
Asynchronous Group Key Distribution on top of the
CC2420 Security Mechanisms for Sensor Networks

Morten Tranberg Hansen
Department of Computer Science

Aarhus University, Denmark
mth@cs.au.dk

ABSTRACT
A sensor network is a network consisting of small, inexpensive,
low-powered sensor nodes that communicate to complete a com-
mon task. Sensor nodes are characterized by having limited com-
munication and computation capabilities, energy, and storage. They
often are deployed in hostile environments creating a demand for
encryption and authentication of the messages sent betweenthem.
Due to severe resource constraints on the sensor nodes, efficient
key distribution schemes and secure communication protocols with
low overhead are desired. In this paper we present an asynchronous
group key distribution scheme with no time synchronizationre-
quirements. The scheme decreases the number of key updates by
providing them on an as needed basis according to the amount of
network traffic. We evaluate the CC2420 radio security mechanism
and show how to use it as a basis to implement secure group com-
munication using our proposed group key distribution scheme.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General - Security
and protection

General Terms
Performance, Security

Keywords
CC2420 security, group key distribution, sensor network security

1. INTRODUCTION
Among a broad area of applications for sensor networks is envi-

ronmental monitoring (such as monitoring a 70-meter tall redwood
tree [24]), and structural health monitoring (such as monitoring of
temperature and humidity in civil infrastructures and concrete el-
ements [3]). The main goal of these applications are to transport
monitored data from resource constrained sensor nodes backto
one (or more) base station(s) (see Figure 1). These base stations
are considered to be trusted and have sufficient resources for pro-
cessing, analyzing, and storing data. The presence of base stations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: Network Model.

makes application development easier and less complex [6],and
gives us a trusted base for enabling efficient security in thenet-
work. We define agroupas a set of sensor nodes associated with a
specific base station. We do not restrict a sensor node to onlyone
group. We have identified five communication patterns present in
each group: 1) nodes to neighbor nodes (e.g., neighborhood dis-
covery), 2) base station to all nodes (e.g., query dissemination), 3)
all nodes to base station (e.g., data collection), 4) base station to a
single node (e.g., individual queries), and 5) a single nodeto base
station (e.g., data or status notifications). Depending on the level
of trust between nodes in a group an increasing number of these
communication patterns can be done using secure group commu-
nication as an alternative to secure point-to-point communication.
This emphasizes the need for an efficient secure group communi-
cation scheme which is the focus in this paper.

The desired security properties includes confidentiality,authen-
tication, integrity, protection against replay attacks, and data fresh-
ness. To achieve semantic security it is important that one piece of
data is not encrypted using the same key twice. To prevent this it
is common to include, in the encryption process, a unique nonce
that is a concatenation of a counter, the current key identifier, and
the source address. To keep the nonce unique under the same key
the counter cannot wrap-around. The counter can also be usedas a
mechanism against replay attacks and provides data freshness [17].

Schemes for pair-wise (session) key establishment [9], group key
establishment [8, 16, 23], and secure communications [10, 15, 16,
17] have been proposed. In this paper we build on top of these
ideas to achieve secure group communication with no time syn-
chronization requirements and improve efficiency by showing how
to utilize the hardware security mechanism of the Chipcon CC2420
IEEE 802.15.4 (CC2420) radio. The main contributions of this pa-
per are as follows:

• An efficient asynchronous group key distribution scheme with
no time synchronization requirements such that new keys can
be established as needed based on the amount of traffic in the
network. We do this by distributing keys from the base sta-

tion well in advance and keeping a local buffer of upcoming
and recent keys on the sensor nodes.

• Analysis and evaluation of the CC2420 radios security mech-
anism on the TelosB mote [18] using TinyOS 2.x [13] and a
demonstration of how to utilize these to improve efficiency
of secure group communication.

We assume that initially a pair of symmetric keys are securely
installed [11] and shared between the base station and all sensor
nodes. From this key, nodes can be authenticated [9], session keys
can be efficiently established [9], and secure communication from
the base station to a node is possible [15]. Due to the base sta-
tions superior resources and their role as a collection point for all
data, they are considered responsible for implying a desired level
of intrusion detection to improve the resilience of the network. We
assume the presence of a CC2420 radio [1] on all sensor nodes.

In section 2 we present our asynchronous group key distribu-
tion scheme and in section 3 we evaluate the security features of
the CC2420 radio and present an efficient way to utilize thesefor
implementing secure group communication at the link layer.In
section 4 we evaluate and compare our asynchronous group key
distribution to a synchronous version and estimate the overhead in-
curred by implementing secure communication with the CC2420
in-line security mechanisms. In section 5 we review relatedwork
and in section 6 we conclude our work.

2. ASYNCHRONOUS GROUP KEY DISTRI-
BUTION

To reduce the risk of cryptoanalysis key updates are necessary
as it is not secure to use the same key over a long period of time.
Therefore the basics for implementing secure communication is a
secure key distribution scheme. In this section we propose ase-
cure, efficient, reliable, and asynchronous group key distribution
scheme that provides key updates as needed without any time syn-
chronization requirements. Key updates are traditionallydone peri-
odically over time or re-actively whenever a node joins, leaves, or is
evicted from a group. Periodical key updates have the disadvantage
of not being able to adapt to a changing amount of network traffic,
whereas the reactive approach can introduce an unnecessaryhigh
frequency of key updates in environments with varying amounts of
traffic. We adopt a hybrid approach, with the base station as the de-
cision maker. The base station role as a data collection point makes
it a preferable place for doing intrusion detection (as was part of
our assumptions) and also for deciding when to issue key updates.
We realize that not all control traffic goes through the base station,
but argue that this amount can be estimated from the network size
and how it is configured.

Keys will be distributed from the base station to the initially not
trusted sensor nodes in the group. Initially the base station authen-
ticates the sensor nodes with their pair-wise shared secretkey [9].
From this a secure channel can be established and sensor nodes can
be securely configured to participate in the group key distribution
scheme. When a new sensor node joins, it is authenticated andcon-
figured in the same way. When a sensor node is compromised it is
excluded from the group and the remaining sensor nodes need to
be re-intialized.

2.1 Key-chains
The keys distributed from the base station are based on a key-

chain generated by a cryptographic one-way function. Key-chains
were first adapted to sensor networks by Perrig et al. [17] andused
in theµ-TESLA authenticated broadcast protocol. A key-chain of

lengthn is generated from the last key in the chain,Kn, and a cryp-
tographic one-way functionh. The keyKn should be chosen at
random and the other keys are computed asKi = h(Ki+1). At a
certain point in time each of these keys will be used as a secret
group key. The base station is assumed to have sufficient resources
for storing a large key-chain of keys that can be distributedto the
sensor sensor nodes over time.

2.2 Key Buffer
Due to their limited resources, sensor nodes cannot locallystore

the entire key-chain. Instead they maintain a limited buffer of rel-
evant keys. The buffer has three main purposes: to authenticate
new keys, to discover and recover lost keys, and to be backward
compatible with other sensor nodes using older keys.

To initiate the scheme the base station encrypts, authenticates,
and transmits an initial group key to all sensor nodes in the group.
If the key buffer size isb and this initial key isKb the whole key
buffer can be filled with keys due to the one-way property of the
cryptographic function. A node’s current group key is then chosen
to be the key positioned in the middle of the key buffer. This key,
a counter, and the nodes source address (all needed to construct the
unique nonce), is then used to perform secure group communica-
tion.

To perform a key update, the base station encrypts and broad-
casts the next key in the key chain under its current key. Whena
new key arrives at a sensor node (see Figure 2 step 1) it can be im-
plicit authenticated by comparing the output of the public known
cryptographic one-way function taken on the new key to the latest
key in the buffer (see Figure 2 step 2). Due to the unreliable nature
of the wireless channels an intermediate key update may havebeen
lost. To verify a correct key after a number of lost key updates,
a sensor node needs to apply the authentication procedure recur-
sively on the new key (in Figure 2 keyK6 is lost). To limit the com-
putational overhead of the scheme, an upper limit for recursively
authentication tries will be set. When a new key is authenticated
the key buffer needs to be updated accordingly (see Figure 2 step
3). The new key will be the latest key in the buffer and in case of
intermediate key losses they will be restored from the properties of
the cryptographic one-way function. In Figure 2 step 3 the lost key
K6 is restored asK6 = h(K7).

When a sensor nodes key buffer has been updated its current
group key needs to be adjusted accordingly. The current key will
only be changed following a key update or a counter wrap-around.
The latter case is due to the importance of keeping the nonce unique.
This means that in case of a counter (used to construct the nonce)
wrap-around, the current key has to be set to the next key in the
buffer, if not; the semantic security property can be violated. To
increase the chance of being able to do secure communicationwith

Figure 2: Key update at a sensor node.

CC2420 SkipJack AES

Encryption 96 460 1149
Write + Enc. + Read 2008 N/A N/A

Write + Enc. 1105 N/A N/A
Setup 1113 46 1844

Table 1: Performance Evaluation of the CC2420 radios stand-
alone AES encryption. All units in µs.

nodes not having received the same amount of key updates, thecur-
rent key should be positioned in the middle of the key buffer.So on
key updates, the current key is increased according to its position in
the key buffer after a number of new keys have been inserted (see
Figure 2 step 4). If the current key stays in the upper half of the
key buffer it is not changed. If it ends up being in the lower half
of the key buffer, it will be changed to the middle key in the key
buffer. On Figure 2, the current key is updated fromK3 to K5 after
the arrival of the new keyK7.

The fact that the base station can do key updates as needed, while
nodes with different keys are still able to do secure group commu-
nication, makes the scheme asynchronous.

3. CC2420 GROUP COMMUNICATION
In this section we evaluate the CC2420 radio security mechanism

and show how to use these as the basics for doing secure group
communication with our group key distribution scheme. In our
evaluation we use time as a performance measure. We assume that
security is used in relation with packet transmission, so this time
measure can be related to the actual energy usage, as it defines the
time where the radio and the microprocessor (most CC2420 radio
operations in TinyOS 2.x are synchronous) needs to be on. In other
scenarios, where the CC2420 radio could be turned off instead of
encrypting/decrypting data, it is likely that software implementa-
tions will be more energy efficient. This is out of the scope ofthis
paper. All experiments are done using TinyOS 2.x [13] running on
the TelosB platform [18] where performance times are measured
from a 16 bit microsecond counter which is based on one of the
microprocessor timers.

3.1 CC2420 Background
The CC2420 radio features the three hardware IEEE 802.15.4

in-line security suits that works on packets within the receive and
transmit buffers: Counter (CTR) mode encryption, Cipher-Block
Chaining MAC (CBC-MAC) authentication, and Combined Cipher
Machine (CCM) authenticated encryption [1]. The security is based
on an AES hardware implementation (taking a 128 bit key) which
can also be used for stand-alone AES encryption on a 128 bit plain-
text.

The way the CC2420 radio handles access control lists varies
from the one required by the IEEE 802.15.4 specification [2].It
only has two entries but instead of having an address associated
with them it has two registers specifying what key to use for trans-
mission and reception, respectively. Each mode has an associated
nonce which should be unique for all packets sent with the same
key. The nonce should be set by the upper-layers before the secu-
rity mechanism is used. By letting the upper-layers handle the key
and nonce management the CC2420 radio circumvent a lot of the
IEEE 802.15.4 flaws identified by Sastry et al. [22].

3.2 CC2420 Stand-Alone Encryption
The basis for doing security is a block cipher. Law et al. [12]

benchmarked the most common software implementations of block

CC2420 SkipJack AES

RAM 33 42 244
ROM 1734 228 834

Table 2: Memory Evaluation of the CC2420 stand-alone AES
encryption. All units in bytes.

ciphers for wireless sensor networks and found that Skipjack was
the most memory efficient and Rijndael [5] the most secure. Inthis
section we will explore the CC2420 radios stand-alone AES en-
cryption feature working as a block cipher, and compare it tosoft-
ware implementations of SkipJack from TinySec [10] and a byte
oriented AES implementation from Brian Gladman1.

The CC2420 radio stand-alone AES encryption takes a 128 bit
key and a 128 bit plaintext and produces a 128 bit ciphertext.The
encryption process is enabled by calling the SAES command strobe
after writing a key to either KEY0 or KEY1 stored at RAM loca-
tions 0x100 and 0x130, setting the SECCTRL0 register to point at
the key to use, and writing the plaintext to the SABUF memory
space at location 0x120. We let the writing of the SECCTRL0 reg-
ister and a key to the CC2420 RAM be part of the setup procedure,
as they do not need to be set for each operation of the block cipher.
A block cipher operation consists of writing the plaintext to the
CC2420 RAM, enabling the stand-alone AES encryption, and then
reading the ciphertext back again. In case of continues block cipher
operations, the intermediate reads can be spared due to the CC2420
radios functionally of simultaneous write and read a buffer.

Table 1 shows the performance comparison. All values are ex-
cluding an encryption overhead of 194µs, 5µsand 2µs, and a setup
overhead of 352µs, 78µs, and 78µs from respectively the CC2420,
SkipJack, and AES block cipher. The overheads include acquisition
of the SPI bus, creation of local variables, and function calls. Table
1 shows that the encryption operation on the CC2420 is up to ten
times faster than the software implementations. The CC2420data-
sheet [1] states that it can run as fast as 14µs, but we are not able
to measure performance times lower than a command strobe which
takes about 80µs to execute in TinyOS 2.x (the 96µs includes chip
select). The bottleneck of the CC2420 is the RAM read and write.
We see that it is comparable to the software implementation of AES
and SkipJack under continuous block cipher operation (read/write
performed as one operation). Note that a SkipJack block cipher op-
erates on a 64 bit data string compared to a AES block cipher that
operate on a 128 bit data string. The setup time for the CC2420
is dominated by the time it takes to write the key to the CC2420
RAM. It is an order of magnitude slower than the SkipJack setup
time, but performs better than the AES.

Table 2 shows a memory evaluation of the block ciphers. We
see that the CC2420 RAM overhead is lower than the software
implementations, which can be important in some applications.
The CC2420 includes several hardware presentation layers of soft-
ware to interact with the CC2420 radio which increases its program
memory compared to the other solution. The hardware presentation
layers will only be included once, therefore the differencewill be
less significant if the CC2420 radio stack is also used in an appli-
cation.

3.3 CC2420 In-line Security
In last section we showed that the CC2420 radios stand-alone

AES security operation perform better than the software alterna-
tives, if we neglect the RAM read and write. The CC2420 radio in-
line security mechanism is performed on packets already present

1http://fp.gladman.plus.com/AES

in the CC2420 radios TXFIFO and RXFIFO buffers. Hence, has
the potential to cause little overhead, as the read and writeto these
buffers is done anyway. In this section we will explore the CC2420
radio in-line security mechanism.

The encryption is enabled by calling the STXENC command
strobe after configuring the SECCTRL0 and SECCTRL1 regis-
ters (see the CC2420 radios data sheet [1]), writing the nonce to
TXNONCE at RAM location 0x140, and the key to either KEY0 or
KEY1 at RAM locations 0x100 and 0x130, respectively. The nonce
consist of the source address, a frame counter (keeping the nonce
unique for each use under the same key), and a key sequence num-
ber. The decryption is enabled in a similar way, using the SRXDEC
command strobe and a nonce written to RXNONCE at RAM loca-
tion 0x110.

Table 3 shows a performance evaluation of the CC2420 radio’s
CCM, CTR, and CBC-MAC in-line security mechanisms. All val-
ues are excluding the time it takes for a SNOP command strobe to
check when the security operation is complete. As before, weare
not able to measure execution times lower than a single command
strobe. From Table 3, we see that in accordance with the CC2420
radios data-sheet [1] that the in-line security mechanism are very
fast even when compared to a single block cipher operation.

3.4 Protocol Considerations
An efficient security mechanism is not enough for an efficient

secure communication scheme. In order for the receiving part to be
able to decrypt a received packet, it needs to be able to reconstruct
the used nonce. The IEEE 802.15.4 specification [2] proposesto
prepend the frame counter and key sequence number of the nonce
to the packet payload as shown in Figure 3 (b), (c), and (d). This in-
creases the communication overhead which may not be acceptable
for low power applications. In the IEEE 802.15.4 specification the
data sequence number (DSN) field from the MAC Protocol Data
Unit (MPDU) in Figure 3 (a), is used as a mechanism for relat-
ing an acknowledgement to its data packet. This means that itwill
conform to the specification as long as it changes for each subse-
quent packet. In order to decrease the communication overhead we
propose to use the DSN for the frame counter and key sequence
number. The size of the DSN is one byte, so in order for the frame
counter and key sequence number to be larger we adopt the tech-
nique from Luk et al. [15] to use it for implicit synchronization of
internal stored larger variables. The applicability of storing these
variables comes from the fact that we implement security at the link
layer; we only store them for our neighbors. Security at the link
layer may increase the communication overhead but comes with
the advantage of supporting secure data aggregation [19].

We let thex least significant bits of the DSN be our frame counter
synchronization. This means that as long as there is less than 2x

dropped packets since the last successfully received packet from
the same sender, the receiver can immediately increase its frame
counter to the right value. In fact, this optimization is still useful
even if 2x or more packets are lost, since the receiver could continue
to increment the counter by 2x and reattempt decryption. Similarly,
we let the 8− x most significant bits of the DSN be our key syn-

Mode \ Length 5 10 20 28

CCM 97 97 97 193
CTR 97 97 97 97

CBC-MAC 97 97 97 97

Table 3: Performance Evaluation of the in-line security mech-
anisms. All units in µs.

(a) MPDU using short addressing mode.

(b) CCM Payload.

(c) CTR Payload.

(d) CBC-MAC Payload.

Figure 3: The IEEE 802.15.4 MPDU and packet payloads.

chronization.

4. EFFICIENCY EVALUATION

4.1 Asynchronous Key Distribution
The main contribution of our scheme is that it is asynchronous

and does not require any time synchronization. This means that
the base station can do key updates when they are needed instead
of doing them synchronously over fixed periods of time. The base
station will decide when to do key updates by estimating how much
traffic is generated in the group. Not all control traffic willgo
through the base station, but we argue that an upper bound canbe
put on such traffic, and the amount should be considerable lower
than the amount of data traffic that will go through the base sta-
tion. The strategy for the base station is to do key updates when-
ever a group member is in need of one, hence a certain amount of
data has been successfully sent to the base station from a specific
sensor node. We assume a reliable data link layer and simulate
the need for key updates over an unreliable channel, and compare
our asynchronous solution to the synchronous solution proposed
in Lisp [16], with different probabilities for a sensor nodeto send
data to the base station. We implemented the core features ofthe
schemes in TinyOS 2.x [18] and simulated key updates between
two neighboring nodes in TOSSIM [14]. We assume that the ac-
tive scheme is initialized beforehand and a re-initialization is to be
avoided at all costs. One node is periodically, with a certain prob-
ability, deciding upon whether or not to send a data packet tothe
other node. The other node issues key updates according to the
current distribution scheme, assuming that the first node can send a
data packet at the beginning of each period.

Figure 4 shows the overhead in the form of key updates and re-
quest for key updates when increasing the chance of lost key up-
dates (we consider a garbled update as lost). The simulationlasts
500 seconds, using a period of 1 second, a key buffer size of 5,
and a new key is needed for every 5 packets sent. These values
were chosen to illustrate the difference between the schemes, and
may be larger in a real scenario. Results are shown for the asyn-
chronous and the synchronous scheme when the probability ofthe
node sending data is 10%, 50%, and 100%, respectively. The over-
head introduced by the synchronous scheme is relatively stable un-
til the probability of a message loss reaches 70%. After this, the
length of the key buffer is not able to keep up for the loss of key

Transmit Receive

Read DSN N/A 211
Compute key N/A 6

Compute counter N/A 6
Read source N/A 254
Write key 948 948

Write nonce 911 908
Write registers 384 384
Security strobe 196 214

Overhead 2439 2931

Table 4: Computational overhead of using the CC2420 radios
in-line security mechanism in CCM mode. All units are in µs.

updates, and the overhead increases. The asynchronous scheme
uses half of the key buffer to handle lost key updates and the other
half to be compatible with other nodes using older keys, whereas
the synchronous scheme uses the whole key buffer for handling lost
key updates. This means that with the same key buffer length,the
asynchronous scheme is not able to handle the same amount of lost
key updates, and the overhead is seen to increase when half ofall
key updates get lost. This could be compensated for with a larger
key buffer or by re-computing older keys as needed. Re-computing
an older key will increase the security overhead per packet with at
least one block cipher operation taking approximately 1 ms accord-
ing to our evaluation. This is at least a 25% increase compared to
our computational overhead evaluation in the next sub-section.

The strength of the asynchronous scheme is when the amount of
data sent decreases to 10% or 50% of its potential. In such case,
the asynchronous schemes overhead is proportional to the amount
of data sent whereas the synchronous key update keeps a high over-
head.

Due to page restrictions, we leave out a computational overhead
evaluation, but the results are similar to the ones showed inLisp
[16].

4.2 CC2420 Security Overhead
In this section we evaluate the overhead involved when imple-

menting secure communication with the CC2420 radio in-linese-
curity mechanism. The evaluation will be based on the CCM mode
as this sets an upper bound. Due to the security flaws identified
by Sastry et al. [22] we do not recommend the user to use other
security modes than CCM.

The security computational overhead when transmitting a packet
will be less than when receiving one. This is due to the fact that the
receiver has to read bytes from the RXFIFO buffer in order to de-

� �� �� �� �� �� �� �� 	�
�

�

��

���

���

���

���

���

���

���

��
����

��
���

��
���

���
����

���
���

���
���

������������������������������� !"

�
�
�
�
��
��

�#
$
�
�%

�
�
�
�
�
�
�
�
�
��

"

Figure 4: Asynchronous vs. Synchronous key updates.

termine what counter, key, and source address to include in the de-
cryption process. Table 4 shows the computational overheadof us-
ing the CC2420 radios in-line security mechanism in CCM mode.
All values are measured by an experimental study on the TelosB
platform [18] using TinyOS 2.x [13] with a CC2420 packet size
of 41 bytes. The transmission process includes writing the packet,
key, and nonce to the CC2420 radios RAM, setting the security
registers, and completing the encryption. The receive process in-
cludes reading the DSN (1 byte) and source address (2 bytes) from
the CC2420 radios RAM, determining what nonce to use, writing
the key and nonce to the CC2420 radios RAM, setting the security
registers, and completing the decryption. We see that the computa-
tional overhead of the security is between two and three millisec-
onds. According to Rogaway et al. [21] a similar software imple-
mentation of CCM, will require 7 block cipher calls taking 128 bits
of plaintext at a time on the same packet length. If we compare
this to any block cipher from our block cipher evaluation, the in-
line security mechanism will always be more than twice as fast as
a similar software implementation.

The communication overhead of each secure packet sent is min-
imal as we are re-using the DSN field to synchronize the frame
counter and key sequence number. If implicit synchronization is
not possible, there will be a cost associated with having to do ex-
ternal synchronization of these values, as described by Perrig et al.
[17]. We consider this case to be rare.

5. RELATED WORK

5.1 Group Key Distribution
The Lightweight Security Protocol (LiSP) [16] provides a secure

group key distribution scheme that periodically renews a shared
key. It achieves reliability without retransmissions, implicit authen-
tication without incurring any additional overhead, detection and
recovery from lost keys, and key refreshments without disrupting
ongoing data transmission, but requires loose time synchronization.
LiSP makes use of a one-way hash function to create a key-chain
of keys (first introduced in sensor networks by Perrig et al. [17]).
At each following time interval a new key from the key chain is
used as the current key. Our asynchronous group key distribution
scheme achieves the same properties without requiring any form of
time synchronization.

5.2 Secure Group Communication
TinySec [10] provides a certain level of data confidentiality, au-

thentication, and integrity. For minimal communication overhead,
it provides the semantic security property by using a nonce cre-
ated from its link-layer package header. This keeps the nonce short
which decreases security if it repeats; making a requirement for
frequent key updates. It does not support protection against replay
attacks and data freshness. The authors argue that this is more ef-
ficiently handled by an upper-layer that has information about the
network topology.

The MiniSec-U [15] provides data confidentiality, authentica-
tion, integrity, data freshness, and protection against replay attack.
It uses implicit synchronization of a large internal storednonce
which keeps the communication overhead down while achieving
a high level of security. The synchronization is done by sending
the last few bits of the nonce with each package; these bits can
then be used to synchronize an internally stored nonce. Due to the
memory limitation of today’s sensor nodes [18] it is not applicable
to store a nonce for every other sensor node in an arbitrary group,
so Luk et al. [15] also proposed MiniSec-B that uses a sliding-
window and a bloom-filter based approach to perform memory effi-

cient protection against replay attacks when group communication
is used. This requires a certain level of time synchronization and
has a chance of rejecting new packets never seen before.

Both TinySec and MiniSec uses software implementations of the
SkipJack [4] and the RC5 [20] block cipher as basis for their secu-
rity primitives. We take advantage of the widely used CC2420radio
[1] security features and a simpler group model to achieve efficient
secure group communication with protection against replayattacks
without rejecting any packets not seen before.

5.3 CC2420 Security Mechanism
Healy et al. [7] has explored the stand-alone AES encryption

mechanism of the CC2420 radio [1] and compared it to similar
software implementations optimized for speed and memory. They
show that the hardware implementation are orders of magnitude
faster and more memory efficient than the similar software imple-
mentations, when the read and write to the CC2420 radios RAM
are not included as part of the encryption operation. We argue that
in order for the stand-alone AES encryption on the CC2420 ra-
dio to work as a block cipher at least one read or write is required
per. block cipher operation. We have shown in this paper thata
read/write operation takes more than twice the time of the actual
encryption on the TelosB platform [18] using TinyOS 2.x [13], and
hence it can not be neglected in a performance evaluation.

6. CONCLUSIONS AND FUTURE WORK
Sensor networks are often deployed in hostile environment cre-

ating a demand for secure communication. Different communica-
tion patterns require different security schemes. Based ona simple
key update strategy at the base station, we showed that our pro-
posed asynchronous key distribution scheme was able to follow
varying traffic rates in a network, and hereby decrease the over-
head of key updates compared to previous synchronous schemes
[16]. We showed that due to slow RAM read and write operations,
the CC2420 stand-alone AES encryption working as a block cipher
is not beneficial in terms of speed compared to similar software
implementation. This contradicts the conclusions made by Healy
et al. [7] where they did not include RAM read and write in their
evaluation. Instead, we found that the CC2420 radios in-line se-
curity mechanism computationally outperforms a similar software
implementation and proposed a way to use this as a basis for se-
curing group communication at the link layer, while keepingthe
communication overhead very low.

Future work includes a practical energy measurement study of
the security mechanism used in this paper. This will show howour
performance comparisons relate to the actual energy consumption,
and may reveal that it is not energy efficient to use the CC2420se-
curity mechanism if it is possible to turn off the radio instead. Our
group key distribution scheme does not provide backward secrecy
(previous keys can easily be disclosed from a current key). This
is a general property of schemes using key chains [16, 17], and al-
ternative approaches may be explored to cover the scenarioswhere
backward secrecy is a requirement.

7. ACKNOWLEDGEMENTS
This work is partly sponsored by the SensoByg Project [3]. A

special thanks goes to Lars Michael Kristensen, Jacob Andersen,
Jesper Buus Nielsen, and Margaret Durham for proof reading,in-
sightful comments, and valueable discussion.

8. REFERENCES
[1] Datasheet for chipcon (ti) cc2420 2.4 ghz ieee

802.15.4/zigbee rf transceiver. http://ti.com.
[2] Ieee std. 802.15.4 - 2003: Wireless medium access control

(mac) and physical layer (phy) specifications for low rate
wireless personal area networks (lr-wpans).

[3] The sensobyg project. http://sensobyg.dk/english.
[4] Skipjack and kea specifications. InFederal Information

Processing Standards 185. National Institute of Standards
and Technology, 1998.

[5] J. Daemen and V. Rijmen. Aes proposal: Rijndael. 1999.
[6] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan,

B. Greenstein, A. Joki, D. Estrin, and E. Kohler. The tenet
architecture for tiered sensor networks. InSenSys ’06:
Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 153–166, New
York, NY, USA, 2006. ACM.

[7] M. Healy, T. Newe, and E. Lewis. Analysis of hardware
encryption versus software encryption on wireless sensor
network motes. pages 3–15, 2008.

[8] Y. Jiang, C. Lin, M. Shi, and X. Shen. Self-healing group key
distribution with time-limited node revocation for wireless
sensor networks.Ad Hoc Networks, 5(1):14–23, 2007.

[9] W.-S. Juang. Efficient user authentication and key agreement
in wireless sensor networks. InWISA, pages 15–29, 2006.

[10] C. Karlof, N. Sastry, and D. Wagner. Tinysec: a link layer
security architecture for wireless sensor networks. InSenSys
’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 162–175, New
York, NY, USA, 2004. ACM.

[11] C. Kuo, M. Luk, R. Negi, and A. Perrig. Message-in-a-bottle:
user-friendly and secure key deployment for sensor nodes. In
SenSys ’07: Proceedings of the 5th international conference
on Embedded networked sensor systems, pages 233–246,
New York, NY, USA, 2007. ACM.

[12] Y. W. Law, J. Doumen, and P. Hartel. Survey and benchmark
of block ciphers for wireless sensor networks.ACM Trans.
Sen. Netw., 2(1):65–93, 2006.

[13] P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein,
M. Turon, J. Hui, K. Klues, C. Sharp, R. Szewczyk,
J. Polastre, P. Buonadonna, L. Nachman, G. Tolle, D. Culler,
and A. Wolisz. T2: A second generation os for embedded
sensor networks. Technical report, 2005.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate
and scalable simulation of entire tinyos applications. In
Proceedings of the 1st international conference on
Embedded networked sensor systems (SenSys ’03). ACM,
2003.

[15] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. Minisec: a
secure sensor network communication architecture. InIPSN
’07: Proceedings of the 6th international conference on
Information processing in sensor networks, pages 479–488,
New York, NY, USA, 2007. ACM.

[16] T. Park and K. G. Shin. Lisp: A lightweight security protocol
for wireless sensor networks.Trans. on Embedded
Computing Sys., 3(3):634–660, 2004.

[17] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E.
Culler. Spins: security protocols for sensor networks.Wirel.
Netw., 8(5):521–534, 2002.

[18] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling
ultra-low power wireless research. InIPSN ’05: Proceedings
of the 4th international symposium on Information

processing in sensor networks, page 48, Piscataway, NJ,
USA, 2005. IEEE Press.

[19] B. Przydatek, D. Song, and A. Perrig. Sia: secure
information aggregation in sensor networks. InSenSys ’03:
Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 255–265, New
York, NY, USA, 2003. ACM.

[20] R. L. Rivest. The rc5 encryption algorithm. InFast Software
Encryption, pages 86–96. Springer Berlin / Heidelberg, 1995.

[21] P. Rogaway and D. Wagner. A critique of ccm. Comment to
NIST, 2003.

[22] N. Sastry and D. Wagner. Security considerations for ieee
802.15.4 networks. InWiSe ’04: Proceedings of the 3rd
ACM workshop on Wireless security, pages 32–42, New
York, NY, USA, 2004. ACM.

[23] M. Shehab, E. Bertino, and A. Ghafoor. Efficient hierarchical
key generation and key diffusion for sensor networks.Sensor
and Ad Hoc Communications and Networks, 2005. IEEE
SECON 2005. 2005 Second Annual IEEE Communications
Society Conference on, pages 76–84, Sept., 2005.

[24] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A macroscope in the redwoods. InSenSys ’05:
Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 51–63, New
York, NY, USA, 2005. ACM.

