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Abstract

We study regular expression membership testing: Given a regular expression of size m and a
string of size n, decide whether the string is in the language described by the regular expression.
Its classic O(nm) algorithm is one of the big success stories of the 70s, which allowed pattern
matching to develop into the standard tool that it is today.

Many special cases of pattern matching have been studied that can be solved faster than in
quadratic time. However, a systematic study of tractable cases was made possible only recently,
with the first conditional lower bounds reported by Backurs and Indyk [FOCS’16]. Restricted
to any “type” of homogeneous regular expressions of depth 2 or 3, they either presented a near-
linear time algorithm or a quadratic conditional lower bound, with one exception known as the
Word Break problem.

In this paper we complete their work as follows:

• We present two almost-linear time algorithms that generalize all known almost-linear time
algorithms for special cases of regular expression membership testing.

• We classify all types, except for the Word Break problem, into almost-linear time or
quadratic time assuming the Strong Exponential Time Hypothesis. This extends the
classification from depth 2 and 3 to any constant depth.

• For the Word Break problem we give an improved Õ(nm1/3 +m) algorithm. Surprisingly,
we also prove a matching conditional lower bound for combinatorial algorithms. This
establishes Word Break as the only intermediate problem.

In total, we prove matching upper and lower bounds for any type of bounded-depth homogeneous
regular expressions, which yields a full dichotomy for regular expression membership testing.
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1 Introduction

A regular expression is a term involving an alphabet Σ and the operations concatenation ◦, union |,
Kleene’s star ?, and Kleene’s plus +, see Section 2. In regular expression membership testing, we
are given a regular expression R and a string s and want to decide whether s is in the language
described by R. In regular expression pattern matching, we instead want to decide whether any
substring of s is in the language described by R. A big success story of the 70s was to show that
both problems have O(nm) time algorithms [17], where n is the length of the string s and m is
the size of R. This quite efficient running time, coupled with the great expressiveness of regular
expressions, made pattern matching the standard tool that it is today.

Despite the efficient running time of O(nm), it would be desirable to have even faster algorithms.
A large body of work in the pattern matching community was devoted to this goal, improving the
running time by logarithmic factors [15, 5] and even to near-linear for certain special cases [14, 7, 2].

A systematic study of the complexity of various special cases of pattern matching and mem-
bership testing was made possible by the recent advances in the field of conditional lower bounds,
where tight running time lower bounds are obtained via fine-grained reductions from certain core
problems like satisfiability, all-pairs-shortest-paths, or 3SUM (see, e.g., [9, 22, 1, 16]). Many of these
conditional lower bounds are based on the Strong Exponential Time Hypothesis (SETH) [12] which
asserts that k-satisfiability has no O(2(1−ε)n) time algorithm for any ε > 0 and all k ≥ 3.

The first conditional lower bounds for pattern matching problems were presented by Backurs
and Indyk [4]. Viewing a regular expression as a tree where the inner nodes are labeled by ◦, |, ?,
and + and the leafs are labeled by alphabet symbols, they call a regular expression homogeneous
of type t ∈ {◦, |, ?,+}d if in each level i of the tree all inner nodes have type ti, and the depth of
the tree is at most d. Note that leafs may appear in any level, and the degrees are unbounded.
This gives rise to natural restrictions t-pattern matching and t-membership, where we require the
regular expression to be homogeneous of type t. The main result of Backurs and Indyk [4] is a
characterization of t-pattern matching for all types t of depth d ≤ 3: For each such problem they
either design a near-linear time algorithm or show a quadratic lower bound based on SETH. We
observed that the results by Backurs and Indyk actually even yield a classification for all t, not only
for depth d ≤ 3. This is not explicitly stated in [4], so for completeness we prove it in this paper,
see Appendix A. This closes the case for t-pattern matching.

For t-membership, Backurs and Indyk also prove a classification into near-linear time and
“SETH-hard” for depth d ≤ 3, with the only exception being +|◦-membership. The latter problem
is also known as the Word Break problem, since it can be rephrased as follows: Given a string s
and a dictionary D, can s be split into words contained in D? Indeed, a regular expression of type
◦ represents a string, so a regular expression of type |◦ represents a dictionary, and type +|◦ then
asks whether a given string can be split into dictionary words. A relatively easy algorithm solves
the Word Break problem in randomized time Õ(nm1/2 + m), which Backurs and Indyk improved
to randomized time Õ(nm1/2−1/18 + m). Thus, the Word Break problem is the only studied spe-
cial case of membership testing (or pattern matching) for which no near-linear time algorithm or
quadratic time hardness is known. In particular, no other special case is “intermediate”, i.e., in
between near-linear and quadratic running time. Besides the status of Word Break, Backurs and
Indyk also leave open a classification for d > 3.

1.1 Our Results

In this paper, we complete the dichotomy started by Backurs and Indyk [4] to a full dichotomy
for any depth d. In particular, we (conditionally) establish Word Break as the only intermediate
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problem for (bounded-depth homogeneous) regular expression membership testing. More precisely,
our results are as follows.

Word Break Problem. We carefully study the only depth-3 problem left unclassified by Backurs
and Indyk. In particular, we improve Backurs and Indyk’s Õ(nm1/2−1/18+m) randomized algorithm
to a deterministic Õ(nm1/3 +m) algorithm.

Theorem 1. The Word Break problem can be solved in time O(n(m logm)1/3 +m).

We remark that often running times of the form Õ(n
√
m) stem from a tradeoff of two approaches

to a problem. Analogously, our time Õ(nm1/3 +m) stems from trading off three approaches.
Very surprisingly, we also prove a matching conditional lower bound. Our result only holds for

combinatorial algorithms, which is a notion without agreed upon definition, intuitively meaning
that we forbid unpractical algorithms such as fast matrix multiplication. We use the following
hypothesis; a slightly weaker version has also been used in [3] for context free grammar parsing.
Recall that the k-Clique problem has a trivial O(nk) time algorithm, an O(nk/ lgk n) combinatorial
algorithm [18], and all known faster algorithms use fast matrix multiplication [8].

Conjecture 1. For all k ≥ 3, any combinatorial algorithm for k-Clique takes time nk−o(1).

We provide a (combinatorial) reduction from k-Clique to the Word Break problem showing:

Theorem 2. Assuming Conjecture 1, the Word Break problem has no combinatorial algorithm in
time (nm1/3−ε +m) for any ε > 0.

This is a surprising result for multiple reasons. First, nm1/3 is a very uncommon time complexity,
specifically we are not aware of any other problem where the fastest known algorithm has this
running time. Second, it shows that the Word Break problem is an intermediate problem for
t-membership, as it is neither solvable in almost-linear time nor does it need quadratic time. Our
results below show that the Word Break problem is, in fact, the only intermediate problem for
t-membership, which is quite fascinating.

We leave it as an open problem to prove a matching lower bound without the assumption of
“combinatorial”. Related to this question, note that the currently fastest algorithm for 4-Clique is
based on fast rectangular matrix multiplication and runs in time O(n3.256689) [8, 10]. If this bound
is close to optimal, then we can still establish Word Break as an intermediate problem (without any
restriction to combinatorial algorithms).

Theorem 3. For any δ > 0, if 4-Clique has no O(n3+δ) algorithm, then Word Break has no
O(n1+δ/3) algorithm for n = m.

We remark that this situation of having matching conditional lower bounds only for combina-
torial algorithms is not uncommon, see, e.g., Sliding Window Hamming Distance [6].

New Almost-Linear Time Algorithms. We establish two more types for which the member-
ship problem is in almost-linear time.

Theorem 4. We design a deterministic Õ(n) + O(m) algorithm for | + ◦+-membership and an
expected time n1+o(1) + O(m) algorithm for | + ◦|-membership. These algorithms also work for
t-membership for any subsequence t of |+ ◦+ or |+ ◦|, respectively.

This generalizes all previously known almost-linear time algorithms for any t-membership prob-
lem, as all such types t are proper subsequences of |+◦+ or |+◦|. Moreover, no further generalization
of our algorithms is possible, as shown below.
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Dichotomy. We enhance the classification of t-membership started by Backurs and Indyk for d ≤
3 to a complete dichotomy for all types t. To this end, we first establish the following simplification
rules.

Lemma 1. For any type t, applying any of the following rules yields a type t′ such that t-membership
and t′-membership are equivalent under linear-time reductions:

1. replace any substring pp, for any p ∈ {◦, |, ?,+}, by p,

2. replace any substring +|+ by +|,

3. replace prefix r? by r+ for any r ∈ {+, |}∗.

We say that t-membership simplifies if one of these rules applies. Applying these rules in any order
will eventually lead to an unsimplifiable type.

We show the following dichotomy. Note that we do not have to consider simplifying types, as
they are equivalent to some unsimplifiable type.

Theorem 5. For any t ∈ {◦, |, ?,+}∗ one of the following holds:

• t-membership simplifies,

• t is a subsequence of | + ◦+ or | + ◦|, and thus t-membership is in almost-linear time (by
Theorem 4),

• t = +|◦, and thus t-membership is the Word Break problem taking time (nm1/3 +m)1±o(1) (by
Theorems 1 and 2, assuming Conjecture 1), or

• t-membership takes time (nm)1−o(1), assuming SETH.

This yields a complete dichotomy for any constant depth d. We discussed the algorithmic results
and the results for Word Break before. Regarding the hardness results, Backurs and Indyk [4] gave
SETH-hardness proofs for t-membership on types ◦?, ◦|◦, ◦+ ◦, ◦|+, and ◦+ |. We provide further
SETH-hardness for types +| ◦ +, +| ◦ |, and | + |◦. To get from these (hard) core types to all
remaining hard types, we would like to argue that all hard types contain one of the core types as
a subsequence and thus are at least as hard. However, arguing about subsequences fails in general,
since the definition of “homogeneous with type t” does not allow to leave out layers. This makes it
necessary to proceed in a more ad-hoc way.

In summary, we provide matching upper and lower bounds for any type of bounded-depth
homogeneous regular expressions, which yields a full dichotomy for the membership problem.

1.2 Organization

The paper is organized as follows. We start with preliminaries in Section 2. For the Word Break
problem, we prove the conditional lower bounds in Section 3, followed by the matching upper bound
in Section 4. In Section 5 we present our new almost-linear time algorithms for two types, and in
Section 6 we prove SETH-hardness for three types. Finally, in Section 7 we prove that our results
yield a full dichotomy for homogenous regular expression membership testing.
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2 Preliminaries

A regular expression is a tree with leafs labelled by symbols in an alphabet Σ and inner nodes
labelled by ◦ (at least one child), | (at least one child), + (exactly one child), or ? (exactly one
child)1. The language described by the regular expression is recursively defined as follows. A
leaf v labelled by c ∈ Σ describes the language L(v) := {c}, consisting of one word of length 1.
Consider an inner node v with children v1, . . . , v`. If v is labelled by ◦ then it describes the language
{s1 . . . s` | s1 ∈ L(v1), . . . , sk ∈ L(v`)}, i.e., all concatenations of strings in the children’s languages.
If v is labelled by | then it describes the language L(v) := L(v1)∪. . . L(v`). If v is labelled +, then its
degree ` must be 1 and it describes the language L(v) := {s1 . . . sk | k ≥ 1 and s1, . . . , sk ∈ L(v1)},
and if v is labelled ? then the same statement holds with “k ≥ 1” replaced by “k ≥ 0”. we say that
a string s matches a regular expression R if s is in the language described by R.

We use the following definition from [4]. We let {◦, |, ?,+}∗ be the set of all finite sequences
over {◦, |, ?,+}; we also call this the set of types. For any t ∈ {◦, |, ?,+}∗ we denote its length by |t|
and its i-th entry by ti. We say that a regular expression is homogeneous of type t if it has depth
at most |t|+ 1 (i.e., any inner node has level in {1, . . . , |t|}), and for any i, any inner node in level i
is labelled by ti. We also say that the type of any inner node at level i is ti. This does not restrict
the appearance of leafs in any level.

Definition 1. A linear-time reduction from t-membership to t′-membership is an algorithm that,
given a regular expression R of type t and length m and a string s of length n, in total time O(n+m)
outputs a regular expression R′ of type t′ and size O(m), and a string s′ of length O(n) such that s
matches R if and only if s′ matches R′.

The Strong Exponential Time Hypothesis (SETH) was introduced by Impagliazzo, Paturi, and
Zane [13] and is defined as follows.

Conjecture 2. For no ε > 0, k-SAT can be solved in time O(2(1−ε)N ) for all k ≥ 3.

Very often it is easier to show SETH-hardness based on the intermediate problem Orthogonal
Vectors (OV): Given two sets of d-dimensinal vectors A,B ⊆ {0, 1}d with |A| = |B| = n, determine
if there exist vectors a ∈ A, b ∈ B such that

∑d
i=1 a[i] ·b[i] = 0. The following OV-conjecture follows

from SETH [21].

Conjecture 3. For any ε > 0 there is no algorithm for OV that runs in time O(n2−εpoly(d)).

To start off the proof for the dichotomy, we have the following hardness results from [4].

Theorem 6. For any type t among ◦?, ◦|◦, ◦+ ◦, ◦|+, and ◦+ |, any algorithm for t-membership
takes time (nm)1−o(1) unless SETH fails.

3 Conditional Lower Bound for Word Break

In this section we prove our conditional lower bounds for the Word Break problem, Theorems 2
and 3. Both theorems follow from the following reduction.

1All our algorithms work in the general case where ◦ and | may have degree 1. For the conditional lower bounds,
it may be unnatural to allow degree 1 for these operations. If we restrict to degrees at least 2, it is possible to adapt
our proofs to prove the same results, but this is tedious and we think that the required changes would be obscuring
the overall point. We discuss this issue in more detail when it comes up, see footnote 2 on page 20.
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Theorem 7. For any k ≥ 4, given a k-Clique instance on n vertices, we can construct an equiv-
alent Word Break instance on a string of length O(nk−1) and a dictionary D of total size ‖D‖ =∑

d∈D |d| = O(n3). The reduction is combinatorial and runs in linear time in the output size.

First let us see how this reduction implies Theorems 2 and 3.

Proof of Theorem 2. Suppose for the sake of contradiction that Word Break can be solved combina-
torially in time O(nm1/3−ε +m). Then our reduction yields a combinatorial algorithm for k-Clique
in time O(nk−1 · (n3)1/3−ε) = O(nk−3ε), contradicting Conjecture 1. This proves the theorem.

Proof of Theorem 2. Assuming that 4-Clique has no O(n3+δ) algorithm for some δ > 0, we want to
show that Word Break has no O(n1+δ/3) algorithm for n = m.

Setting k = 4 in the above reduction yields a string and a dictionary, both of size O(n3) (which
can be padded to the same size). Thus, an O(n1+δ/3) algorithm for Word Break with n = m would
yield an O(n3+δ) algorithm for 4-Clique, contradicting the assumption.

It remains to prove Theorem 7. Let G = (V,E) be an n-node graph on which we want to
determine whether there is a k-clique. The main idea of our reduction is to construct a gadget that
for any (k − 2)-clique S ⊂ V can determine whether there are two nodes u, v ∈ V \ S such that
(u, v) ∈ E and both u and v are connected to all nodes in S, i.e., S ∪ {u, v} forms a k-clique in
G. For intuition, we first present a simplified version of our gadgets and then show how to modify
them to obtain the final reduction.

Simplified Neighborhood Gadget. Given a (k− 2)-clique S, the purpose of our first gadget is
to test whether there is a node u ∈ V that is connected to all nodes in S. Assume the nodes in V
are denoted v1, . . . , vn. The alphabet Σ over which we construct strings has a symbol i for each vi.
Furthermore, we assume Σ has special symbols # and $. The simplified neighborhood gadget for
S = {vi1 , . . . , vik−2

} has the text T being

$123 · · ·n#i1#123 · · ·n#i2#123 · · ·n# · · ·n#ik−2#123 · · ·n$

and the dictionary D contains for every edge (vi, vj) ∈ E, the string:

i(i+ 1) · · ·n#j#123 · · · (i− 2)(i− 1)

and for every node vi, the two strings

$123 · · · (i− 2)(i− 1)

and
i(i+ 1) · · ·n$

The idea of the above construction is as follows: Assume we want to break T into words. The crucial
observation is that to match T using D, we have to start with $123 · · · (i− 2)(i− 1) for some node
vi. The only way we can possibly match the following part i(i+ 1) · · ·n#i1# is if D has the string
i(i + 1) · · ·n#i1#123 · · · (i − 2)(i − 1). But this is the case if and only if (vi, vi1) ∈ E, i.e. vi is a
neighbor of vi1 . If indeed this is the case, we have now matched the prefix #i1#123 · · · (i−2)(i−1)
of the next block. This means that we can still only use strings starting with i(i + 1) · · · from D.
Repeating this argument for all vij ∈ S, we conclude that we can break T into words from D if and
only if there is some node vi that is a neighbor of every node vij ∈ S.
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Simplified k-Clique Gadget. With our neighborhood gadget in mind, we now describe the main
ideas of our gadget that for a given (k − 2)-clique S can test whether there are two nodes vi, vj
such that (vi, vj) ∈ E and vi and vj are both connected to all nodes of S, i.e., S ∪ {vi, vj} forms a
k-clique.

Let TS denote the text used in the neighborhood gadget for S, i.e.

TS = $123 · · ·n#i1#123 · · ·n#i2#123 · · ·n# · · ·n#ik−2#123 · · ·n$

Our k-clique gadget for S has the following text T :

TSγTS

where γ is a special symbol in Σ. The dictionary D has the strings mentioned in the neighborhood
gadget, as well as the string

i(i+ 1) · · ·n$γ$123 · · · (j − 1)

for every edge (vi, vj) ∈ E. The idea of this gadget is as follows: Assume we want to break T into
words. We have to start using the dictionary string $123 · · · (i − 1) for some node vi. For such a
candidate node vi, we can match the prefix

$123 · · ·n#i1#123 · · ·n#i2#123 · · ·n# · · ·n#ik−2#

of TSγTS if and only if vi is a neighbor of every node in S. Furthermore, the only way to match
this prefix (if we start with $123 · · · (i− 1)) covers precisely the part:

$123 · · ·n#i1#123 · · ·n#i2#123 · · ·n# · · ·n#ik−2#123 · · · (i− 2)(i− 1)

Thus if we want to also match the γ, we can only use strings

i(i+ 1) · · ·n$γ$123 · · · (j − 1)

for an edge (vi, vj) ∈ E. Finally, by the second neighborhood gadget, we can match the whole string
TSγTS if and only if there are some nodes vi, vj such that vi is a neighbor of every node in S (we
can match the first TS), and (vi, vj) ∈ E (we can match the γ) and vj is a neighbor of every node
in S (we can match the second TS), i.e., S ∪ {vi, vj} forms a k-clique.

Combining it all. The above gadget allows us to test for a given (k− 2)-clique S whether there
are some two nodes vi and vj we can add to S to get a k-clique. Thus, our next step is to find
a way to combine such gadgets for all the (k − 2)-cliques in the input graph. The challenge is to
compute an OR over all of them, i.e. testing whether at least one can be extended to a k-clique.
For this, our idea is to replace every symbol in the above constructions with 3 symbols and then
carefully concatenate the gadgets. When we start matching the string T against the dictionary, we
are matching against the first symbol of the first (k − 2)-clique gadget, i.e. we start at an offset of
zero. We want to add strings to the dictionary that always allow us to match a clique gadget if we
have an offset of zero. These strings will then leave us at offset zero in the next gadget. Next, we
will add a string that allow us to change from offset zero to offset one. We will then ensure that if
we have an offset of one when starting to match a (k − 2)-clique gadget, we can only match it if
that clique can be extended to a k-clique. If so, we ensure that we will start at an offset of two in
the next gadget. Next, we will also add strings to the dictionary that allow us to match any gadget
if we start at an offset of two, and these strings will ensure we continue to have an offset of two.
Finally, we append symbols at the end of the text that can only be matched if we have an offset of
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two after matching the last gadget. To summarize: Any breaking of T into words will start by using
an offset of zero and simply skipping over (k − 2)-cliques that cannot be extended to a k-clique.
Then once a proper (k − 2)-clique is found, a string of the dictionary is used to change the start
offset from zero to one. Finally, the clique is matched and leaves us at an offset of two, after which
the remaining string is matched while maintaining the offset of two.

We now give the final details of the reduction. Let G = (V,E) be the n-node input graph to
k-clique. We do as follows:

1. Start by iterating over every set of (k − 2) nodes S in G. For each such set of nodes, test
whether they form a (k−2)-clique in O(k2) time. Add each found (k−2)-clique S to a list L.

2. Let α, β, γ, µ,# and $ be special symbols in the alphabet. For a string T = t1t2t3 · · · tm, let

[T ]
(0)
α,β = αt1βαt2β · · ·αtmβ

and
[T ]

(1)
α,β = t1βαt2βαt3β · · ·αtmβα

For each node vi ∈ V , add the following two strings to the dictionary D:

[$123 · · · (i− 2)(i− 1)]
(1)
α,β

and
[i(i+ 1) · · ·n]

(1)
α,β

3. For each edge (vi, vj) ∈ E, add the following two strings to the dictionary:

[i(i+ 1) · · ·n#j#123 · · · (i− 2)(i− 1)]
(1)
α,β

and
[i(i+ 1) · · ·n$γ$123 · · · (j − 1)]

(1)
α,β

4. For each symbol σ amongst {1, . . . , n, $,#, γ, µ}, add the following two string to D:

ασβ

and
βασ

Intuitively, the first of these strings is used for skipping a gadget if we have an offset of zero,
and the second is used for skipping a gadget if we have an offset of two.

5. Also add the three strings
αµβα $βαµ βµµ

to the dictionary. The first is intuitively used for changing from an offset of zero to an offset
of one (begin matching a clique gadget), the second is used for changing from an offset of one
to an offset of two in case a clique gadget could be matched, and the last string is used for
matching the end of T if an offset of two has been achieved.
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6. We are finally ready to describe the text T . For a (k − 2)-clique S = {vi1 , . . . , vik−2
}, let TS

be the neighborhood gadget from above, i.e.

TS := $123 · · ·n#i1#123 · · ·n#i2#123 · · ·n# · · ·n#ik−2#123 · · ·n$

For each S ∈ L (in some arbitrary order), we append the string:

[µTSγTSµ]
(0)
α,β

to the text T . Finally, once all these strings have been appended, append another two µ’s to
T . That is, the text T is:

T :=
(
◦S∈L[µTSγTSµ]

(0)
α,β

)
µµ

We want to show that the text T can be broken into words from the dictionary D iff there is
a k-clique in the input graph. Assume first there is a k-clique S in G = (V,E). Let S′ be an
arbitrary subset of k − 2 nodes from S. Since these form a (k − 2)-clique, it follows that T has the
substring [µTS′γTS′µ]

(0)
α,β . To match T using D, do as follows: For each S′′ preceeding S′ in L, keep

using the strings ασβ from step 4 above to match. This allows us to match everything preceeding
[µTS′γTS′µ]

(0)
α,β in T . Then use the string αµβα to match the beginning of [µTS′γTS′µ]

(0)
α,β . Now let

vi and vj be the two nodes in S\S′. Use the string [$123 · · · (i−2)(i−1)]
(1)
α,β to match the next part of

[µTS′γTS′µ]
(0)
α,β . Then since S is a k-clique, we have the string [i(i+1) · · ·n#h#123 · · · (i−2)(i−1)]

(1)
α,β

in the dictionary for every vh ∈ S′. Use these strings for each vh ∈ S′. Again, since S is a k-clique,
we also have the edge (vi, vj) ∈ E. Thus we can use the string

[i(i+ 1) · · ·n$γ$123 · · · (j − 1)]
(1)
α,β

to match across the γ in [µTS′γTS′µ]
(0)
α,β . We then repeat the argument for vj and repeatedly use the

strings [j(j + 1) · · ·n#h#123 · · · (j − 2)(j − 1)]
(1)
α,β to match the second TS′ . We finish by using the

string [j(j + 1) · · ·n]
(1)
α,β followed by using $βαµ. We are now at an offset where we can repeatedly

use βασ to match across all remaining [µTS′′γTS′′µ]
(0)
α,β . Finally, we can finish the match by using

βµµ after the last substring [µTS′′γTS′′µ]
(0)
α,β .

For the other direction, assume it is possible to break T into words from D. By construction,
the last word used has to be βµµ. Now follow the matching backwards until a string not of the
form βασ was used. This must happend eventually since T starts with α. We are now at a position
in T where the suffix can be matched by repeatedly using βασ, and then ending with βµµ. By
construction, T has ασ just before this suffix for some σ ∈ {1, . . . , n, $,#, γ, µ}. The only string in
D that could match this without being of the form βασ is the one string $βαµ. It follows that we
must be at the end of some substring [µTS′γTS′µ]

(0)
α,β and used $βαµ for matching the last µ. To

match the preceeding n in the last TS′ , we must have used a string [j(j+1) · · ·n]
(1)
α,β for some vj . The

only strings that can be used preceeding this are strings of the form [j(j + 1) · · ·n#h#123 · · · (j −
2)(j − 1)]

(1)
α,β . Since we have matched T , it follows that (vj , vh) is in E for every vh ∈ S′. Having

traced back the match across the last TS′ in [µTS′γTS′µ]
(0)
α,β , let vi be the node such that the string

[i(i+1) · · ·n$γ$123 · · · (j−1)]
(1)
α,β was used to match the γ. It follows that we must have (vi, vj) ∈ E.

Tracing the matching through the first TS′ in [µTS′γTS′µ]
(0)
α,β , we conclude that we must also have

(vi, vh) ∈ E for every vh ∈ S′. This establishes that S′ ∪ {vi, vj} forms a k-clique in G.
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Finishing the proof. From the input graph G, we constructed the Word Break instance in time
O(nk−2k2) plus the time needed to output the text and the dictionary. For every edge (vi, vj) ∈ E,
we added two strings to D, both of length O(n). Furthermore, D had two O(n) length strings
for each node vi ∈ V and another O(n) strings of constant length. Thus the total length of the
strings in D is M = O(|E|n + n) = O(n3). The text T has the substring [µTS′γTS′µ]

(0)
α,β for every

(k − 2)-clique S. Thus T has length N = O(nk−1) (assuming k is constant). The entire reduction
takes O(nk−1 + n3) time for constant k. This finishes the reduction and proves Theorem 7.

4 Algorithm for Word Break

In this section we present an Õ(nm1/3 +m) algorithm for the Word Break problem, proving Theo-
rem 1. Our algorithm uses many ideas of the randomized Õ(nm1/2−1/18 +m) algorithm by Backurs
and Indyk [4], in fact, it can be seen as a cleaner execution of their main ideas. Recall that in the
Word Break Problem we are given a set of strings D = {d1, . . . , dk} (the dictionary) and a string
s (the text) and we want to decide whether s can be (D-)partitioned, i.e., whether we can write
s = s1 . . . sr such that si ∈ D for all i. We denote the length of s by n and the total size of D by
m := ‖D‖ :=

∑k
i=1 |di|.

We say that we can (D-)jump from j to i if the substring s[j + 1..i] is in D. Note that if s[1..j]
can be partitioned and we can jump from j to i then also s[1..i] can be partitioned. Moreover, s[1..i]
can be partitioned if and only if there exists 0 ≤ j < i such that s[1..j] can be partitioned and we
can jump from j to i. For any power of two q ≥ 1, we let Dq := {d ∈ D | q ≤ |d| < 2q}.

In the algorithm we want to compute the set T of all indices i such that s[1..i] can be partitioned
(where 0 ∈ T , since the empty string can be partitioned). The trivial O(nm) algorithm computes
T ∩{0, . . . , i} one by one, by checking for each i whether for some string d in the dictionary we have
s[i− |d|+ 1..i] = d and i− |d| ∈ T , since then we can extend the existing partitioning of s[1..i− |d|]
by the string d to a partitioning of s.

In our algorithm, when we have computed the set T ∩{0, . . . , x}, we want to compute all possible
“jumps” from a point before x to a point after x using dictionary words with length in [q, 2q) (for
any power of two q). This gives rise to the following query problem.

Lemma 2. On dictionary D and string s, consider the following queries:

• Jump-Query: Given a power of two q ≥ 1, an index x in s, and a set S ⊆ {x− 2q+ 1, . . . , x},
compute the set of all x < i ≤ x+ 2q such that we can Dq-jump from some j ∈ S to i.

We can preprocess D, s in time O(n logm + m) such that queries of the above form can be
answered in time O(min{q2,

√
qm log q}), where m is the total size of D and n = |s|.

Before we prove that jump-queries can be answered in the claimed running time, let us show
that this implies an Õ(nm1/3 +m)-time algorithm for the Word Break problem.

Proof of Theorem 1. The algorithm works as follows. After initializing T := {0}, we iterate over
x = 0, . . . , n−1. For any x, and any power of two q ≤ n dividing x, define S := T∩{x−2q+1, . . . , x}.
Solve a jump-query on (q, x, S) to obtain a set R ⊆ {x+ 1..x+ 2q}, and set T := T ∪R.

To show correctness of the resulting set T , we have to show that i ∈ {0, . . . , n} is in T if and
only if s[1..i] can be partitioned. Note that whenver we add i to T then s[1..i] can be partitioned,
since this only happens when there is a jump to i from some j ∈ T , j < i, which inductively
yields a partitioning of s[1..i]. For the other direction, we have to show that whenever s[1..i] can
be partitioned then we eventually add i to T . This is trivially true for the empty string (i = 0).
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For any i > 0 such that s[1..i] can be partitioned, consider any 0 ≤ j < i such that s[1..j] can be
partitioned and we can jump from j to i. Round down i− j to a power of two q, and consider any
multiple x of q with j ≤ x < i. Inductively, we correctly have j ∈ T . Moreover, this holds already
in iteration x, since after this time we only add indices larger than x to T . Consider the jump-query
for q, x, and S := T ∩ {x− 2q+ 1, . . . , x} in the above algorithm. In this query, we have j ∈ S and
we can jump from j to i, so by correctness of Lemma 2 the returned set R contains i. Hence, we
add i to T , and correctness follows.

For the running time, since there are O(n/q) multiples of 1 ≤ q ≤ n in {0, . . . , n− 1}, there are
O(n/q) invocations of the query algorithm with power of two q ≤ n. Thus, the total time of all
queries is up to constant factors bounded by

logn∑
i=0

n

2`
·min

{
(2`)2,

√
2`m log(2`)

}
= n ·

logn∑
i=0

min
{

2`,
√
m`/2`

}
.

We split the sum at a point `∗ where 2`
∗

= Θ((m logm)1/3) and use the first term for smaller ` and
the second for larger. Using

∑b
i=a 2i = O(2b) and

∑b
i=a

√
i/2i = O(

√
a/2a), we obtain the upper

bound

≤ n ·
`∗∑
i=0

2` + n ·
logn∑
i=`∗+1

√
m`/2` = O

(
n2`

∗
+ n

√
m`∗/2`∗

)
= O

(
n(m logm)1/3

)
,

since `∗ = O(logm) by choice of 2`
∗

= Θ((m logm)1/3). Together with the preprocessing time
O(n logm+m) of Lemma 2, we obtain the desired running time O(n(m logm)1/3 +m).

It remains to design an algorithm for jump-queries. We present two methods, one with query
time O(q2) and one with query time O(

√
qm log q). The combined algorithm, where we first run the

preprocessing of both methods, and then for each query run the method with the better guarantee
on the query time, proves Lemma 2.

4.1 Jump-Queries in Time O(q2)

The dictionary matching algorithm by Aho and Corasick [2] yields the following statement.

Lemma 3. Given a set of strings D′, in time O(‖D′‖) one can build a data structure allowing the
following queries. Given a string s′ of length n′, we compute the set Z of all substrings of s′ that
are contained in D′, in time O(n′ + |Z|) ≤ O(n′2).

With this lemma, we design an algorithm for jump-queries as follows. In the preprocessing, we
simply build the data structure of the above lemma for each Dq, in total time O(m).

For a jump-query (q, x, S), we run the query of the above lemma on the substring s[x − 2q +
1..x+ 2q] of s. This yields all pairs (j, i), x− 2q < j < i ≤ x+ 2q, such that we can Dq-jump from
j to i. Iterating over these pairs and checking whether j ∈ S gives a simple algorithm for solving
the jump-query. The running time is O(q2), since the query of Lemma 3 runs in time quadratic in
the length of the substring s[x− 2q + 1..x+ 2q].

4.2 Jump-Queries in Time O(
√
qm log q)

The second algorithm for jump-queries is more involved. Note that if q > m then Dq = ∅ and the
jump-query is trivial. Hence, we may assume q ≤ m, in addition to q ≤ n.
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Preprocessing. We denote the reverse of a string d by drev, and let Drev
q := {drev | d ∈ Dq}. We

build a trie Tq for each Drev
q . Recall that a trie on a set of strings is a rooted tree with each edge

labeled by an alphabet symbol, such that if we orient edges away from the root then no node has
two outgoing edges with the same labels. We say that a node v in the trie spells the word that is
formed by concatenating all symbols on the path from the root to v. The set of strings spelled by
the nodes in Tq is exactly the set of all prefixes of strings in Drev

q . Finally, we say that the nodes
spelling strings in Drev

q are marked. We further annotate the trie Tq by storing for each node v the
lowest marked ancestor mv.

In the preprocessing we also run the algorithm of the following lemma.

Lemma 4. The following problem can be solved in total time O(n logm + m). For each power of
two q ≤ min{n,m} and each index i in string s, compute the minimal j = j(i) such that s[j..i] is a
suffix of a string in Dq. Furthermore, compute the node v(q, i) in Tq spelling the string s[j(i)..i].

Note that the second part of the problem is well-defined: Tq stores the reversed strings Drev
q , so

for each suffix x of a string in Dq there is a node in Tq spelling x.

Proof. First note that the problem decomposes over q. Indeed, if we solve the problem for each q
in time O(‖Dq‖ + n), then over all q the total time is O(m + n logm), as the Dq partition D and
there are O(logm) powers of two q ≤ m.

Thus, fix a power of two q ≤ min{n,m}. It is natural to reverse all involved strings, i.e., we
instead want to compute for each i the maximal j such that srev[i..j] is a prefix of a string in Drev

q .
Recall that a suffix tree is a compressed trie containing all suffixes of a given string s′. In

particular, “compressed” means that if the trie would contain a path of degree 1 nodes, labeled by
the symbols of a substring s′[i..j], then this path is replaced by an edge, which is succinctly labeled
by the pair (i, j). We call each node of the uncompressed trie a position in the compressed trie, in
other words, a position in a compressed trie is either one of its nodes or a pair (e, k), where e is
one of the edges, labeled by (i, j), and i < k < j. A position p is an ancestor of a position p′ if
the corresponding nodes in the uncompressed tries have this relation, i.e., if we can reach p from
p′ by going up the compressed trie. It is well-known that suffix trees have linear size and can be
computed in linear time [19]. In particular, iterating over all nodes of a suffix tree takes linear time,
while iterating over all positions can take up to quadratic time (as each of the n suffixes may give
rise to Ω(n) positions on average).

We compute a suffix tree S of srev. Now we determine for each node v in Tq the position pv in S
spelling the same string as v, if it exists. This task is easily solved by simultaneously traversing Tq
and S, for each edge in Tq making a corresponding move in S, if possible. During this procedure,
we store for each node in S the corresponding node in Tq, if it exists. Moreover, for each edge e in
S we store (if it exists) the pair (v, k), where k is the lowest position (e, k) corresponding to some
node in Tq, and v is the corresponding node in Tq. Note that this procedure runs in time O(‖Dq‖),
as we can charge all operations to nodes in Tq.

Since S is a suffix tree of srev, each leaf u of S corresponds to some suffix srev[i..n] of srev. With
the above annotations of S, iterating over all nodes in S we can determine for each leaf u the lowest
ancestor position p of u corresponding to some node v in Tq. It is easy to see that the string spelled
by v is the longest prefix shared by srev[i..n] and any string in Drev

q . In other words, denoting by
` the length of the string spelled by v (which is the depth of v in Tq), the index j := i + ` − 1 is
maximal such that srev[i..j] is a prefix of a string in Drev

q . Undoing the reversing, j′ := n+ 1− j is
minimal such that s[j′..n + 1 − i] is a suffix of a string in Dq. Hence, setting v(q, n + 1 − i) := v
solves the problem.
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This second part of this algorithm performs one iteration over all nodes in S, taking time O(n),
while we charged the first part to the nodes in Tq, taking time linear in the size of Dq. In total over
all q, we thus obtain the desired running time O(n logm+m).

For each Tq, we also compute a maximal packing of paths with many marked nodes, as is made
precise in the following lemma. Recall that in the trie T ′ for dictionary D′ the marked nodes are
the ones spelling the strings in D′.

Lemma 5. Given any trie T and a parameter λ, a λ-packing is a family B of pairwise disjoint
subsets of V (T ) such that (1) each B ∈ B is a directed path in T , i.e., it is a path from some node
rB to some descendant vB of rB, (2) rB and vB are marked for any B ∈ B, and (3) each B ∈ B
contains exactly λ marked nodes.

In time O(|V (T )|) we can compute a maximal (i.e., non-extendable) λ-packing.

Proof. We initialize B = ∅. We perform a depth first search on T , remembering the number `v of
marked nodes on the path from the root to the current node v. When v is a leaf and `v < λ, then
v is not contained in any directed path containing λ marked nodes, so we can backtrack. When we
reach a node v with `v = λ, then from the path from the root to v we delete the (possibly empty)
prefix of unmarked nodes to obtain a new set B that we add to B. Then we restart the algorithm
on all unvisited subtrees of the path from the root to v. Correctness is immediate.

For any power of two q ≤ min{n,m}, we set λq :=
(
m
q log q

)1/2 and compute a λq-packing Bq
of Tq, in total time O(m). In Tq, we annotate the highest node rB of each path B ∈ B as being the
root of B. This concludes the preprocessing.

Query Algorithm. Consider a jump-query (q, x, S) as in Lemma 2. For any B ∈ B let dB be the
string spelled by the root rB of B in Tq, and let πB = (u1, . . . , uk) be the path from the root of T
to the root rB of B (note that the labels of πB form dB). We set SB := {1 ≤ i ≤ k | ui is marked},
which is the set containing the length of any prefix of dB that is contained in Drev

q , as the marked
nodes in Tq correspond to the strings in Drev

q .
As the first part of the query algorithm, we compute the sumsets S+SB := {i+j | i ∈ S, j ∈ SB}

for all B ∈ B.
Now consider any x < i ≤ x + 2q. By the preprocessing (Lemma 4), we know the minimal j

such that s[j..i] is a suffix of some d ∈ Dq, and we know the node v := v(q, i) in Tq spelling s[j..i].
Observe that the path σ from the root to v in Tq spells the reverse of s[j..i]. It follows that the
strings d ∈ Dq such that s[i − |d| + 1..i] = d correspond to the marked nodes on σ. To solve the
jump-query (for i) it would thus be sufficient to check for each marked node u on σ whether for the
depth j of u we have i− j ∈ S, as then we can Dq-jump from i− j to j and have i− j ∈ S. Note
that we can efficiently enumerate the marked nodes on σ, since each node in Tq is annotated with
its lowest marked ancestor. However, there may be up to Ω(q) marked nodes on σ, so this method
would again result in running time Θ(q) for each i, or Θ(q2) in total.

Hence, we change this procedure as follows. Starting in v = v(q, i), we repeatedly go the lowest
marked ancestor and check whether it gives rise to a partitioning of s[1..i], until we reach the root
rB of some B ∈ B. Note that by maximality of B we can visit less than λq marked ancestors before
we meet any node of some B ∈ B, and it takes less than λq more steps to lowest marked ancestors
to reach the root rB. Thus, this part of the query algorithm takes time O(λq). Observe that the
remainder of the path σ equals πB. We thus can make use of the sumset S + SB as follows. The
sumset S+SB contains i if and only if for some 1 ≤ j ≤ |πB| we have i−j ∈ S and we can Dq-jump
from i− j to i. Hence, we simply need to check whether i ∈ S + SB to finish the jump-query for i.
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Running Time. As argued above, the second part of the query algorithm takes time O(λq) for
each i, which yields O(q · λq) in total.

For the first part of computing the sumsets, first note that Dq contains at most m/q strings,
since its total size is at most m and each string has length at least q. Thus, the total number of
marked nodes in Tq is at most m/q. As each B ∈ B contains exactly λq marked nodes, we have

|B| ≤ m/(q · λq). (1)

For each B ∈ B we compute a sumset S+SB. Note that S and SB both live in universes of size O(q),
since S ⊆ {x−2q+1, . . . , x} by definition of jump-queries, and all strings in Dq have length less than
2q and thus |SB| ⊆ {1, . . . , 2q}. After translation, we can even assume that S, SB ⊆ {1, . . . , O(q)}.
It is well-known that computing the sumset of X,Y ⊆ {1, . . . , U} is equivalent to computing the
Boolean convolution of their indicator vectors of length U . The latter in turn can be reduced to
multiplication of O(U logU)-bit numbers, by padding every bit of an indicator vector with O(logU)
zero bits and concatenating all padded bits. Since multiplication is in linear time on the Word
RAM, this yields an O(U logU) algorithm for sumset computation. Hence, performing a sumset
computation S+SB can be performed in time O(q log q). Over all B ∈ B, we obtain a running time
of O(|B| · q log q) = O((m log q)/λq), by the bound (1).

Summing up both parts of the query algorithm yields running time O(q · λq + (m log q)/λq).
Note that our choice of λq =

(
m
q log q

)1/2 minimizes this time bound and yields the desired query
time O(

√
qm log q). This finishes the proof of Lemma 2.

5 Almost-linear Time Algorithms

In this section we prove Theorem 4, i.e. we present an Õ(n) + O(m) time algorithm for | + ◦+-
membership and an n1+o(1) +O(m) time algorithm for |+◦|-membership. We start with presenting
the solution for |+ ◦|-membership as many of the ideas carry over to |+ ◦+-membership.

5.1 Almost-linear Time for |+ ◦|

For a given length-n string T and length-m regular expression R of type |+ ◦|, over an alphabet Σ,
let R1, . . . , Rk denote the regular expressions of type ◦| such that R = R+

1 |R
+
2 | · · · |R

+
k |σ1| · · · |σj .

Here the σj ’s are characters from Σ (recall that in the definition of homogenous regular expressions
we allow leaves in any depth, so we can have the single characters σi in R). Since the σi’s are trivial
to handle, we ignore them in the remainder.

For convenience, we index the characters of T by T [0], . . . , T [n− 1]. For R to match T , it must
be the case that R+

i matches T for some index i. Letting `i be the number of ◦’s in Ri, we define
Si,j ⊆ Σ for j = 0, . . . , `i as the set of characters from Σ such that

Ri = (|σ∈Si,0σ) ◦ (|σ∈Si,1σ) ◦ · · · ◦ (|σ∈Si,`i
σ).

Note that if a leaf appears in the |-level, then the set Si,j is simply a singleton set.
We observe that T matches R+

i iff (`i + 1) divides |T | = n and T [j] ∈ Si,jmod(`i+1) for all
j = 0, . . . , n − 1. In other words, if (`i + 1) divides n and we define sets T `ij ⊆ Σ for j = 0, . . . , `i,
such that

T `ij =

n/(`i+1)−1⋃
h=0

{T [h(`i + 1) + j]},

then we see that T matches R+
i iff Tj ⊆ Si,j for j = 0, . . . , `i.
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Note that the sets T `ij depend only on T and `i, i.e. the number of ◦’s in Ri. We therefore start
by partitioning the expressions Ri into groups having the same number of ◦’s ` = `i. This takes
time O(m). We can immediately discard all groups where (` + 1) does not divide n. The crucial
property we will use is that an integer n can have no more than 2O(lgn/ lg lgn) distinct divisors [20],
so we have to consider at most 2O(lgn/ lg lgn) groups.

Now let Ri1 , . . . , Rik be the regular expressions in a group, i.e., ` = `i1 = `i2 = · · · = `ik . By a
linear scan through T , we compute in O(n) time the sets T `j for j = 0, . . . , `. We store the sets in a
hash table for expected constant time lookups, and we store the sizes |T `j |. We then check whether
there is an Rih such that T `j ⊆ Sih,j for all j. This is done by examining each Rih in turn. For each
such expression, we check whether T `j ⊆ Sih,j for all j. For one Sih,j , this is done by taking each
character of Sih,j and testing for membership in T `j . From this, we can compute |T `j ∩ Sih,j |. We
conclude that T `j ⊆ Sih,j iff |T `j ∩ Sih,j | = |T `j |.

All the membership testings, summed over the entire execution of the algorithm, take expected
O(m) time as we make at most one query per symbol of the input regular expression. Computing
the sets T `j for each divisor (` + 1) of n takes n2O(lgn/ lg lgn) time. Thus, we conclude that | + ◦|-
membership testing can be solved in expected time n1+o(1) +O(m).

Sub-types. We argue that the above algorithm also solves any type t where t is a subsequence of
|+◦|. Type +◦ | simply corresponds to the case of just one Ri and is thus handled by our algorithm
above. Moreover, since there is only one Ri and thus only one divisor `i+1, the running time of our
algorithm improves to O(n+m). Type | ◦ | can be solved by first discarding all Ri with `i 6= n− 1
and then running the above algorithm. Again this leaves only one value of `i and thus the above
algorithm runs in time O(n + m). The type | + | corresponds to the case where each `i = 0 and
is thus also handled by the above algorithm. Again the running time becomes O(n + m) as there
is only one value of `i. Type | + ◦ is the case where all sets Si,j are singleton sets and is thus also
handled by the above algorithm. However, this type is also a subsequence of |+ ◦+ and using the
algorithm developed in the next section, we get a faster algorithm for |+◦ than using the one above.

Type ||, |◦, |+ are trivial. Type +| corresponds to the case of just one Ri having `i = 0 and is
thus solved in O(n + m) time using our algorithm. Type +◦ corresponds to just one Ri and only
singleton sets Si,j and thus is also solved in O(n+m) time by the above algorithm. The type ◦| is
the special case of | ◦ | in which there is only one set Ri and is thus also solved in O(n+m) time.
Types with just one operator are trivial.

5.2 Near-linear Time for |+ ◦+

For a given length-n text T and length-m regular expression R of type |+ ◦+, over an alphabet Σ,
let R1, . . . , Rk denote the regular expressions of type ◦+ such that R = R+

1 |R
+
2 | · · · |R

+
k |σ1| · · · |σj .

As in Section 5.1, the σi’s are single characters. These can easily be tested against T and thus from
now on we ignore them.

Our new algorithm uses some of the ideas from Backurs and Indyk [4] for + ◦ +-membership.
From the text T , define its run-length encoding r(T ) as follows: Set T ′ = T and let r(T ) be an
initially empty list of tuples. While |T ′| > 0, let σ be the first symbol of T ′ and let ` > 0 be the
largest integer such that σ` is a prefix of T ′ (i.e. T ′ starts with ` σ’s). We remove the prefix σ`

from T ′ and append the tuple (σ, `) to r(T ).
Following Backurs and Indyk [4], we also define the run-length encoding of a regular expression

Ri of type ◦+ as follows: Let R′i = Ri and let r(Ri) be an initially empty sequence of tuples. While
|R′i| > 0, let ` > 0 be the largest integer such that there exists a length-` prefix of R′i of the form
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σσ+σ+σσ . . . (an arbitrary concatenation of σ and σ+) for a symbol σ ∈ Σ. Define `′ ≥ 0 as the
number of σ’s in the prefix (and `−`′ is the number of σ+’s). If `′ = `, we append the tuple (σ,= `)
to r(Ri). Otherwise, we append the tuple (σ,≥ `) to r(Ri). We then delete the prefix and repeat
until R′i has length 0.

Backurs and Indyk observed the following for matching T and R+
i for an Ri of type ◦+: If the

first and last character of Ri are distinct, then T matches R+
i iff the following two things hold:

1. |r(Ri)| divides |r(T )|.

2. For every j = 0, . . . , |r(T )| − 1, if (σ, `) denotes the j’th tuple of r(T ), we must have that the
(jmod |r(Ri)|)’th tuple of r(Ri) (counting from 0) is either of the form (σ,= `) or (σ,≥ `′)
for some `′ ≤ `.

The case where the first and last character of Ri are the same can be efficiently reduced to the
case of distinct characters. We argue how at the end of this section and now proceed under the
assumption that each Ri has distinct first and last character.

Compared to the + ◦ +-case solved by Backurs and Indyk, we need to additionally handle an
outer |. Our solution for |+◦| hints at how: We start by partitioning the Ri’s into groups such that
all Ri’s with the same value of |r(Ri)| are placed in the same group. This can easily be done in
O(m) time. As argued in Section 5.1, there are at most 2O(lgn/ lg lgn) groups we need to care about,
as property 1 above implies that |r(Ri)| must divide |r(T )| for T to possibly match R+

i .
For a length s dividing |r(T )|, we check T against all the R+

i ’s with |r(Ri)| = s as follows: First
let (σj , `j) denote the j’th tuple in r(T ) for j = 0, . . . , |r(T )| − 1. If there are two tuples (σj , `j)
and (σh, `h) with σj 6= σh and jmod s = hmod s, we can conclude that T cannot possible match
R+
i for any Ri in the group (due to property 2 above). If this is not the case, assume for now that

we have somehow computed the following values αsj and β
s
j for j = 0, . . . , s− 1:

αsj :=
|r(T )|/s−1

min
h=0

`hs+j .

βsj :=
|r(T )|/s−1

max
h=0

`hs+j .

Also, let σj ∈ Σ denote the character such that σh = σj for all h satisfying hmod s = j.
We then test T against each R+

i as follows: For j = 0, . . . , s−1, consider the j’th tuple in r(Ri).
We have two cases:

a If the j’th tuple is of the form (µ,= `), we check whether µ = σj . If not, we conclude that T and
R+
i cannot match. Otherwise, we check whether αsj = βsj = `. If not, we also conclude that T

and R+
i cannot match.

b If the j’th tuple is of the form (µ,≥ `), we check whether µ = σj . If not, we conclude that T
and R+

i cannot match. Otherwise, we check whether ` ≤ αsj . If not, we conclude that T and R+
i

cannot match.

It follows from property 2 above that T and R+
i do not match if and only if the above procedure

concludes that they do not match.
Assuming the availability of αsj and βsj , testing T against an R+

i thus takes time O(|r(Ri)|).
Summing over all Ri, this is O(m) in total. Thus we only need an efficient algorithm for computing
the αsj ’s and βsj ’s. We could compute them in O(n) time per divisor s, resulting in an algorithm
with running time n2O(lgn/ lg lgn) + O(m) as in Section 5.1. However, for this problem we can do
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better. To compute the αsj ’s and βsj ’s for all divisors s of |r(T )|, we start by forming a tree over
all the divisors of |r(T )|. This tree is formed by first computing all 2O(lgn/ lg lgn) divisors of |r(T )|
in O(n) time. For each divisor s, we compute a prime factorization of s in time O(s). We let
the divisor |r(T )| be the root of the tree, and each divisor s < |r(T )| is assigned as a child of
the smallest divisor t of |r(T )| such that s divides t. Note that the smallest such divisor t can be
found in O(lg n/ lg lg n) time from the prime factorization of |r(T )| and s (simply multiply s by the
smallest prime that occurs more times in the factorization of |r(T )| than in s and note that |r(T )|
has at most O(lg n/ lg lg n) distinct prime factors). We compute the values αsj and β

s
j for all s by a

top-down sweep of the constructed tree. We start at the root divisor |r(T )| where we compute the
α
|r(T )|
j ’s and β|r(T )|j ’s trivially in O(n) time. When processing a divisor s, let t be its parent and let
p be the prime such that p = t/s. We observe that

αsj =
|r(T )|/s−1

min
h=0

`hs+j =
p−1
min
q=0

|r(T )|/t−1
min
h=0

`ht+qs+j =
p−1
min
q=0

αtqs+j

and
βtj =

p−1
max
q=0

βtqs+j .

Thus for a fixed s, we can compute all these values in time O(sp) = O(t) given access to the αtj ’s
where t is the parent of s. Now each node of the tree has at most O(lg n/ lg lgn) children, as this is
the maximum number of distinct prime factors of an integer no greater than n. We thus conclude
that the total time for computing all the αsj ’s over all the divisors s is at most O(lg n/ lg lg n) ·∑

s:s divides |r(T )| s. The sum over all divisors of an integer n is known to be O(n lg lg n) [11], so we
conclude that the total time for computing the αsj ’s and β

s
j ’s is O(n lg n) = Õ(n).

Note that we also need to compute for each divisor s of |r(T )| if there are two distinct characters
σj 6= σh in tuples (σj , `j) and (σh, `h) with jmod s = hmod s. If this was the case, we knew that
T couldn’t possibly match any of the R+

i ’s with |r(Ri)| = s. Observing that if s divides t and we
know that two such characters exist for the divisor t, then this is also the case for s. Thus as for
the αsj ’s and βsj ’s, we can compute this for all divisors using a top-down sweep of the tree in time
O(n lg n). We conclude that our algorithm runs in time O(n lg n+m) = Õ(n) +O(m).

Handling Identical First and Last Characters. Given an input where some of the Ri’s start
and end with the same character, we extract all these Ri’s. For each Ri, we first check if Ri and
T both end and start with the same character. If not, we conclude that T cannot possible match
R+
i and thus we can discard Ri. Next, if all characters of Ri are the same (|r(Ri)| = 1), testing it

against T is trivial (we can precompute whether T has only one character, and thus we can test for
matching in O(|Ri|) time for each such Ri).

The remaining Ri’s start and end with the same character as T . Let r(Ri) be the run-length
encoding of Ri and let r(T ) be the run-length encoding of T . We check whether the last tuple of T
can possible match the last tuple of r(Ri): If (σ, `) is the last tuple of T , we check whether the last
tuple of r(Ri) is either (σ,= `) or (σ,≥ `′) for an `′ ≤ `. If not, we can discard Ri. We make the
same test with the first tuple of r(Ri) and r(T ).

We now “rotate” the text and the remaining patterns Ri as follows: Let σ be the first and last
character of T and all the remaining Ri’s. We take all occurrences of σ at the end of T and move
them to the front (think of it as a cyclic rotation of T ). We do the same thing with the Ri’s, i.e.
take all occurrences of σ and σ+ at the end of Ri and move to the front. The observation is that
the “rotated” T matches a “rotated” remaining pattern Ri iff they matched before the rotation.
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Moreover, T and all the Ri’s now start with σ and end with something else. Thus we have reduced
to the case of distinct first and last characters. The reduction took time O(n+m).

Sub-types. Type + ◦+ corresponds to the case of only one Ri. As this means there is only one
size s = |r(Ri)|, we can compute the αsj and βsj values directly in O(n) time, giving total time
O(n+m). Type | ◦+ is solved by first discarding all Ri where |r(Ri)| 6= |r(T )| (assuming we have
already reduced to the case of distinct first and last symbols). This similarly leaves just one divisor
of |r(T )| to compute αsj and β

s
j values for and thus the running time improves to O(n+m). Type

|+ + is trivial. Type |+ ◦ corresponds to the case where there are no tuples (σ,≥ `) in any r(Ri)
(i.e. all tuples are of the form (σ,= `)). We thus get Õ(n) +O(m) for this case by using the above
algorithm. Using the more directly taylored algorithm of Backurs and Indyk [4], this can be reduced
to O(n+m).

The only length two types not covered by the algorithm in Section 5.1 are ++ and ◦+. Type
++ is trivial. Type ◦+ is the type | ◦+ with just one set Ri. It is thus solved in time O(n+m) by
the above algorithm.

6 SETH-Based Lower Bounds

In this section we prove SETH-based lower bounds for t-membership for types +| ◦ +, +| ◦ |, and
|+ |◦.

All three proofs are reductions from Orthogonal Vectors and follow the same overall approach.
Let A,B be two sets of input vectors for the Orthogonal Vectors problem of size n andm respectively.
Each reduction makes the set of vectors A into a string and the set of vectors B into a regular
expression of the considered type, such that the string constructed from A matches the regular
expression constructed from B iff the Orthogonal Vectors instance has an orthogonal pair of vectors.

The idea is to create a regular expression for each vector b ∈ B that is matched by strings
that encode vectors that are orthogonal to b. The string for the vectors in A are concatenated
together in such a way that the regular expression can test for each vector in B, if any vector in A is
orthogonal to it. The OR of these checks is implemented in the the string and regular expression by
the offset construction described in the k-Clique reduction in Section 3. The offset construction is
implemented with the regular expression +| that is a part of all three considered regular expression
types. As mentioned earlier the +| type can implement a dictionary of regular expression to match
against. The | allows to pick a regular expression from the dictionary (subtree) for the input string
to match, and the + allows doing that the repeatedly, matching substrings from the input string
to dictionary elements from left to right. The dictionary we construct contains for each b ∈ B a
regular expression that is matched only by orthogonal vectors and then regular expressions for the
offset construction.

We directly apply the notation from the reduction in Section 3 as needed.

Theorem 8. +| ◦ |-membership takes time (nm)1−o(1) unless SETH fails.

Proof. The string T (A) is constructed as

T (A) = ◦a∈A[µa$µ]
(0)
α,β ◦ µµ

using the α, β encoding as defined Section 3. This is the concatenation of all vectors in A with α, β
surrounding each bit symbol, µ, $µ symbols around each encoded vector, and finally two µ symbols
at the end of the string.
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The regular expression must be of the form (p1|p2| . . . |pt)+ where each pi is of type ◦| and these
we construct the following way. Let c(1) = 0, c(0) = 0|1 encode simple regular expressions, and
note that c(1) is matched only by 0 while c(0) is matched by both 0 and 1. For each b ∈ B define
C(b) = ◦di=1c(b[i]), the concatenation of the c−encoding of the bits in the vector. By construction,
a vector a ∈ A is orthogonal to the vector b ∈ B iff a read as a string matches the regular expression
C(b). Note that C(b) is of the required form ◦|.

The full list L = p1, . . . , pt of patterns is defined as follows. First, the regular expressions for
checking orthogonality (notice the different offsets compared to the encoding of A as a string)

[C(b)]
(1)
α,β, ∀b ∈ B

Next, add regular expressions that allows skipping a prefix of the A vectors in the string T (A)
before matching an orthogonal vectors pair, and the patterns that allows skipping vectors in the
string T (A) after an orthogonal vectors pair has occured:

ασβ and βασ for σ ∈ {0, 1, $, µ}.

Then, we need the regular expressions for controlling the offset which are

αµβα, $βαµ, βµµ,

the regular expression that must be used before the start of an orthogonal vectors match, the regular
expression for changing offset after a succesfull orthogonal vectors match, and finally the regular
expression that allows finishing the string match if an orthogonal vector match regular expression
has been succesfully used. Note that all the regular expressions for implementing the offset are
concatenation of symbols (leafs) and thus off the right form. The final regular expression becomes
R(B) = (|`∈L`)+.

This finishes the reduction. There is a pair of orthogonal vectors a ∈ A, b ∈ B iff the string
T (A) matches the regular expression R(B). The proof of that is essentially the K-clique proof for
Word-Break from Section 3 and is omitted. The string T (A) has size O(nd) and and the regular
expression R(B) has size O(md) and the total construction time is linear O(d(n+m)). Thus, any
algorithm for +|◦|-membership that runs in time f(n,m) gives an algorithm for Orthogonal Vectors
that runs in time O(d(n+m) + f(dn, dm)). In particular any algorithm for +| ◦ | membership that
runs in O((nm)1−ε) time for any ε > 0 gives an algorithm for Orthogonal Vectors that runs in time
O((nd)2−2ε) = O(n2−2εpoly(d)) contradicting Conjecture 3.

Theorem 9. +| ◦+-membership takes time (nm)1−o(1) unless SETH fails.

Proof. This reduction is very similar to the reduction above, the only difference is how the ortogo-
nality check is encoded in the regular expressions now using ◦+ instead of ◦|. This is achieved as
follows.

For each vector a ∈ A construct a string where each zero bit is replaced with t(0) = 001, and
each one bit is replaced with t(1) = 01. Let c(0) = 0+1, c(1) = 01 and for each b ∈ B, define
C(b) = ◦di=1c(b[i]). An encoded zero in b is matched by both t(0) and t(1), an encoded one is
matched only by t(0), and each may only be matched by the encoding of one bit from the string.
Thus, a vector a is orthogonal to a vector b iff the string encoding of vector a matches the regular
expression C(b).

The remaining part of the reduction is identical to above and Theorem 9 follows.
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Theorem 10. |+ |◦-membership takes time (nm)1−o(1) unless SETH fails.

Proof. The regular expression we consider is now of the form (p1| . . . |pm). In this reduction we
construct regular expressions pi that is matched by the string constructed from the vectors in A
iff the i’th vector in B is orthogonal to a vector in A. The outer | functions acts as an OR, the
following +| allows the offset implementation as above, and finally the concatenation operator ◦ is
used to create regular expression that implements orthogonality checking.

The orthogonality checks for vectors inA,B are constructed as follows. For each a = (a[1], . . . , a[d])
we encode the position in the vector for each bit into a string as follows:

t(a) = #1a[1] . . .#da[d],

where #[1−d] are d unique symbols.
The string T (A) is defined as

T (A) = ◦a∈A[µt(a)$µ]
(0)
α,β ◦ µµ

the concatenation of the encoding of each vector in A, again encoded for the offset construction.
The regular expression for each b ∈ B is constructed by making a list L of regular expressions of

the from |◦ which is then used to make the regular expression R(b) = (|p∈Lp)+. The list L for b is
defined as follows. For each bit b[i], we add the regular expression #i0 to L and if b[i] is equal to zero
we also add the regular expression #i1. Denote that list of expressions Lb. Then by construction
vectors a and b are orthgonal if and only if t(a) matches the regular expression (|p∈Lbip)

+.
To finalize the construction, we replace the regular expressions in Lbi with their α, β encodings

and add the offset regular expression exactly as above to get L. This construction is used for each
input vector b ∈ B, and combined with | to get the regular expression for R(B) = (|b∈BR(b)).

The correctness arguments remain the same. The string T (A) only matches the regular expres-
sion R(b) if there is a vector a ∈ A that is orthogonal to b. The top level | for the regular expression
then allows to pick any b that is orthogonal to a vector in A. Thus, if there is a pair of orthogonal
vectors a ∈ A, b ∈ B the string T (A) matches the regular expression R(b), and thus the regular
expression for B. If there is no orthogonal pair of vectors in A,B then no R(b) is matched by A,
and thus the regular expression for B, the union of them, is not matched by A.

The reduction constructs a string linear in the size of A, and a regular expression linear in the
size of B in total time linear in the size of A and B. Thus, for the same reasons as above, Theorem
10 follows

7 Dichotomy

In this section we prove Theorem 5, i.e., we show that the remaining results in this paper yield a
complete dichotomy.

We first provide a proof of Lemma 1.

Proof of Lemma 1. Let t ∈ {◦, |, ?,+}∗ and let R be a homogeneous regular expression of type t. For
each claimed simplification rule (from t to some type t′) we show that there is an easy transformation
of R into a regular expression R′ which is homogeneous of type t′ and describes the same language
as R (except for rule 3, where the language is slightly changed by removing the empty string).
This transformation can be performed in linear time. Together with a similar transformation in the
opposite direction, this yields an equivalence of t-membership and t′-membership under linear-time
reductions.

19



(1) Suppose that t contains a substring pp, say ti = ti+1 = p ∈ {◦, |, ?,+}, and denote by t′

the simplified type, resulting from t by deleting the entry ti+1. In R, for any node on level i put a
direct edge to any descendant in level i + 2 and then delete all internal nodes in level i + 1. This
yields a regular expression R′ of type t′. For any p ∈ {◦, |, ?,+} it is easy to see that both regular
expressions descibe the same language. In particular, this follows from the facts (E?)? = E? for
any regular expression E (and similarly for +) and (E1,1 ◦ . . . ◦E1,k(1)) ◦ . . . ◦ (E`,1 ◦ . . . ◦E`,k(`)) =
E1,1 ◦ . . . ◦E1,k(1) ◦ . . . ◦E`,1 ◦ . . . ◦E`,k(`) for any regular expressions Ei,j (and similarly for |). This
yields a linear-time reduction from t-membership to t′-membership. For the opposite direction, if
the i-th layer is labeled p then we may introduce a new layer between i − 1 and i containing only
degree 1 nodes, labelled by p. This means we replace E? by (E?)?, and similarly for +. For ◦ and
| the degree 1 vertices are not visible in the written form of regular expressions2.

(2) For any regular expressions E1, . . . , Ek, the expression
(
(E+

1 )| . . . |(E+
k )
)+ describes the same

language as
(
E1| . . . |Ek

)+. Indeed, any string described by the former expression can be written as
a concatenation of some number of strings in the union over all languages described by E1, . . . , Ek,
which is exactly the language described by the latter expression. Thus, the inner +-operation is
redundant and can be removed. Specifically, for a homogeneous regular expression of type t with
ti, ti+1, ti+2 = +|+ we may contract all edges between layer i+ 1 and i+ 2 to obtain a homogeneous
regular expression R′ of type t′ describing the same language as R. This yields a linear-time
reduction from t-membership to t′-membership. For the opposite direction, we may introduce a
redundant +-layer below any +|-layers without changing the language.

(3) Note that for any regular expression E we can check in linear time whether it describes
the empty string, by a simple recursive algorithm: No leaf describes the empty string. Any ?-
node describes the empty string. A +-node describes the empty string if its child does so. A |-node
describes the empty string if at least one of its children does so. A ◦-node describes the empty string
if all of its children do so. Perform this recursive algorithm to decide whether the root describes
the empty string.

Now suppose that t has prefix r? for some r ∈ {+, |}∗, and denote by t′ the type where we
replaced the prefix r? by r+. (Note that we could restrict our attention to the case where r is a
subsequence of |+ |, since otherwise rules 1 or 2 apply.) Let R be homogeneous of type t, and s a
string for which we want to decide whether it is described by R. If s is the empty string, then as
described above we can solve the instance in linear time. Otherwise, we adapt R by labeling any

2This is the only place where we need to use degree 1 vertices; all other proofs in this paper also work with the
additional requirement that each |- or ◦-node has degree at least 2 (cf. footnote 1 on page 4). Note that for our
construction here in Lemma 1 it is essential to use degree 1 nodes: Two levels of ◦-nodes with each node having
degree at least 2 have at least 4 children, so it seems to be impossible to embed a regular expression of the shorter
type (where the degree could be 2 or 3) into a regular expression of the longer type (where the combined degree is at
least 4). For |-nodes, there is an easy trick by adding dummy leaves that are labeled by fresh symbols not appearing
in the input string s, cf. footnote 3 on page 21. For ◦-nodes, we are not aware of any similar trick.
An option to still make our proofs work is to consider homogeneous regular expressions of type t where each ◦-

or |-node has degree at least d, giving rise to the (t, d)-membership problem. Then (t, d)-membership has the same
complexity as the problem t-membership studied in this paper, irrespective of the (constant) value of d. To show
this, for each reduction rule from t-membership to t′-membership of Lemmas 1 and 6 one can easily establish a
similar reduction from (t, d)-membership to (t′, d′)-membership for some d′ ≥ 2 depending only on t, t′, d. Moreover,
since (t, d)-membership is a special case of (t, d′)-membership for any d ≥ d′, it suffices that we prove all algorithmic
results for (t, 2)-membership, and all negative results for (t, d)-membership for any constant d ≥ 2 to show that the
complexity of (t, d)-membership does not depend on d. As our algorithms even work for degree 1 nodes, the former
is satisfied. For the latter, it suffices to observe that in the direct hardness proofs of Backurs and Indyk [4] and our
Theorems 8–10, all degrees grow with the input size, and thus any constant lower bound does not break the reduction.
This is a viable option for proving our results in the more restricted setting with degrees at least two, but we think
that it would obscure the overall point of the paper.
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internal node in layer |r|+ 1 by +, obtaining a homogeneous regular expression R′ of type t′. Then
R describes s if and only R′ describes s. Indeed, since ? allows more strings than +, R describes a
superset of R′. Moreover, if R describes s, then we trace the definitions of | and + as follows. We
initialize node v as the root and string x as s. If the current vertex v is labelled |, then the language
of v is the union over the children’s languages, so the current string x is contained in the language
of at least one child v′, and we recursively trace (v′, x). If v is labelled +, then we can write x as a
concatenation x1 . . . xk for some k ≥ 1 and all xi in the language of the child v′ of v. Note that we
may remove all x` which equal the empty string. For each remaining x` we trace (v′, x`). Running
this traceback procedure until layer |r| + 1 yields trace calls (vi, xi) such that vi describes xi for
all i, and the xi partition s. Since by construction each xi is non-empty, xi is still in the language
of vi if we relabel vi by +. This shows that s is also described by R′, where we relabeled each node
in layer |r|+ 1 by +.

Finally, applying these rules eventually leads to an unsimplifiable type, since rules 1 and 2 reduce
the length of the type and rule 3 reduces the number of ?-operations. Thus, each rule reduces the
sum of these two non-negative integers.

Lemma 6. For types t, t′, there is a linear-time reduction from t′-membership to t-membership if
one of the following sufficient conditions holds:

1. t′ is a prefix of t,

2. we may obtain t from the sequence t′ by inserting a | at any position,

3. we may obtain t from the sequence t′ by replacing a ? by +?, or

4. t′ starts with ◦ and we may obtain t from the sequence t′ by prepending a +.

Proof. (1) The definition of “homogeneous with type t” does not restrict the appearance of leafs in
any level. Thus, any homogeneous regular expression of type t′ (i.e., the prefix) can be seen as a
homogeneous regular expression of type t (i.e., the longer string) where all leaves appear in levels
at most |t′|+ 1. This shows that trivially t′-membership is a special case of t-membership.

(2) Let t be obtained from t′ by inserting a | at position i. Consider any homogeneous regular
expression R′ of type t′. Viewed as a tree, in R we subdivide any edge from a node in layer i − 1
to a node in layer i, and mark the newly created nodes by |. This yields a regular expression R of
type t. Since a | with degree 1 is trivial, the language described by R is the same as for R′.3

(3) Let R′ be a homogeneous regular expression of type t′ with t′i = ?. Subdivide any edge in
R′ from a node in layer i− 1 to an internal node in layer i, and label the newly created nodes by +.
This yields a regular expression R of type t. (Note that by this construction any leaf of R′ in layer i
stays a leaf of R in layer i.) Consider any newly created node v with child u. Since u is an internal
node, it is labeled by ? and (its subtree) represents a regular expression E?. The newly created
node v thus represents the regular expression (E?)+. Using the fact (E?)+ = E? for any regular
expression E, it follows that R and R′ describe the same language. Hence, we obtain a linear-time
reduction from t′-membership to t-membership.

(4) Let R′ = E1 ◦ . . . ◦ Ek be a homogeneous regular expression of type t′. Let s′ be the input
string for which we want to know whether it matches R′, and let x be a fresh symbol not occuring
in s′. We construct the expression R := (x ◦ E1 ◦ . . . ◦ Ek ◦ x)+ and the string s := xs′x. Note

3An alternative to using |-nodes of degree 1 is as follows: Let x be a fresh symbol, not occuring in the input string
s′ for which we want to know whether it matches R′. For each newly created node v by the subdivision process, add
a new leaf node `v marked by x and connect it to v. This again yields a regular expression of type t. Since x is a fresh
symbol, the newly added leaves cannot match any symbol in s′, and thus s′ matches R′ if and only if s′ matches R.
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that R is homogeneous of type t. Moreover, there are exactly two occurences of x in s, and thus
s matches R if and only if s′ matches E1 ◦ . . . ◦ Ek = R′. Thus, we obtain a linear-time reduction
from t′-membership to t-membership.

We are now ready to prove the dichotomy theorem for the membership problem.

Proof of Theorem 5. The natural way of enumerating all types yields a tree with vertex set {◦, |, ?,+}∗,
where types t and t′ are connected by an edge if we obtain t from t′ by appending one of the op-
erations ◦, |, ?,+. To keep this tree simple, we directly apply the simplification rule Lemma 1 (1),
i.e., we do not consider types with consecutive equal operations. We split this tree into the three
Figures 1-3 according to the first operation ◦/?,+, |.

In the following we describe these figures. If t-membership is solvable in almost-linear time,
then in the figures we mark the node corresponding to t by the fastest known running time, and we
refer to [4] or our Theorem 4. We remark that most O(n + m) algorithms are immediate, but for
completeness we refer to [4].

If t-membership simplifies, then t-membership is equivalent to t′-membership for some different,
non-simplifying type t′ in the tree. In this case, we mark t by the corresponding simplification
rule of Lemma 1. Note that the simplification rules have the property that if t simplifies then any
descendant of t in the tree also simplifies. Thus, we may ignore the subtree of any simplifying type
t.

If we can show that any algorithm for t-membership takes time (nm)1−o(1) unless SETH fails,
then in the figures we mark t as “hard”. Note that by Lemma 6 (1), if t is hard then any descendant of
t in the tree is also hard. Thus, we may ignore the subtree of t, and we only mark minimal hardness
results. From the results by Backurs and Indyk [4] (Theorem 6) we know that t-membership takes
time (nm)1−o(1) under SETH for the types ◦?, ◦|◦, ◦+◦, ◦|+, and ◦+ |. Our Theorems 8-10 add the
types +| ◦+, +| ◦ |, and |+ |◦. If there is such a direct hardness proof of t-membership, then in the
figures we refer to the corresponding theorem. In all other minimal hard cases, there is a combination
of the reduction rules, Lemma 6 (2–4), resulting in a type t′ such that hardness of t′-membership
follows from Theorem 6 and t′-membership has a linear time reduction to t-membership. In this
case, in the figures we additionally mark the node corresponding to t by t′. E.g., | ◦ |?-membership
contains ◦?-membership as a special case (since by Lemma 6 (2) we may remove any | operations)
and ◦?-membership is hard by Theorem 6, so we mark the node corresponding to | ◦ |? by “hard ◦?”.

It is easy to check that our Figures 1-3 indeed enumerate all cases and thus contain all maximal
algorithmic results and minimal hardness results. The claimed dichotomy of Theorem 5 now follows
by inspecting these figures.
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Figure 1: Tree diagram for t-membership with first operation ◦ or ?. For details see the proof of
Theorem 5.
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A Dichotomy for Pattern Matching

For the regular expression pattern matching problem Backurs and Indyk [4] characterized all types
of length at most 3. In this section, we show that their results in fact imply a complete dichotomy
for all types of any (constant) depth.

Recall that in the pattern matching problem we are given a regular expression R and a string s
and want to decide whether any substring of s is in the language described by R (whereas in the
membership problem we want to know whether the whole string s is in the language of R). For
t-pattern matching, i.e., the natural restriction of pattern matching to regular expressions R that
are homogeneous of type t, Backurs and Indyk established that any algorithm takes time (nm)1−o(1)

(unless SETH fails) for any type t among ◦?, ◦|◦, ◦+ ◦, ◦|+, ◦+ |, | ◦ |, and | ◦+. Positive results
for t-pattern matching date back to the 70ies, since ◦-pattern matching corresponds to standard
string matching, which has a classic linear-time algorithm due to Knuth, Morris, and Pratt [14].
Further special cases with near-linear time algorithms are |◦ (dictionary matching [2]), ◦| (superset
matching [7]), and ◦+ ([4]). An easy observation moreover shows that t-pattern matching is in
linear time whenever t starts with ? or |?.

Lemma 7. For any type t with prefix ? or with prefix |?, t-pattern matching is in linear time.

Proof. In both cases, any homogeneous regular expression R of type t matches the empty string,
and thus the empty substring of any string s is in the language described by R, so that any string
s is a YES-instance – unless all leaves of R are too high, so that there is no internal ?-node. In the
latter case, either the root of R is a leaf, so that the language described by R consists of a single
string of length one, or the root is a |-node all of whose children are leaves, so that the language
described by R is a finite set of strings of length one. In both cases, it is easy to check in linear
time whether (any substring of) a given string s matches R.

For pattern matching, the following two lemmas show similar simplification rules and reduction
rules as for the membership problem (cf. Lemmas 1 and 6).

Lemma 8. For any type t, applying any of the following rules yields a type t′ such that t-pattern
matching and t′-pattern matching are equivalent under linear-time reductions:
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1. replace any substring pp, for some p ∈ {◦, |, ?,+}, by p,

2. remove prefix +,

3. replace prefix |+ by |.

We say that t-pattern matching simplifies if one of these rules applies. Applying these rules in any
order will eventually lead to an unsimplifiable type.

Proof. Rule 1 also holds for the membership problem. The same proof as in Lemma 1 works verbatim
for pattern matching, since we argued that we can turn any homogeneous regular expression R of
type t into one of type t′ without changing its described language, and without looking at the input
string s (and similarly the other way round).

For rule 2, note that string s contains a substring matching regular expression E+ if and only if
it contains a substring matching E. Indeed, the former means that s has a substring s′ = s′1 . . . s

′
k

with each s′i matching E, but then any s′i is a substring of s matching E. The opposite direction
holds since E+ describes a superset of the language of E. Thus, we may remove any prefix +, and
the inverse operation of introducing a redundant prefix + also does not change the problem.

For rule 3, we similarly have that string s contains a substring matching regular expression
E+

1 | . . . |E
+
k if and only if it contains a substring matching E1| . . . |Ek.

Lemma 9. For types t, t′, there is a linear-time reduction from t′-membership to t-membership if
one of the following sufficient conditions holds:

1. t′ is a prefix of t,

2. we may obtain t from the sequence t′ by replacing a ? by +?, or

3. we may obtain t from the sequence t′ by inserting a | at any position.

Proof. The proof of Lemma 6 works verbatim.

We are now ready to prove the following dichotomy.

Theorem 11. For any t ∈ {◦, |, ?,+}∗ one of the following holds:

• t-pattern matching simplifies,

• t has prefix ? or |? and thus t-pattern matching is in linear time (Lemma 7),

• t is a subsequence of |◦ (dictionary matching [2]), ◦| (superset matching [7]), or ◦+ ([4]), and
thus t-membership is in near-linear time, or

• t-membership takes time (nm)1−o(1), assuming SETH.

Proof. All algorithmic results and minimal hardness results were known before, we just show that
the known results are sufficient to completely characterize all types of any (constant) depth. The
proof is similar to the one of Theorem 5. Again we consider a tree containing all types not containing
two consecutive equal operations (i.e., not simplifiable by Lemma 8.1), see Figure 4.

When one of the simplification rules of Lemma 8 applies to t, then t-pattern matching is equiv-
alent to t′-pattern matching for some different, unsimplifiable t′ in the tree. Since the same sim-
plification rule also applies to all descendants of t in the tree, we can ignore the whole subtree
of t.
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For the subtrees starting with ? or |? we know that t-pattern matching is in linear time for each
type t by Lemma 7.

For any other type t with a near-linear time algorithm, in the figure we annotate the correspond-
ing node by the fastest known asymptotic running time.

Finally, when there is a SETH-based lower bound for t-pattern matching then the same lower
bound also holds for all descendants of t in the tree (by Lemma 9.1), so we have characterized the
whole subtree of t. When hardness directly follows from one of the reductions in [4] then we simply
mark t as “hard”. When we first have to use one of the reductions in Lemma 9 to reduce from a hard
type t′ of [4], then in the figure we annotate t by “hard t′” as well as the corresponding reduction
rule.

It is easy to check that our Figure 4 indeed enumerates all cases and thus contains all maximal
algorithmic results and minimal hardness results. The claimed dichotomy of Theorem 11 now follows
by inspecting the figure.
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Figure 4: Tree diagram for t-pattern matching. For details see the proof of Theorem 11.
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