that:

Decsk(Eval(f,Encpk(x1), . . . ,Encpk(xn))) = f(x1, . . . , xn)

For instance, Paillier is homomorphic with respect to any function fa,b(x) of the form ax+ b mod N , as
we have seen before. A fully encryption scheme is homomorphic with respect to any function f described
as a circuit. In the following we will also consider a d-HE scheme which is somehow in between Paillier and
FHE: a d-HE scheme allows to evaluate every function which can be expressed by a circuit with depth at
most d.

Note that we need to be more restrictive about the requirements that we want from an FHE scheme,
otherwise it is trivial to come up with FHE schemes. For instance, let (Gen,Enc,Dec) be any encryption
scheme and let Eval to be algorithm that appends the function f to the ciphertext. Now we can define
a decryption algorithm Dec′ that first runs Dec on the ciphertext and then applies the function on the
decrypted value. This is a not very interesting FHE scheme. Intuitively, it should be Eval that performs the
computation, not Dec!

This can be captured by asking that the work performed by the decryption function should be independent
of the function f . We call this requirement compactness.

Efficiency is not the only problem with the “trivial” FHE scheme described above. If we want to use an
FHE scheme to build a secure computation protocol, we usually need that the output of Eval hides as much
information as possible about which function was computed (in the Paillier based multiplication protocol
that we used before, it was crucial that Alice could not learn the “function” applied by Bob on her input i.e.,
a, b). We call this property circuit privacy. Formally: We say that an encryption scheme (Gen,Enc,Dec,Eval)
has circuit privacy w.r.t. a function family F if for all (pk, sk)← Gen(1k), plaintext x and function f ∈ F ,
it holds that

(sk,Encpk(f(~x))) ≈c (sk,Evalpk(f,Encpk(~x)))

Where ≈c as usual means that the two distributions are computationally indistinguishable. Note that
this is a very strong security requirement that should hold also against the owner of the secret key!

During the lecture on Yao’s protocol, we discussed how garbled circuits together with a 2-message OT
gives fully-homomorphic encryption with a “reasonable” level of circuit privacy. However, FHE schemes
based on Yao do not satisfy compactness.

Bootstrapping: The central idea for constructing FHE is bootstrapping. Let’s assume for a second that
we are given a d-HE scheme (gen, enc, dec, eval) where eval can evaluate any circuit with depth at most d.
This means that, for instance, if one evaluates a circuit with depth > d on a ciphertext, then the decryption
algorithm is not guaranteed to work correctly.

In addition, assume that the decryption function dec can be described by a “shallow” circuit with depth
d′ < d. Now it is possible to construct a ∞-HE (or FHE) scheme that permits to evaluate circuits of any
(polynomial) depth!

It will be convenient to introduce the notion of level of a ciphertext: a ciphertext has level 0 if it is the
output of the enc function. A ciphertext obtained using c′ = evalpk(f, c) has level i+ j where i is the level
of c and j is the depth of the circuit f .

Now we can construct the FHE scheme (Gen,Enc,Dec,Eval): the key generation Gen runs (pk, sk) ←
gen(1k) and defines SK = sk and PK = (pk, encpk(sk)) i.e., we publish an encryption of the secret key
under its own public key.

4

Note that we are making an encryption of the secret key public: A scheme that is secure even when the
adversary is given an encryption of the secret key is known as a circular secure encryption scheme. Not
every encryption scheme is secure in this case, and actually in many cases it is not a good idea to encrypt a
secret key using its own public key.

ä Exercise 7. (Circular Security)

Construct an encryption scheme that is secure, but it is not circularly secure.
Hint : Take any encryption scheme that is IND-CPA secure and modify it in the following way. The
encryption function checks if m = sk (note that it is not necessary to know the secret key to check
this, one can check that m works like a secret key by checking i.e., Dm(Epk(r)) = r for enough random
values r)..

The encryption and decryption Enc,Dec work exactly in the same way as the original scheme enc, dec.
The key idea to construct Eval is the following technique, known as refreshing : Take a ciphertext C at

level i. Assume that i ≤ d and therefore C can be correctly decrypted to m = decsk(C).
Now, consider the circuit f(x) = decx(C), that is the circuit that decrypts the ciphertext C using the

input x. We have already assumed that the decryption circuit has depth d′ < d. Note that C is not an
argument to the circuit, and therefore can be thought as part of the description of the circuit. Now, using
the fact that PK contains an encryption of sk we can compute the following ciphertext:

C ′ = eval(f, enc(sk))

Now C ′ is a ciphertext of level d′ = 0 + d′ since enc(sk) has level 0 and f has depth d′. The main point
here is that the level of C ′ does not depend on the level of the original ciphertext i, and therefore if d′ < i
then C ′ is of a lower level than C! Given that d′ < d, it is possible to correctly decrypt C ′ and, due to the
homomorphic properties

decsk(C ′) = f(sk) = decsk(C) = m

(the last equality holds under the previous assumption that C has level i ≤ d).
It seems that we are back to square 1, we started with an encryption of m and we still have an encryption

of m, but instead we are only one step away from the end!
We now construct an Eval function which takes any two encryptions at level ≤ d containing two bits a, b

and outputs an encryption of the value ¬(ab) at level d′+1. Since the output ciphertext has level ≤ d, it can
be fed again as an input to Eval and therefore any Boolean circuit can be evaluated in this way – without
any interaction!

Our new algorithm Eval takes as input two ciphertexts C1 with dec(sk, C1) = a, C2 such that dec(sk, C1) =
b and outputs C3 such that dec(sk, C3) = ¬(ab). The algorithm Eval is evaluated by applying the circuit:

f(x) = ¬(decx(C1) · decx(C2))

on the encryption of the secret key using eval. Now the new depth of f is d′+ 1 ≤ d so decryption is still
correct, and we can evaluate any Boolean circuit gate by gate by repeating this process as long as necessary.

How to build a d-HE scheme: There are several ways to build a d-HE scheme. Such schemes can be
found in the literature under the name of “somewhat homomorphic encryption” or “leveled fully-homomorphic
encryption”. Those schemes are not only interesting to “bootstrap” to FHE, but they can also be used as
they are – there are applications where it is possible to know from the start that no circuit of depth more
than d will ever be computed, and then one can just use a d-HE scheme.

Just to give you an idea of how such schemes work, and where does the limitation d come from, here is
a simple d-HE scheme, which was first proposed in [vDGHV10]1:

1Different versions of this scheme have been proposed in the literature. The description below is very informal and only
meant to give a high-level overview.

5

Key Generation: choose a big secret odd integer p. Choose big random integers q1, . . . , qn and small
integers r1, . . . , rn. The secret key is p, the public key is (y1, . . . , yn) where yi = p · qi + 2ri

Encryption: To encrypt a bit m, choose at random a subset S of {1, . . . , n} and compute (over the integers)

c = m+
∑
i∈S

yi

Decrypt: To decrypt compute
m = ((c mod p) mod 2)

Let’s check that decryption works:

c mod p = m+ 2

(∑
i∈S

ri

)
+ p

(∑
i∈S

qi

)
= m+ 2

(∑
i∈S

ri

)
mod p

Now if set the parameters right (e.g., the ri’s are small enough compared to p, and |S| is of the right size)
we can get that 2(

∑
i∈S ri) is less than p and therefore there is no modular reduction, and(

m+ 2

(∑
i∈S

ri

)
mod p

)
mod 2

is equal to m.
The security of the scheme is related to the assumption that it is hard to recover p from the public key.

Note that without the error terms ri it would be trivial to compute p by computing the gcd of the yi’s.
However it is believed that by adding the noise it becomes hard to compute p. This computational problem
is known as the approximate GCD problem, and no polynomial time algorithms to solve the problem are
known.

Finally, it is easy to see that the scheme is homomorphic. If c1 = enc(m1, S1) and c1 = enc(m2, S1)

c1 + c2 mod p = (m1 +m2) + 2

(∑
i∈S1

ri +
∑
i∈S2

ri

)
and that

c1 · c2 mod p = (m1 ·m2) + 2

m1 ·
∑
i∈S2

ri +m2 ·
∑
i∈S1

ri +
∑

i∈S1,j∈S2

rirj


It is clear that every homomorphic operation (especially the multiplications!) make the noise grow signifi-
cantly. One of the crucial aspects in the design of new and more efficient FHE schemes is to come up with
techniques to reduce the growth of the noise due to homomorphic operations.

Parameters: The presented d-HE scheme is very simple. Unfortunately the computational assumption on
which it is based is not very hard, and therefore very big parameters must be chosen. According to [CLT13],
one gets “DES-like seucurity” (approximately 60 bits – this is not very secure!) using the following param-
eters:

• The secret p is ≈ 2000 bits long.

• The qi’s are ≈ 107 bits long (1Mb).

• The ri’s are around 60 bits long.

• There are n ≈ 2000 values yi in the public key.

This means that after one encryption, the noise in a ciphertext is approximately 270 – so one can only
approximately perform only 4 multiplications before the noise becomes greater than p using the scheme with
these parameters. Luckily for us, our favourite circuit has depth 3 only.

6

ä Exercise 8. (Mandatory Assignment)

Implement the d-HE scheme described above, and use it to implement a protocol for secure two-party
computation of the blood type compatibility function. Using the BigInteger class in Java is probably the
easiest way to get the job done. Since the goal of the exercise is to better understand the protocol (not
to build a full functioning system), feel free to implement all parties on the same machine and without
using network communication. For example, you could implement Alice and Bob as two distinct classes
in Java and then let them interact in the following way:

m1 = Alice.Choose(x);

m2 = Bob.Transfer(y,m2);

z = Alice.Retrieve(m2);

Some remarks:

• In the first message Alice sends 3 ciphertexts for her individual bits, then Bob applies the function
using his input and send back a single ciphertext containing the resulting bit to Alice who decrypts
and learns the result.

• You do not have to choose parameters as large as the one mentioned before. However, you should
choose parameters such that the scheme is “homomorphic enough” to evaluate the circuit. Your
solution should include a short justification for your choice of parameters.

• In the encryption function you need to choose a subset S - there are several ways of doing
this - argue for your choice (both in terms of correctness of the decryption and security of the
encryption).

References
[HL10] Carmit Hazay, Yehuda Lindell

Efficient Secure Two-Party Protocols
http://lib.myilibrary.com.ez.statsbiblioteket.dk:2048/Open.aspx?id=300348

[BeDOZa11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, Sarah Zakarias
Semi-Homomorphic Encryption and Multiparty Computation
EUROCRYPT 2011. http://eprint.iacr.org/2010/514

[DJ01] Ivan Damg̊ard, Mads Jurik
A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key
System.
PKC 2001, available at http://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf

[vDGHV10] Marten van Dijk and Craig Gentry and Shai Halevi and Vinod Vaikuntanathan
Fully Homomorphic Encryption over the Integers
EUROCRYPT 2010 http://eprint.iacr.org/2009/616

[CLT13] Jean-Sebastien Coron and Tancrede Lepoint and Mehdi Tibouchi
Batch Fully Homomorphic Encryption over the Integers
http://eprint.iacr.org/2013/036

7

http://lib.myilibrary.com.ez.statsbiblioteket.dk:2048/Open.aspx?id=300348
http://eprint.iacr.org/2010/514
http://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf
http://eprint.iacr.org/2009/616
http://eprint.iacr.org/2013/036

	Paillier's Cryptosystem
	Fully-Homomorphic Encryption Scheme

