
Lecture Notes for Cryptographic Computing

4. Oblivious Transfer (Passive Security)

Lecturers: Claudio Orlandi, Peter Scholl, Aarhus University

October 23, 2023

1 Oblivious Transfer

When talking about Oblivious Transfer (or OT for short) we will refer (unless specified otherwise) to the
main variant of OT, namely 1-out-of-2 OT (or

(
2
1

)
-OT) which is described by the following functionality:

• Alice inputs a choice bit b ∈ {0, 1};

• Bob inputs two messages m0,m1;

• Alice learns z = mb;

Informally, a secure OT protocol should guarantee that Alice does not learn anything about the unchosen
message and that Bob should not learn anything about the input choice c;

1-out-of-n OT The notation
(
2
1

)
-OT suggests that you can get other flavours of OT by plugging different

numbers.
(
n
1

)
-OT is a natural generalisation, defined as you would expect: Alice inputs a choice value

between 0 and n − 1, Bob inputs n messages, Alice learns only one of them and Bob does not learn which
one.

(
n
1

)
-OT also directly implies simple two-party secure computation protocols for passive adversaries and

small functionalities. The protocol goes as follows: Alice uses her input x as the choice value, and Bob uses
his input y to constructs the messages M0, . . . ,Mn−1 as Mi = f(i, y).

Removing the Dealer from BeDOZa: Our motivation for studying OT is to be able to design secure
two-party computation protocols which do not need a trusted dealer. In particular we want to use OT to
implement the same functionality offered by the trusted dealer in the BeDOZa protocol (Boolean circuits,
passive security). Remember that in that protocol, for each multiplication gate, the dealer samples random
bits uA, vA, uB , vB , wB , computes wA = (uA ⊕ uB) · (vA ⊕ vB) ⊕ wB and then sends (uA, vA, wA) to Alice
and (uB , vB , wB) to Bob. The dealer can be replaced using the following simple protocol using a

(
4
1

)
-OT :

• Alice samples random bits uA, vA and inputs i = 2 · uA + vA to the OT.

• Bob samples random bits uB , vB , wB and inputs to the OT the following four messages:

M0 = (0⊕ uB) · (0⊕ vB)⊕ wB ,
M1 = (0⊕ uB) · (1⊕ vB)⊕ wB ,
M2 = (1⊕ uB) · (0⊕ vB)⊕ wB ,
M3 = (1⊕ uB) · (1⊕ vB)⊕ wB ,

• Alice sets wA = Mi.

It is easy to see that the protocol produces the right distribution and the security follows from the security
of the underlying OT protocol.

1



ä Exercise 1. (OT for secret-shared AND)

In Week 2, Exercise 5, we have argued that the only necessary ingredient for implementing the BeDOza
protocol (with passive security) is a trusted dealer that samples random bits sA, rB , sB , computes
rA = rB ⊕ sA · sB , then sends (rA, sA) to Alice and (rB , sB) to Bob. Show that Alice and Bob can
replace such a dealer by a single call to 1-out-of-2 OT.
Hint 1: One way of writing mb is mb = b ·m1 ⊕ (1− b) ·m0.
Hint 2: Alice samples a random sA, Bob samples random rB , sB , then they construct b,m0,m1 from
these values and Alice can compute rA from the output of the OT mb.

Random OT: There is a variant of OT, called random-OT, which is a randomized functionality where the
parties have no input. The functionality samples random bits b, s0, s1 and outputs (b, z = sb) to Alice and
(s0, s1) to Bob. The following exercise shows that, given random-OT, you can get OT on chosen inputs with
a very simple and information-theoretically secure transformation. This means that any protocol that uses
OT can instead preprocess random-OT ahead of time, saving expensive computation later.

ä Exercise 2. (Random OT and
(
2
1

)
-OT)

There is a simple protocol with perfect security against active adversaries for
(
2
1

)
-OT in the random-OT

hybrid model. Can you construct it?
Hint 1: First try to derandomize the receiver’s choice bit, while the sender’s messages stay random.
Then look at the sender’s messages.
Hint 2: One-time pad.

ä Exercise 3. (Bit OT is symmetric)

When the sender’s messages are both bits, there is a perfect reduction between the functionality random-
OT defined before and the symmetric functionality random-TO that outputs (s′0, s

′
1) to Alice and (b′, z′ =

s′b′) to Bob. Can you find it?
Hint : You can attack the problem directly or reduce it to the AND example, and note that in the
secret-shared AND dealer, the roles of Alice and Bob are totally symmetric. If you now think that these
exercises are too simple, let me tell you that the question whether OT is symmetric was asked by some
pretty smart people such as Crepeau and Santha in 1991, and the answer wasn’t published until 2006
at EUROCRYPT, one of the major cryptography conferences.

2 OT Protocol With Passive Security

We describe a generic way of constructing an OT protocol from any public-key encryption scheme (PKE)
with some special properties: for now let’s say that the PKE has pseudorandom public-keys. Then the
following is an OT protocol with passive security:

Choose: Alice (with choice bit b) generates a public key pkb together with a secret key skb, and samples a
random string pk1−b; Alice sends (pk0, pk1) to Bob;

Transfer: Bob (with input messages m0,m1) creates two ciphertexts (c0, c1) where ci is an encryption of
mi using the public key pki, and sends (c0, c1) to Alice;

2



Retrieve: Alice decrypts cb with skb and learns mb;

The protocol is clearly correct. About security: Intuitively, Bob does not learn the choice bit b since
we assumed that “real” public keys are indistinguishable from random strings. At the same time, Alice
does not learn the unchosen message since she does not know the secret key corresponding to the random
string1. Most of the rest of this note is devoted to making this argument formal, and based on a more general
requirement for the public keys.

3 Public Key Encryption With Oblivious Key Generation

3.1 Defining Oblivious Key Generation

In the previous section we stated that we can construct an OT protocol from any PKE scheme where public
keys are pseudorandom. In fact, a weaker condition is sufficient: it is enough to have a PKE where there is
an alternative way of generating public-keys such that:

• Public keys generated in this way look like regular public keys, and

• It is not possible to learn the secret key corresponding to such a “fake” public key.2

We introduce here the concept of a PKE with oblivious key generation. This is a regular (IND-CPA
secure) PKE defined by three algorithms (Gen,Enc,Dec) enhanced by a fourth algorithm called “oblivious
generation” or OGen. Assume that the secret keys in the PKE scheme are random bit strings in {0, 1}n.
Then, we require that Gen takes as input a secret key, and outputs a valid public key;3. similarly, OGen takes
as input some randomness in {0, 1}n, and outputs a fake key that looks like a real one. The key requirement
is that given a key output by OGen, together with the randomness used as input, it should not be possible to
find a corresponding secret key that allows decryption.

We formalize the above properties by asking that OGen satisfies the following:

1. Let b be a random bit, pk0 ← Gen(sk) be the regular public key generation algorithm and pk1 ←
OGen(r) be the oblivious public key generation algorithm, where sk and r are chosen uniformly at
random in {0, 1}n. Then there is no PPT (efficient) algorithm D such that D(pkb) = b with probability
significantly larger than 1/2.

2. There is a (possibly randomized) preimage sampling algorithm OGen−1, such that:

• If pk = OGen(r) and r′ = OGen−1(pk), then OGen(r′) = pk.

• For random r ∈ {0, 1}n, and pk = OGen(r), r′ = OGen−1(pk), the string r′ is uniformly distributed
in {0, 1}n.

3. Standard IND-CPA security for real public keys. (Look back at the definition from the previous course).

1Since we only consider passive corruptions we can trust that Alice will willingly choose not to learn one of the secret keys
2Why erasing does not work: It might be tempting to think that every public-key encryption can be turned into one satisfying

the above properties: simply let Alice create a regular public key/secret key pair and then erase the secret key. This would
clearly lead to a public key that looks like a “regular” one. There are two reasons why this does not work: 1) it is not easy to
securely erase data (so even an honest Alice might not be able to completely erase the secret key) and more importantly 2) It is
not possible to verify that Alice has erased the secret key: Think of “Alice” as being a process running on your PC. The secret
key will at some point be in memory before it is deleted. How can we make sure that this value does not get copied (perhaps
by the operating system, or a malicious spy process) somewhere else before being erased? Passively corrupted parties follow
the protocol correctly, but their entire state can still be observed by the adversary.

3You might be more used to Gen outputting both the public key and the secret key. Note that it is always possible to
redefine any public-key encryption scheme to satisfy this syntax.

3



It might seem strange to require that OGen is invertible (or preimage sampleable), when we actually want
to show that it’s not possible to recover the secret key. However, this turns out to be exactly the property
that is needed. Intuitively, the idea is that if it were possible to find the secret key for a fake public key,
given its randomness r, then you could recover the secret key for a real public key in exactly the same way,
precisely because the OGen−1 algorithm can also be run on a real public key to obtain its (fake) randomness
r′.

Below, we will argue this a bit more formally, and show that the above three properties imply the
following:

4(a). There exists no PPT (efficient) algorithm A that can output sk ← A(r) such that Gen(sk) = OGen(r).

First of all, note that OGen−1 must be able to “explain” real public keys as if they had been generated
using OGen. This follows from the fact that if it was not true that

OGen(OGen−1(pk)) = pk

for a real public key pk, then an adversary could exploit this to distinguish between real and fake public
keys, breaking property (1). So it must be the case that

OGen(OGen−1(Gen(sk))) = Gen(sk)

At the same time, if (Gen,Enc,Dec) is a secure encryption scheme then it must be hard to compute secret
keys corresponding to public keys generated with Gen, or in other words pk ← Gen(sk) must be a one-way
function. So we reach a contradiction: assume there is an A which breaks property 4(a), then we can invert
pk ← Gen(sk) by computing

sk ← A(OGen−1(pk))

In fact for the OT protocol to be secure we need a stronger property. Informally, this property states
that the encryption scheme is still IND-CPA secure even if the encryptions are performed using a public key
which is output of OGen and the adversary knows the randomness used by OGen to generate that key. The
definition is below, and it is possible to prove that this property (similarly to what we have just done for
property 4(a), can be proven using properties (1), (2) and (3):

4(b). For all m: Let b be a random bit, m0 = m, m1 be a uniform random message and pk ← OGen(r).
Then there exist no PPT (efficient) algorithm D such that D(r,Enc(pk,mb)) = b with probability
significantly larger than 1/2;

ä Exercise 4.

Prove that 4(b) follows from properties (1), (2) and (3).
Hint : Construct an adversary for the IND-CPA security game using a distinguisher for 4(b) as a sub-
routine, and analyse the success probability of your attacker. Remember to use all the 3 assumptions!

3.2 Constructing PKE with Oblivious Key Generation

It is a natural question to ask which functions (not only public key generations algorithms) admit “alternative
samplers” which are preimage sampleable but indistinguishable from the original output distribution. It turns
out that there are good reasons to believe that not all functions admit such an oblivious sampler, and if you
want to know why you can have a look at [IKOS11].

At the same time, there are distributions which clearly admit such an alternative sampling method:
Think of a pseudorandom generator PRG which expands an n-bit long seed s into a 2n bit long string
y = PRG(s). A trivial alternative sampler for PRG is to take as input an n-bit string, and simply output
2n random bits. This is clearly preimage sampleable, since you can obtain a random preimage by sampling
n bits, and the security of the PRG implies that the output of the PRG is indistinguishable from uniformly
random 2n-bit long strings.

4



A Concrete Example: ElGamal Cryptosystem. The ElGamal cryptosystem allows for an oblivious
key generation procedure. Given the description of a group where the DDH assumption is believed to hold
(G, g, q) where g is a generator of G and q is the order of G, ElGamal is described by three algorithms:

Gen(sk): On input a secret key sk = α ∈ Zq compute h = gα and output pk = (g, h);

Encpk(m): on input a message m ∈ G sample a random r ∈ Zq, parse pk = (g, h) and output C = (gr,m·hr).

Decsk(C): parse C as (c1, c2) and output m = c2 · c−α1 .

We need to construct an oblivious generation algorithm OGen(r) which outputs pk = (g, h) which is invertible
and indistinguishable from Gen. The way this is done depends on the specific group G.

A classic example of a group where the DDH assumption is believed to hold is the multiplicative subgroup
of order q of Z∗p , where p is prime and p = 2q+ 1. To generate a random element in this group, you can first
use the random bit string r to sample a random number s between 1 and p (note that this step is not entirely
straightforward — see Exercise 5). Then, output h = s2 mod p, to ensure that h is a random element of
the subgroup of order q, since this group corresponds to all elements of Z∗p that are squares.

This process is also preimage sampleable, since it is easy to compute square roots modulo a prime, and
given a group element s it is possible to sample a random string r which is conditioned to produce the right
s using one of the methods from Exercise 5.

ä Exercise 5.

The OGen algorithm for ElGamal needs to sample a uniform random number between 1 and p. Suppose
that your programming language only provides you with random bits. Clearly p is not a power of 2.
How do you sample a random number between 1 and p? Let 2n−1 < p < 2n. There are essentially two
ways:

1. Pick a random number r between 1 and 2n. If r < p output r otherwise repeat.

2. Pick a random number r between 1 and 22n and output (r mod p).

Can you see any advantage/disadvantage of the two methods, in terms of statistical distance between
the output of those procedures and a truly uniform random number between 1 and p? What about the
running time?

3.3 The OT Protocol

We conclude by formally specifying the OT protocol:

Choose: Alice (with choice bit b):

1. Samples random sk, r;

2. Generates pkb ← Gen(sk), pk1−b ← OGen(r);

3. Sends (pk0, pk1) to Bob;

Transfer Phase: Bob (with input messages m0,m1):

1. Computes c0 = Encpk0(m0; r0) and c1 = Encpk1(m1; r1) using random r0, r1;

2. Sends (c0, c1) to Alice;

Retrieve Phase: Alice outputs mb ← Dec(sk, cb);

5



ä Exercise 6.

Prove that the above protocol is secure against passive adversaries.
Hint 1: In passive security, the simulator has access to input/output of each party and has to produce
a simulated view which is indistinguishable from the view in the real protocol.
Hint 2: To simulate Bob’s view generate two public keys – either with Gen or OGen – if the two views
are not indistinguishable you get a contradiction with property 1.
Hint 3: To simulate Alice’s view generate two public keys like an honest Alice would do, then com-
pute cb ← Enc(pkb,mb) and c1−b ← Enc(pk1−b, r) for a random message r – if the two views are not
indistinguishable you get a contradiction with property 4.

4 Additional Exercises

3 Mandatory Assignment.

Generalize the above protocol to a
(
8
1

)
-OT, and use it to implement a secure two party computation

protocol for the blood type compatibility function. Use ElGamal encryption as the underlying PKE
scheme. Since the goal of the exercise is to better understand the protocol (not to build a full func-
tioning system), feel free to implement all parties on the same machine and without using network
communication. For example, you could implement Alice and Bob as two distinct classes in Java and
then let them interact in the following way:

m1 = Alice.Choose(x);

m2 = Bob.Transfer(y,m2);

z = Alice.Retrieve(m2);

OT from RSA: We showed how to realize OT from any cryptosystem with the additional property that
public keys can be obliviously sampled. Unfortunately, this is not the case for RSA: RSA public keys are a
product of two large primes, and it is not known how to sample from a distribution close enough to this in
an invertible way. However, RSA satisfies a different property, namely that given a public key pk = (n, e)
possible to generate “ciphertexts” which look like encryptions of random messages, without knowing what
the encrypted message is: an RSA encryption of a random plaintext gives a random element in Zn, and
those can be sampled efficiently (see one of the previous exercises for sampling from Zp). This property is
enough to build an OT protocol, in a way similar to the one done before.

ä Exercise 7. (OT from RSA)

1) Try to formalize the property “it is possible to generate ciphertexts, for which you do not know the
plaintexts, which look like encryptions of random messages” by defining an invertible algorithm OEnc
following the blueprint of what we have done for OGen. 2) Construct an OT protocol using the RSA
encryption scheme (or any other scheme with the same property).
Hint 1: The protocol has 3 rounds.
Hint 2: In the first round, Bob sends an RSA public key to Alice.

6



ä Exercise 8. (
(
2
1

)
-OT and

(
n
1

)
-OT)

Can you construct a protocol for
(
n
1

)
-OT using only

(
2
1

)
-OT in a black-box way? This means, you

should build a protocol for
(
n
1

)
-OT which uses (possibly many) “calls” to a

(
2
1

)
-OT protocol. That is,

you can only use the input/output behavior of the underlying
(
2
1

)
-OT, not the protocol itself. Of course

you can, since you know that you can implement any function described by a Boolean circuit using the
BeDOZa protocol and

(
2
1

)
-OT (instead of a dealer).

However there is a “cheaper way” in terms of how many OTs you need to do this. Can you find it?
Hint : In the first

(
2
1

)
-OT, Bob inputs m0 and a key k1. In the second

(
2
1

)
-OT, Bob inputs m1 ⊕ k1

and k2 ⊕ k1. In the third OT...

References
[HL10] Carmit Hazay, Yehuda Lindell

Efficient Secure Two-Party Protocols
http://lib.myilibrary.com.ez.statsbiblioteket.dk:2048/Open.aspx?id=300348

[IKOS11] Yuval Ishai, Abhishek Kumarasubramanian, Claudio Orlandi, Amit Sahai
On Invertible Sampling and Adaptive Security
ASIACRYPT 2010
Available http://cs.au.dk/~orlandi/asiacrypt-draft.pdf

A ElGamal over Finite Fields, Tips and Pitfalls

You should already know how ElGamal over finite fields works from the Cryptography course (see Ivan’s
book, sections 9.5.1 and 9.5.2). Here you can find a “quick and dirty” recap of some important properties
that can help you during the programming hand-in for this week. You only need to read the “How?” parts
to know how to make a correct implementation, but I would encourage you to read the “Why?” part as well
to refresh your knowledge from Cryptography.

Warning! If you ever want to implement ElGamal in a real world application, remember that in practice
there are almost no reasons to implement ElGamal over a finite field, since using elliptic curves gives better
performances and security. In a finite field you need to worry about sub-exponential attacks to the discrete
logarithm problem like index calculus, whereas when using the right elliptic curves only generic, exponential
time attacks are known. This means that in practice today that if you want security comparable to AES-128,
you need public keys of around 4000 bits for finite field ElGamal vs. only 256 bits public keys for elliptic
curves ElGamal. That being said, learning about elliptic curves for the assignment in this course is a bit of
an overkill, so here you are presented with how to implement securely ElGamal over a finite field.

Generate a safe-prime: How? You need to find a large enough safe prime number p. A safe prime
number is one of the form p = 2q+ 1 where q is prime too. You can do this via rejection sampling e.g., pick
random prime p and check that (p − 1)/2 is prime too. Or you can pick a random prime q and check that
2q + 1 is prime too. Repeat until you find a safe prime.

Generate a safe-prime. Why? We want to work in a subgroup of prime order q. We want q to be as
large as possible. Picking p = 2q+ 1 gives you the best possible ratio between q (which impacts the security
of the system) and p (which impacts the efficiency of the system since public keys and ciphertexts elements
will be numbers of the same size as p). You could also pick any other prime p of the form p = kq + 1 for a
large enough prime q but that wouldn’t be as good a choice.

7

http://lib.myilibrary.com.ez.statsbiblioteket.dk:2048/Open.aspx?id=300348
http://cs.au.dk/~orlandi/asiacrypt-draft.pdf


Generate a DDH-safe group. How? You need to find a generator g of order q. This means you need to
find a number in Z∗p = {1, . . . , p−1} with the property that q is the smallest integer such that gq = 1 mod p.

You can do this in several ways:

1. Pick an arbitrary element g ∈ Z∗p, with g 6= 1. Output g only if g has the right order by checking that
gq mod p = 1. If not, pick a new g (either a new random one or with a counter). This is “rejection
sampling” and works since you will only output an element with the right order.

2. Pick an arbitrary element x ∈ Z∗p, with x 6= 1 and x 6= −1. Compute g = x2 mod p. Output g.
This works since when you raise to the power of 2 you are “killing off” the 2 component of x. More
explanation below.

Generate a DDH-safe group. Why? Let’s look at the structure of the group Z∗p. It has order p−1 = 2q
meaning that for all x ∈ Z∗p it holds that x2q = 1 mod p. Every element x of Z∗p also has its own order. The
difference between the order of the group Z∗p and the order of a group element x is that the order of the
group is the smalles integer o such that for any elements of the group, xo mod p = 1. The order of a single
group element x is the smallest integer such that for that particular x, xo mod p. We know that the order
of a group element must divide the order of the group. So since the order of the group Z∗p is 2q every group
element has order either 1, 2, q or 2q = p− 1:

• Elements of order 1: there is only one, namely 1 e.g., 11 = 1 mod p.

• Elements of order 2: since we work modulo a prime we are in a field and therefore 1 has a single square
root e.g., −1 (which is the shortest way of writing p−1, and is the same element modulo p) is the only
number such that (−1)2 = 1 mod p.

• Elements of order q: you have learned how to sample an element of order q above.

• Elements of order 2q: everything else. Those are not safe to use if you want the DDH assumption to
hold. The main thing to note if that for all elements x of order 2q it holds that xq = −1 mod p. This
is because 1 = x2q = (xq)2 mod p so xq is a square root of 1 (so it’s either 1 or −1) but it’s not 1
(otherwise the order of x would be q, not 2q).

First, you can now see why the methods for sampling g above work:

1. If you pick an arbitray g and check that gq = modp you get the right order. The check tells you that
the order of g is at most q. The order is not less than q: it cannot be 1 because you picked g 6= 1. It
cannot be 2 since the only element such that g2 = gq = 1 mod p is 1.

2. If you generate g as g = x2 mod p for some x 6∈ {1,−1}, you can see that gq = 1 mod p since
gq = (x2)q = x2q = 1 mod p and you can be sure that x doesn’t have order 1 or 2 since you checked
that x 6∈ {1,−1}.

If you don’t work in the prime-order subgroup i.e., if you use g of order p−1 = 2q then the DDH problem
is not hard. (We ignore here g’s of order 1 or 2 since this is clearly insecure for cryptography as the group
is too small, but of course this is something that should be checked and can otherwise lead to attacks).
Remember that the DDH problem asks you, given a tuple (g,A,B,C) = (g, ga, gb, gc) to determine whether
c = ab or not. Suppose now you’ve picked g ∈ Z∗p of order 2q = p − 1. You can now attack the DDH
assumption by computing the values (gq, Aq, Bq, Cq).

Each of these values is going to be either 1 or −1 as discussed above. In particular gq = −1 mod p.
What about the others? If a = 2t is even, then Aq = (ga)q = (g2t)a = (g2q)t = 1 mod p. If a is odd then
Aq = −1 mod p. The same holds for b and c. Now note that when c = ab then you can compute the parity
of c from the parity of a, b. When c is random it will have random parity. So if you see a mismatch between
the parity of c and the parity of a, b you can distinguish DDH-tuples from non DDH-tuples with much more
than negligible probability.

8



Encoding the message - How? When you encrypt using ElGamal you need to encode the message
m < p into an element of the group generated by g. You can do this in several ways:

1. If m is small you can encode m as M = gm: this guarantees that you end up in the right group.
However this encoding cannot be efficiently inverted unless m is small (since you need to compute a
discrete logarithm).

2. You can always use a rejection sampling method like the one discussed for finding g above, using m
as the “starting point”. For instance you encode m as M = (m, ctr) for some counter ctr which starts
at 0. You then check whether M is in the group or not. If it is not, you increase the counter. When
decrypting, you recover M = (m, ctr) and you simply discard ctr.

3. The best method was given in the cryptography notes: If you want to encrypt m, check if (m+ 1)q =
1 mod p. If yes, encrypt M = m + 1. If not, encrypt M = −(m + 1). When you decrypt, if M ≤ q
output m = M − 1m otherwise output m = −M − 1.

Encoding the message - Why? We have already argued that the first two methods produce an element
of the right prime-order subgroup. For the third method, when (m + 1)q = 1 mod p then by definition M
is the right subgroup of order q. When this is not the case we know that (m + 1)q = −1 mod p. Therefore
the method tells you to encrypt M = (−1) · (m+ 1), and therefore Mq = (−1)q(−1) = 1 mod p. Decryption
works

Why is it so important to encode the message within the group? Here are some examples of things that
can go wrong if you encrypt something which is not in the right subgroup. Remember that an ElGamal
encryption is composed of two parts (c1, c2) = (gr mod p,m ·hr mod p) where r is a random number between
1 and q − 1 and h = gα mod p where α, the secret key, is also a random number between 1 and q − 1.

1. First, it’s very easy to see that encrypting 0 is a really bad idea. Note that 0 is of course not even an
element of the multiplicative group Z∗p. If m = 0 you get of course that

(c1, c2) = (gr mod p,m · hr mod p) = (gr mod p, 0)

So the second component of the ciphertext is 0, which is easy to distinguish from an encryption of
anything else in Z∗p.

2. It is also a bad idea to encrypt −1 (remember that −1 = p− 1 mod p). This is an element of Z∗p but
it is not an element of the subgroup G of order q. In fact −1 has order 2 since (−1)2 mod p. In this
case the attack is slightly more subtle, and involves computing cq2 mod p. You can see that

cq2 = (mhr)q = mq = (−1)q = −1 mod p

The second equality holds since h is of order q so hq = 1 mod p. In this case it is easy to distinguish
between an encryption of −1 and an encryption of any m of order q (if m has order q then cq2 = 1 mod p).

3. In general, it is a bad idea to encrypt any other element which is not in the group of order q. Let’s see
what happens if you encrypt a message m of order p− 1 = 2q. We’ve already argued that in this case
mq = −1 mod p and therefore (c2)q = −1 mod p (as explained in the previous bullet). This means you
can easily distinguish between messages of order 2q and elements of order q, which essentially means
that one bit of the message leaks with the encryption.

9


	Oblivious Transfer
	OT Protocol With Passive Security
	Public Key Encryption With Oblivious Key Generation
	Defining Oblivious Key Generation
	Constructing PKE with Oblivious Key Generation
	The OT Protocol

	Additional Exercises
	ElGamal over Finite Fields, Tips and Pitfalls

