
How to prove knowledge of small secrets

Carsten Baum?, Ivan Damg̊ard?, Kasper Green Larsen??, and Michael Nielsen?

Department of Computer Science, Aarhus University
{cbaum,ivan,larsen,mik}@cs.au.dk

Abstract. We propose a new zero-knowledge protocol applicable to ad-
ditively homomorphic functions that map integer vectors to an Abelian
group. The protocol demonstrates knowledge of a short preimage and
achieves amortised efficiency comparable to the approach of Cramer and
Damg̊ard from Crypto 2010, but gives a much tighter bound on what
we can extract from a dishonest prover. Towards achieving this result,
we develop an analysis for bins-and-balls games that might be of in-
dependent interest. We also provide a general analysis of rewinding of
a cut-and-choose protocol as well as a method to use Lyubachevsky’s
rejection sampling technique efficiently in an interactive protocol when
many proofs are given simultaneously.
Our new protocol yields improved proofs of plaintext knowledge for
(Ring-)LWE-based cryptosystems, where such general techniques were
not known before. Moreover, they can be extended to prove preimages
of homomorphic hash functions as well.

Keywords: Proofs of Plaintext Knowledge, Lattice-based Encryption, Homo-
morphic Hashing, Integer Commitments

1 Introduction

Proofs of Knowledge In a zero-knowledge protocol, a prover convinces a
sceptical verifier that some claim is true (and in some cases that he knows a
proof) while conveying no other knowledge than the fact that the claim is true.
Zero-knowledge protocols are one of the most fundamental tools in cryptographic
protocol design. In particular, one needs zero-knowledge proofs of knowledge in
multiparty computation to have a player demonstrate that he knows the input
he is providing. This is necessary to be able to show (UC-)security of a protocol.

? Supported by The Danish National Research Foundation and The National Science
Foundation of China (under the grant 61061130540) for the Sino-Danish Center for
the Theory of Interactive Computation, within which part of this work was per-
formed; by the CFEM research center (supported by the Danish Strategic Research
Council) within which part of this work was performed; and by the Advanced ERC
grant MPCPRO.

?? Supported by the Center for Massive Data Algorithmics, a Center of the Danish
National Research Foundation, grant DNRF84, a Villum Young Investigator Grant
and an AUFF Starting Grant.

In this work, we will consider one-way functions f : Zr 7→ G where G is an
Abelian group (written additively in the following), and where furthermore the
function is additively homormorphic, i.e., f(a)+f(b) = f(a+b). We will call such
functions ivOWF ’s (for homomorphic One-Way Functions over Integer Vectors).
This turns out to be a very general notion: the encryption function of several
(Ring-)LWE-based cryptosystems can be seen an ivOWF (such as the one in-
troduced in [BGV12] and used in the so-called SPDZ protocol [DPSZ12]). Even
more generally, the encryption function of any semi-homomorphic cryptosystem
as defined in [BDOZ11] is an ivOWF. Also, in commitment schemes for com-
mitting to integer values, the function one evaluates to commit is typically an
ivOWF (see, e.g., [DF02]). Finally, hash functions based on lattice problems such
as [GGH96,LMPR08], where it is hard to find a short preimage, are ivOWFs.
We will look at the scenario where a prover P and a verifier V are given y ∈ G
and P holds a short preimage x of y, i.e., such that ||x|| ≤ β for some β.
P wants to prove in zero-knowledge that he knows such an x. When f is an
encryption function and y is a ciphertext, this can be used to demonstrate that
the ciphertext decrypts and P knows the plaintext. When f is a commitment
function this can be used to show that one has committed to a number in a
certain interval.
An obvious but inefficient solution is the following 3-message protocol π:

(1) P chooses r at random such that ||r|| ≤ τ · β for some sufficiently large τ ,
the choice of which we return to below.

(2) P then sends a = f(r) to V.
(3) V sends a random challenge bit b.
(4) P responds with z = r + b · x.
(5) V checks that f(z) = a+ b · y and that ||z|| ≤ τ · β.

If τ is sufficiently large, the distribution of z will be statistically independent of
x, and the protocol will be honest verifier statistical zero-knowledge1. On the
other hand, we can extract a preimage of y from a cheating prover who can
produce correct answers z0, z1 to b = 0, b = 1, namely f(z1 − z0) = y. Clearly,
we have ||z1−z0|| ≤ 2 ·τ ·β. We will refer to the factor 2τ as the soundness slack
of the protocol, because it measures the discrepancy between the interval used
by the honest prover and what we can force a dishonest prover to do. The value
of the soundness slack is important: if f is, e.g., an encryption function, then a
large soundness slack will force us to use larger parameters for the underlying
cryptosystem to ensure that the ciphertext decrypts even if the input is in the
larger interval, and this will cost us in efficiency.
The naive protocol above requires an exponentially large slack to get zero-
knowledge, but using Lyubachevsky’s rejection sampling technique, the sound-
ness slack can made polynomial or even constant (at least in the random oracle
model).

1 We will only be interested in honest verifier zero-knowledge here. In applications one
would get security for malicious verifiers by generating the challenge in a trusted way,
e.g., using a maliciously sure coin-flip protocol.

The obvious problem with the naive solution is that one needs to repeat the
protocol k times where k is the statistical security parameter, to get soundness
error probability 2−k. This means that one needs to generate Ω(k) auxiliary
f -values. We will refer to this as the overhead of the protocol and use it as a
measure of efficiency.
One wants, of course as small overhead and soundness slack as possible, but
as long as we only want to give a proof for a single f -value, we do not know
how to reduce the overhead dramatically in general. But if instead we want to
give a proof for k or more f -values, then we know how to reduce the amortised
overhead: Cramer and Damg̊ard [CD09] show how to get amortised overhead
O(1), but unfortunately the soundness slack is 2Ω(k), even if rejection sampling
is used. In [DKL+13] two protocols were suggested, where one is only covertly
secure, and we will not consider it here as our goal is full malicious security. The
other one can achieve polynomial soundness slack with overhead Ω(log(k)2) and
works only in the random oracle model2.

1.1 Contributions & Techniques

In this work, we introduce a new paradigm for zero-knowledge proof of knowledge
of preimage under an ivOWF, abbreviated ZKPoKP. For the first time, we are
able to optimize both parameters, namely we obtain quasi-polynomial soundness
slack (proportional to (2k + 1)log(k)/2) and o(1) ciphertext overhead, all results
hold in the standard model (no random oracles are needed).
For our zero-knowledge proof, we use the following high-level strategy:

(1) Use a cut-and-choose style protocol for the inputs y1, . . . , yn.
(2) Repeat the following experiment several times:

(2.1) Let the verifier randomly assign each yi to one of several buckets.
(2.2) For each bucket, add all elements that landed in the bucket and have

the prover demonstrate that he knows a preimage of the sum.

The intuition behind the proof then goes as follows: the first step will ensure that
we can extract almost all of the required n preimages, in fact all but k where
k is the security parameter. In the second step, since we only have k elements
left that were “bad” in the sense that we could not yet extract a preimage,
then if we have more than k buckets, say ck for a constant c > 1, there is a
significant probability that many of the bad elements will be alone in a bucket.
If this happens, we can extract a preimage by linearity of f . Furthermore, the
cost of doing such a step is at most n additions, plus work that only depends
on the security parameter k and is insignificant if n � k. We can now repeat
the experiment some number of times to extract the remaining bad elements,

2 The protocol in [DKL+13] is actually stated as a proof of plaintext knowledge for
random ciphertexts, but generalizes to a protocol for ivOWFs. It actually offers a
tradeoff between soundness slack and overhead in the sense that the overhead is
M · log(k), where M has to be chosen such that (1/s)M is negligible. Thus one can
choose s to be poly(k) and M = log(k), or s to be constant and M = k.

while adjusting the number of buckets carefully. We are then able to prove that
we can extract all preimages quickly, namely after log(k) repetitions, and this is
what give us the small soundness slack. In comparison, in [CD09], the extraction
takes place in Ω(k) stages, which leads to an exponential soundness slack.
Along the way to our main result, we make two technical contributions: first,
we show a general result on what you can extract by rewinding from a prover
that successfully passes a cut-and-choose test. Second, we show a method for
using rejection sampling efficiently in an interactive protocol. In comparison,
the protocol from[DKL+13] also used rejection sampling to reduce the soundness
slack, but in a more simplistic way that leads to a larger overhead. See Section
3.1 for more information on this.
Our protocol is honest verifier zero-knowlegde and is sound in the sense of a
standard proof of knowledge, i.e., we extract the prover’s witness by rewinding.
Nevertheless, the protocol can be readily used as a tool in a bigger protocol that
is intended to be UC secure against malicious adversaries. Such a construction is
already known from [DPSZ12]. See more details in Section 4. Here we also explain
more concretely how to use our protocol when f is an encryption function.

1.2 Related Work

On a high level, our approach is related to Luby Transform (LT) codes [Lub02]:
here, a sender encodes a codeword by splitting it into blocks of equal size and
then sending random sums of these, until the receiver is able to reconstruct
all such blocks (because all sums are formed independently, this yields a so-
called erasure code). We could actually use the LT code approach to construct a
protocol like ours, but it would not be a good solution: LT codes do not have to
consider any noise expansion because they handle vectors over Z2, rather than
integer vectors. This is a problem since in the worst case a block is reconstructed
after n operations, where n is the number of blocks in total, which yields a noise
bound that is exponential.
The same bound can be achieved using the technique due to Cramer & Damg̊ard
[CD09]. The main technique is to prove linear combinations of ciphertexts us-
ing regular 1 out of 2 zero-knowledge proofs. If enough equations are proven
correctly, then one can use gaussian elimination to recompute the plaintexts.
Unfortunately (as with LT codes) this leads to a blowup in the preimage size
that can be exponential, which is not desireable for practical applications.
A different amortization technique was introduced in [DKL+13] and further
improved in the full version of [BDTZ16]. The basic idea here is to produce
a large number of auxiliary ciphertexts, open a part of them and open sums
of the plaintexts to be proven and the plaintexts of the auxiliary ciphertexts.
This experiment is repeated multiple times, and a combinatorial argument as in
[NO09] can then be used to estimate the error probability. As already mentioned
above, this proof technique needs Ω(log(k))2 auxiliary ciphertexts per proven
plaintext, which can be quite substantial for practical applications.
There has been other work conducted for specialized instances of ivOWFs, such
as e.g. the proof of plaintext knowledge from [BCK+14] which only applies to

Ring-LWE schemes3. Moreover the protocol of [LNSW13] can be applied to
ivOWFs with a lattice structure, but the protocol comes with a large soundness
gap per instance.

Notation

Throughout this work we will format vectors such as b in lower-case bold face
letters, whereas matrices such as B will be in upper case. We refer to the ith
position of vector b as b[i], let [r] := {1, ..., r} and define for b ∈ Zr that ||b|| =
maxi∈[r]{|b[i]|}. To sample a variable g uniformly at random from a set G we

use g
$←− G. Throughout this work we will let λ be a computational and k be

a statistical security parameter. Moreover, we use the standard definition for
polynomial and negligible functions and denote those as poly(·), negl(·).

2 Homomorphic OWFs and Zero-Knowledge Proofs

In this section we will present an abstraction that covers as a special case proofs
of plaintext knowledge for lattice-based cryptosystems, and many other cases
as well, as explained in the introduction. We call the abstraction homomorphic
one-way functions over integer vectors. It follows the standard definition of a
OWF which can be found in [KL14].
Let λ ∈ N be the security parameter, G be an Abelian group, β, r ∈ N,
f : Zr → G be a function and A be any algorithm. Consider the following game:

InvertA,f,β(λ):
(1) Choose x ∈ Zr, ||x|| ≤ β and compute y = f(x).
(2) On input (1λ, y) the algorithm A computes an x′.
(3) Output 1 iff f(x′) = y, ||x′|| ≤ β, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)). A
function f : Zr → G is called a homomorphic one-way function over the integers
if the following conditions hold:

(1) There exists a polynomial-time algorithm evalf such that evalf (x) = f(x)
for all x ∈ Zr.

(2) For all x,x′ ∈ Zr it holds that f(x) + f(x′) = f(x+ x′).
(3) For every probabilistic polynomial-time algorithm A there exists a negligible

function negl(λ) such that

Pr[InvertA,f,β(λ) = 1] ≤ negl(λ)

Our definition is rather broad and does capture, among other primitives, lattice-
based encryption schemes such as [BGV12,GSW13,BV14] where the one-way
property is implied by IND-CPA and β is as large as the plaintext space. More-
over it also captures hash functions such as [GGH96,LMPR08], where it is hard
to find a preimage for all sufficiently short vectors that have norm smaller than
β.

3 Their approach only almost yields a proof a plaintext knowledge, due to technical
limitations.

2.1 Proving Knowledge of Preimage

Consider a setting with two parties P and V. P holds some values x1, ...,xn ∈ Zr,
V has some y1, ..., yn ∈ R and P wants to prove towards V that yi = f(xi)
and that xi is short, while not giving any knowledge about the xi away. More
formally, the relation that we want to give a zero-knowledge proof of knowledge
for is

RKSP =

{
(v, w)

∣∣∣∣ v = (y1, ..., yn) ∧ w = (x1, ...,xn)∧

[
yi = f(xi) ∧ ||xi|| ≤ β

]
i∈[n]

}
However, like all other protocols for this type of relation, we will have to live
with a soundness slack τ as explained in the introduction. What this means
more precisely is that there must exist a knowledge extractor with properties
exactly as in the standard definition of knowledge soundness, but the extracted
values only have to satisfy [yi = f(xi) ∧ ||xi|| ≤ τ · β]i∈[n].

3 Proofs of Preimage

We start by constructing an imperfect proof of knowledge. That is, the protocol
will allow to prove the above relation with a certain soundness slack, but the
knowledge extractor is only required to extract almost all preimages. Further-
more, we will use this protocol as a subprotocol in our actual proof of knowledge.
To show knowledge soundness, Goldreich and Bellare [BG93] have shown that it
is sufficient to consider deterministic provers, therefore we only need to consider
deterministic provers when proving the subprotocol.

On the use of rejection sampling. Conceptually, the idea is to run the naive
3-message protocol π from the intro once for each of the n instances to prove.
However, in order to have a small soundness slack, we want to make use of of
Lyubashevsky’s rejection sampling technique [Lyu08,Lyu09]. The idea here is
that the prover will sometimes abort the protocol after seeing the challenge if
he notices that the random choices he made in the first message will lead him to
reveal information about his witness if he were to send the final message. This
is fine when used with the Fiat-Shamir heuristic because the prover only has to
communicate the successful execution(s). But in our interactive situation, one
has to allow for enough failed attempts so that the honest prover will succeed.
The most straightforward idea is to have the prover start up one execution of π
in parallel for each instance, complete those that are successful and try again for
the rest (this was essentially the approach taken in [DKL+13]). The expected
number of attempts needed is constant, so we get a protocol that is expected
constant round, but may sometimes run for a longer time. Alternatively, the
prover could start so many attempts in parallel for each instance that he is sure

to finish one of them. This will be exact constant round but wasteful in terms
of work needed.
Here, we obtain the best of both worlds. The idea is the following: we can make
a large list L of T candidates for the prover’s first message, and then do standard
cut-and-choose where we open half of them to show that most of the remaining
ones are correctly formed. Now, for every instance to prove, the prover will take
the first unused one from L that leads to success and complete the protocol for
that one. Again, since the expected number of attempts for one instance is very
close to 1, and we run over many instances, L only needs to be of length O(n),
the prover will run out of candidates only with negligible probability. Further,
since this can all be done in parallel, we get an exact constant round protocol.

On extraction by rewinding from cut-and-choose. When we need to extract
knowledge from the prover in the imperfect proof, we need to exploit the fact
that we do cut-and-choose on the list of candidates L as mentioned above, where
each candidate is an image under f . If we just wanted to establish that most of
the candidates are well formed in the sense that they are images of short enough
inputs, it would be easy: if each candidate is opened with probability 1/2, then
if more than k candidates are not well formed, the prover clearly survives with
probability at most 2−k. However, we have to actually extract preimages of al-
most all candidates. Since we want to avoid using random oracles or other set-up
assumptions, we can only resort to rewinding. Now it is not so clear what hap-
pens: it may be that all candidates are well formed, but the corrupt prover has
some (unknown to us) strategy for which challenges he wants to respond to cor-
rectly. All we know is that he will answer a non-negligible fraction of them. We
show that nevertheless, there is a rewinding strategy that will do almost as well
as in the easy case, and we treat this in a separate general lemma, as we believe
the solution to this is of independent interest.
To establish this general point of view, consider any polynomial time computable
function g : X 7→ Y and a generic protocol between a prover P and a verifier V
we call PCutnChoose that works as follows:

(1) P chooses x1, ..., xT ∈ X such that all xi satisfy some predicate pre, we say
xi is good if it satisfies pre.

(2) P sets yi = g(xi) for all i and sends y1, ..., yT to V.
(3) V chooses s ∈ {0, 1}T uniformly at random and sends it P.
(4) P returns {xi | s[i] = 0} and V accepts if yi = g(xi) whenever s[i] = 0 and

each such xi is good.

Lemma 1 (Cut-and-choose rewinding lemma). There exists an extractor
E such that the following holds: for any (deterministic) prover P̂ that makes the
verifier in PCutnChoose accept with probability p > 2−k+1, where T is polynomial
in k, E can extract from P̂ at least T − k good xi-values such that g(xi) = yi. E
runs in expected time proportional to O(poly(s) ·k2/p), where s is the size of the
inputs.

Proof. Let P̂ be a deterministic prover that makes V accept in PCutnChoose with
probability p > 2−k+1. Consider the following algorithm E :

(1) Start P̂, who in turn outputs y1, ..., yT .
(2) Run T instances of P̂ in parallel, which we denote P̂1, ..., P̂T .
(3) Let A = ∅ and do the following until |A| ≥ T − k:

(3.1) For each P̂i sample a random challenge si
$←− {0, 1}T , subject to si[i] = 0

and run each P̂i on challenge si.
(3.2) For each instance P̂i that does not abort, check that the prover’s response

contains xi such that f(xi) = yi. If so, then A = A ∪ {xi}.
(4) Output A.

We will now show that E runs in the required time. Denote the probability that
P̂i outputs a good xi in step (3) as pi. We will say that pi is bad if pi < p/k,
and good otherwise.
Let Xi be the event that P̂i eventually outputs a good xi, where Xi = 1 if the
event happened or Xi = 0 otherwise. If pi is good then, after α iterations

Pr[Xi = 0] = (1− p/k)α ≤ e−p/k·α

so after at most α = k2/p iterations we can expect that xi was extracted except
with probability negligible in k. This can then be generalized to the success of
all P̂i (where pi is good) by a union bound, and the probability of failing is still
negligible because T is polynomial in k. Since the experiment of running k2/p
iterations produces success for all good pi with probability essentially 1, the
expected number of times we would need to repeat it to get success is certainly
not more than 2, so the claimed expected run time follows, provided there are
less than k bad pi.
Hence, for the sake of contradiction, assume that there are k bad pi which, for
simplicity, are p1, ..., pk. In the protocol, the challenge s is chosen uniformly at
random. The success probability of P̂ can be conditioned on the value of s[1] as

p = Pr[P̂ succeeds] = 1/2 · p1 + 1/2 · Pr[P̂ succeeds | s[1] = 1]

since p1 is only of our concern if s[1] = 0. Conditioning additionally on s[2]
yields

p ≤ 1/2 · p1 + 1/2 · (1/2 · 2 · p2 + 1/2 · Pr[P̂ succeeds | s[1] = 1 ∧ s[2] = 1])

= 1/2 · (p1 + p2) + 1/4 · Pr[P̂ succeeds | s[1] = 1 ∧ s[2] = 1]

The reason the inequality holds is as follows: the probability that a random
challenge asking to open a2 will yield a preimage of a2 is p2. Now, conditioning
on s[1] = 1, which occurs with probability 1/2, will increase that probability
from p2 to at most 2p2.
Repeating the above argument generalizes to

p = Pr[P̂ succeeds] ≤ 1/2 · (p1 + ...+ pk) +

2−k · Pr[P̂ succeeds | s[1] = 1 ∧ ... ∧ s[k] = 1]

< 1/2 · p+ 2−k

which follows since the first k pi were bad. But this last inequality implies p <
2−k+1, and this contradicts the assumption we started from, that p > 2−k+1. ut

3.1 The Imperfect Proof of Knowledge

We assume the existence of an auxiliary commitment scheme Caux that is com-
putationally hiding and perfectly binding, and which allows to commit to values
from the group G that f maps into. The reason we need it is quite subtle and will
show up in the proof of security of PImperfectProof. We will denote a commitment
using Caux to a value x ∈ G as Caux(x).

Procedure PImperfectProof

Let f be an ivOWF and Caux be a commitment scheme over G. P inputs w to the
procedure and V inputs v.

innerProof(v, w, T, τ, β) :

(1) Let v = (y1, ..., yn), w = (x1, ...,xn). P samples T values g1, ..., gT
$←− Zr

such that ||gi|| ≤ τ · β.
(2) P computes ai = f(gi), di = Caux(ai) and sends d = (d1, ..., dT) to V.

(3) V samples s
$←− {0, 1}T and sends s to P.

(4) Both parties set C = {i | s[i] = 1}, O = [T] \ C.
(5) P sends (gi)i∈O as well as the randomness used to generate di to V who

checks that ∀i ∈ O :
(5.1) ai = f(gi)
(5.2) ||gi|| ≤ τ · β
(5.3) di = Caux(ai)

If any check fail he aborts.
(6) Let Z = ∅. For i ∈ [n] do the following:

(6.1) Find the first j ∈ C \ Z such that ||gj + xi|| ≤ (τ − 1) · β. If no such j
exists then continue. Else set zi = gj + xi and Z = Z ∪ {1, ..., j}.

(7) If |Z| < n then P aborts.
(8) Else P sends (Z,z1, ..., zn, (aj)j∈Z) as well as the randomness used to gen-

erate dj , j ∈ Z to V.
(9) V checks that

(9.1) ||zi|| ≤ (τ − 1) · β
(9.2) aj + yi = f(zi)
(9.3) dj = Caux(aj)

If yes, then he outputs accept. Else, he outputs reject.

Fig. 1. Imperfect proof for the relation RKSP

Theorem 1. Let f be an ivOWF, k be a statistical security parameter, Caux be a
perfectly binding/computationally hiding commitment scheme over G, τ = 100 ·r
and T = 3 ·n, n ≥ max{10, k}. Then PImperfectProof has the following properties:

Correctness: If P,V are honest and run on an instance of RKSP, then the
protocol succeeds with probability at least 1− negl(k).

Soundness: For every deterministic prover P̂ that succeeds to run the protocol
with probability p > 2−k+1 one can extract at least n− k values x′i such that

f(x′i) = yi and ||x′i|| ≤ 2 · τ · β, in expected time O(poly(s) · k2/p) where s is
the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-knowledge.

Proof.

Completeness. By the homomorphic property of f , all the checked equations
hold. The protocol can only abort if P aborts, which can only happen in step
(7). We first show that |C| ≥ 1.1 · n with all but negligible probability for large
enough n. Using this, we show that Pr[PImperfectProof aborts | |C| ≥ 1.1 · n] is
negligible in n.
Let #1(s) denote the number of ones in s, then #1(s) ∼ BIN 1/2,T where BIN
is the Binomial distribution. Using the Chernoff bound we obtain

Pr[#1(s) ≤ 1.1 · n | s $←− {0, 1}T] ≤ exp

(
− 2

(1/2 · T − 1.1 · n)2

T

)
= exp

(
−32

300
· n
)

Since n ≥ k this becomes negligible for large enough n and we can assume that
|C| ≥ 1.1 · n.
Consider a single coordinate of a zi. The chance that it fails the bound is 1/τ .
Each vector has length r, so zi exceeds the bound with probability r/τ = 1/100.
In such a case, P would take the next (independently chosen) gj and try again.
The ith attempt of P is denoted as Xi, where Xi = 1 if he fails and 0 other-
wise. We allow P to do at most T of these attempts4. Then Xi ∼ B1/100 and

X ∼ BIN 1/100,T , X =
∑
Xi. We set X = 1

TX where E[X] = 1/100. Using
Hoeffding’s inequality, one can show that the probability of failure is

Pr[X − E[X] ≥ 0.09] ≤ exp

(
− 2.2 · n · 0.092

)
which is negligible in k since we assume n ≥ k.5

Soundness. Let P̂ be a deterministic prover that makes an honest V accept
PImperfectProof with probability p > 2−k+1. Consider the following algorithm
EImperfectProof :

(1) Start P̂, who in turn outputs d = (d1, ..., dT).
(2) Observe that the first part of the protocol is an instance of PCutnChoose with

g = Caux ◦ f and where a preimage gi is good if ||gi|| ≤ τ · β, We therefore
run the extractor E guaranteed by Lemma 1 which gives us a set A with
T − k good gi-values.

4 The probability that P needs more auxiliary ciphertexts is ≈ 0.63n and therefore
negligible in n.

5 In fact, setting n = 40 already makes P abort with probability 2−10.

(3) Let X = ∅ and do the following until |X| ≥ n− k:
(3.1) Run a regular instance with P̂.
(3.2) If the instance was accepting, then for each zi with a corresponding

gj ∈ A, j ∈ C add the preimage to X, i.e. X = X ∪ {zi − gj}.
(4) Output X.

We will now show that EImperfectProof runs in the required time. The run-time
of E was established in Lemma 1. Using the set A it outputs, we can now argue
that step (3) also terminates as required: EImperfectProof reaches step (3.2) after
an expected number of 1/p rounds. At most k of the T preimages of aj are not
given in A and therefore step (3.2) is only executed once. From the bound on
the ai, the bound on the extracted xi immediately follows.

Zero-Knowledge. Consider the following algorithm SImperfectProof

(1) On input (v = (y1, ..., yn), T, τ, β) sample the string s
$←− {0, 1}T as in the

protocol.
(2) Compute the sets C,O as in PImperfectProof. For each i ∈ O sample

gi ∈ Zr, ||gi|| ≤ τ · β and set ai = f(gi) as well as di = Caux(ai).
(3) For i ∈ C sample zi ∈ Zr, ||zi|| ≤ τ · β uniformly at random. Let

Z ′ := {i ∈ C | ||zi|| ≤ (τ − 1) · β}.
(4) If |Z ′| < n then for i ∈ C set gi = zi, ai = f(zi), di = Caux(ai), output

(s, d1, ..., dT , (ai, gi)i∈O) and abort.
(5) If |Z ′| ≥ n then let Z be the first n elements of Z ′. For each i ∈ C \ Z set

ai = f(zi), di = Caux(ai).
(6) Denote Z as Z = {i1, ..., in}. For all ij ∈ Z set

aij = f(zij)− yj , dij = Caux(aij).
(7) Output (s, d1, ..., dT , (ai, gi)i∈O, Z, (ai, zi)i∈Z).

In the simulation, we can assume that there exists a witness w for v accord-
ing to relation RKSP. We first observe that if an ai and its randomness when
generating a di are ever revealed, then it holds that di = Caux(ai). For those
commitments that are not opened the computational hiding property implies
that their distribution in the simulated case is indistinguishable from the real
protocol.
What remains to study is the abort probability of the protocol, the sets C,O,Z
and the ai, zi, gi. The choice of C,O is identical in PImperfectProof, SImperfectProof
for an honest verifier since they are computed the same way.

Abort probability and Z. The probability of abort of SImperfectProof in step (4)
is the same as in (7) in PImperfectProof. This indeed is true if #1(s) < n and
also if #1(s) ≥ n, |Z ′| < n. The second is a little more subtle and can be seen
by arguing what the chance is that a certain zi ends up in Z ′: for the sake
of simplicity, assume n = r = 1 since all these vectors and their entries are
chosen i.i.d. In the above simulator, z ∈ [−τ · β, τ · β] was chosen uniformly at
random. Hence z 6∈ Z ′ with probability 1/100. In the case of PImperfectProof we

have z = x + g where g ∈ [−τ · β, τ · β] was chosen uniformly at random and
x ∈ [−β, β], i.e. z ∈ [−τ · β + x, τ · β + x] chosen uniformly at random from a
shifted interval of equal length. But [−(τ−1) ·β, (τ−1) ·β] ⊂ [−τ ·β+x, τ ·β+x]
always holds due to the upper bound of x, hence the probability of abort is also
1/100. By the same reasoning, Z has the same distribution in SImperfectProof
and PImperfectProof.

Distribution of gj , aj for j ∈ O. Due to the homomorphism of f , the checks from
step (9) do also hold on the simulated output. For all j ∈ O the distribution of
the gj , aj is the same in both the protocol and SImperfectProof as the values are
chosen exactly the same way.

Distribution of zi, ai for i ∈ Z. Consider the distribution of the zij , aij for ij ∈ Z
when SImperfectProof runs successfully. By the above argument, the distribution
of the zij is independent of the xj in PImperfectProof. In PImperfectProof exactly
those zij will be sent to V where zij = gij +xj is in the correct interval. Since by
our assumption there exists a witness w = (x′1, ...,x

′
n) then due to the linearity

of f there must exist a g′ij of the same bound as the gi in the protocol, where

aij = f(g′ij) by linearity.

Why using Caux? It may not be directly obvious from the above proof why
the commitment Caux is necessary. But a problem can occur in step (7) of
PImperfectProof with the elements with indices from C\Z: although the simulator
can simulate perfectly the choice of this set, we would have a problem if we had
to reveal the corresponding f(gi)-values. The issue is that the gi’s should be
values that cause an abort and we cannot choose such values unless we know
the corresponding secrets. One solution is to apply f to a random input and
make a non-standard assumption that this cannot be distinguished from the
real thing, but this is undesirable. Instead, sending Caux(ai) allows to both hide
the distribution, while soundness is still guaranteed because Caux ◦ f is hard to
invert due to the binding property of Caux.

ut

3.2 The Full Proof of Knowledge

We use the above imperfect protocol as a building block of the actual proof.
After executing it with the (xi, yi) as input, we can assume that a preimage of
most of the yi’s (in fact, all but k) can be extracted from the prover.
Our strategy for the last part of the protocol is to repeat the following procedure
several times: we let the verifier randomly assign each yi to one of several buckets.
Then, for each bucket, we add all elements that landed in the bucket and have
the prover demonstrate that he knows a preimage of the sum. The observation
is that since we only have k elements left that were “bad” in the sense that we
could not yet extract a preimage, then if we have more than k buckets, say ck
for a constant c > 1, there is a significant probability that many of the bad
elements will be alone in a bucket. If this happens, we can extract a preimage by

linearity of f . Furthermore, the cost of doing such a step is at most n additions,
plus work that only depends on the security parameter k and is insignificant
if n � k. Now, by repeating this game some number of times with the right
number of buckets, we shall see that we can extract all preimages quite quickly.
In the following, the experiment where we throw n values randomly into b buckets
will be denoted Exp(b, n). As is apparent from the above discussion, we will need
to analyse the probability that the bad values will be “killed” by being alone in
a bucket. That is, we need to consider Exp(b, v), where v ≤ k can be thought
of as the number of bad elements. We will say that an element survives if it is
not alone in a bucket. We will write t independent repetitions of the experiment
as Expt(b, v) and we say that an element survives this if it survives in every
repetition. The following lemma will be helpful:

Lemma 2. Notation as above. Consider Expt(b, v) and assume b ≥ 4v and
t ≥ 8. Then the probability p that at least v/4 elements survive satisfies p ≤ 3v

4 ε
tv,

where ε = e5/32

25/16
≈ 0.94.

Proof. Consider the event of exactly s bad elements surviving Expt(b, v) where
s ≥ v/4. The s surviving elements could be any of the v values, but must cover
less than s/2 buckets in each repeated experiment, since surviving elements are
not alone in a bucket. From this we get the bound

Pr [s survive] ≤
(
v

s

)((
b

s/2

)(
s/2

b

)s)t
on which we apply upper bounds on the binomial coefficients:

≤
(ve
s

)s((be

s/2

)s/2(
s/2

b

)s)t
=
(ve
s

)s (se
2b

)ts/2
=

((ve
s

)1/t (se
2b

)1/2)ts
and finally maximize using b ≥ 4v, t ≥ 8 and s ∈ [v/4, v]:

≤

((
ve

v/4

)1/8 (ve

2 · 4v

)1/2)tv/4

=

(
(4e)

1/8
(e

8

)1/2)tv/4
=

(
e5/32

25/16

)tv

Using this we can bound the probability p by union bound:

p = Pr
[
≥ v

4
survive

]
≤

v∑
s=v/4

Pr [s survive] ≤ 3v

4

(
e5/32

25/16

)tv
ut

Before we continue, let us discuss the implications of the above Lemma. First,
due to the first equation of the proof we yield that, except with probability p,
in an instance of Expt(b, v) at least one of the t iterations contains at least 3v/4
buckets with single elements. A second, somewhat surprising fact is that for fixed
values of t, b the probability p is not monotone in v. This will be particularly
difficult, as we only know upper bounds on the value v in the proof of the main
protocol.
Our soundness argument implicitly defines an extraction algorithm that runs in
log2(k) rounds, where in each round the same total number of buckets is used (the
number of buckets per iteration drops in half, but the total number of iterations
per round doubles). What we then show (using the above Lemma) is that the
upper bound on the number of unextracted preimages is reduced by a factor of 2
between each two successive rounds, while the error probability stays somewhat
constant. This is due to the following thought experiment: assume as an invariant
that, for O(k) buckets and k balls, at least k/2 of these balls land in their own
bucket except with probability 2−O(k). By running the experiment again, we see
that the error probability now increases because we now only use k/2 balls. But
by independently running the experiment twice, one obtains that half of the k/2
balls are alone (in one of the two experiments) except with essentially the same
probability as before. This now allows for a recursive extraction strategy.

Theorem 2. Let f be an ivOWF, k be a statistical security parameter, β be a
given upper bound and n > k · log2(k). Then PCompleteProof is an interactive
honest-verifier zero-knowledge proof of the relation RKSP with knowledge error
2−k+1. More specifically, it has the following properties:

Correctness: If P,V are honest then the protocol succeeds with probability at
least 1− 2−O(k).

Soundness: For every deterministic prover P̂ that succeeds to run the protocol
with probability p > 2−k+1 one can extract n values x′i such that f(x′i) = yi
and ||x′i|| ≤ O((2k+ 1)log2(k)/2 ·n · r · β) except with negligible probability, in
expected time poly(s, k)/p, where s is the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-knowledge.

Proof.

Correctness. The first call to PImperfectProof in step (1) will succeed with all
but negligible probability due to Theorem 1. For each i in step (2) the experiment
is repeated 2i+4 times using 4k ·2−i buckets, hence the total number of sums for

Procedure PCompleteProof

Let f be an ivOWF. P inputs w to the procedure and V inputs v. We assume for
simplicity that the security parameter k is a 2-power.

proof(v, w, β) :
(1) Let v = (y1, ..., yn), w = (x1, ...,xn). Run innerProof(v, w, 3n, 100r, β). If V

in PImperfectProof aborts then abort, otherwise continue.
(2) For i = 0, 1, . . . , log2(k), execute (in parallel) Expti(bi, n), where

ti = 2i+4, bi = 4k · 2−i and where V chooses the randomness for all the
experiments, i.e., chooses how to distribute elements in buckets.

(3) Let h = 64k · (log2(k) + 1) be the total number of buckets used in all the
experiments in the previous step and order all the buckets in some arbitrary
order. Bucket j contains some subset of the n input values, let these be
designated by index set Ij . Now, for j = 1, . . . , h, both players compute
γj =

∑
i∈Ij vi and P also computes δj =

∑
i∈Ij xi.

(4) Run innerProof(γ, δ, 3h, 100r, nβ). If V in PImperfectProof aborts then abort,
otherwise accept.

Fig. 2. A protocol to prove the relation RKSP

each such round is 64k which determines h. A set Ij as chosen in step (3) can have
size at most n by definition, therefore ||δj || ≤ β · n. The call to PImperfectProof

in step (4) will then be successful according to Theorem 1 with overwhelming
probability.

Soundness. We will first prove the existence of an efficient extractor, then give
a bound on the extraction probability and only establish the bound on the norm
of the preimage afterwards.

An efficient extractor. From the subprotocol used in step (1) and Theorem 1 all
but k of the n ciphertexts can be extracted. The same holds for step (4) from
which we can argue that at most k of the h sums are proven incorrectly. For
each i, observe that of the ti = 2i+4 iterations, there must be at least 2i+3 of
them that each contain at most 2−i · k/4 bad buckets. For otherwise, we would
have at least 2i+3 iterations that each have at least 2−i ·k/4 buckets which adds
up to 2k bad buckets.

For i = 0, 1, .. the number of bad values entering into the experiment Expti(bi, n)
is vi ≤ k · 2−i, except with negligible probability (we will consider the error
probability later). This can be seen as follows: for i = 0, we have v0 ≤ k due
to step (1). So let vi ≤ 2−ik, then by the proof of Lemma 2 at least one of the
2i+3 iterations, 3/4 ·vi or more buckets contain only one of the not-yet extracted
elements and can hence be extracted now. For this instance, we established that
at most 2−i · k/4 of the sums can be bad, hence

vi+1 ≤ vi/4 + k/4 · 2−i ≤ k/4 · 2−i + k/4 · 2−i = k · 2−i−1

Hence after Expti(bi, vi) we can extract at least vi/2 of the ciphertexts. In the last
round we have vlog2(k)

≤ 2 and must prove that after Exptlog2(k)(blog2(k)
, vlog2(k)

),
no unextracted preimages are left. Therefore consider the following two cases:

vlog2(k)
= 1 In this case, for the experiment to fail the remaining unextracted

preimage must be in the bad sum for all 8k instances. For each such instance,
there are 4 buckets out of which at most 1 can be bad. The extraction will
hence only fail with probability 2−16k.

vlog2(k)
= 2 To be able to extract, we want both unextracted preimages to be in

different buckets and none of them in a bad bucket. The chance that the first
preimage ends up in a bad bucket is 1/4, and the second preimage can either
fall into the bucket with the first preimage (with probability 1/4) or in the
bad bucket, so in total with probability at most 3/4 one of the 8k iterations
will fail, and all will be bad with probability at most (3/4)8k < 2−2k.

By a union bound, the last experiment will fail with probability at most plog2(k) =

2−k.

For rounds i = 0, ..., log2(k)− 1, the extractor will only extract from the experi-
ment i if k · 2−i−1 ≤ vi ≤ k · 2−i and otherwise safely continue with round i+ 1.
By Lemma 2, extraction will fail in this round with probability at most

pi ≤ max
ṽi∈[k·2−i−1,k·2−i]

{3/4ṽi · εti·ṽi}

< 3/4k · 2−i · ε2
i+3·k·2−i−1

= 3k · 22−i · ε4k

because the actual value of vi is unknown. The extraction process can fail if it
fails in one of the experiments. By a union bound, we obtain

p0 + ...+ plog2(n)
< 3k · 22 · ε4k + ...+ 3k · 22−log2(k)+1 · ε4k + 2−k

= 3k · ε4k ·
log2(k)−1∑

j=0

22−j + 2−k

< 24k · ε4k + 2−k

which is in 2−O(k) because ε < 1 and constant. Since soundness for Theorem 1
fails with probability 2−O(k) as well, this proves the claim.

Extraction bound. Let τ = 100r be the slackness chosen for the instances of
innerProof. Consider a value x′i extracted in round 0, i.e. there exists a good
δj , i ∈ Ij such that x′i = δj −

∑
o∈Ij\{x′i}

x′o where all such x′o were already

extracted from PImperfectProof in step (1). Then

||x′i|| ≤ ||δj −
∑

o∈Ij\{i}

x′o||

≤ ||δj ||+ ||
∑

o∈Ij\{i}

x′o||

≤ 2 · τ · n · β + (n− 1) · 2 · τ · β
< 4 · n · τ · β
:= β0

In round 1 each preimage that we extract will be a sum of preimage known from
the cut-and-choose phase and those from round 0, where from the last round at
most k/2 can be part of the sum. Calling this upper bound β1 we obtain

β1 = 2 · τ · n · β +
k

2
β0

The above argument easily generalizes to an arbitrary round i > 0 where it then
holds that

βi = 2 · τ · n · β +

i−1∑
j=1

k

2j
βj−1

because in round 0 we extracted at most k/2 preimages, in round 1 k/4 and so
on. In particular, the above can be rewritten as

βi = 2 · τ · n · β +

i∑
j=1

k

2j
βj−1

= 2 · τ · n · β +

i−1∑
j=1

k

2j
βj−1 +

k

2i
βi−1

≤ βi−1 +
k

2i
βi−1

=

(
k

2i
+ 1

)
βi−1

In particular, for the bound on the last preimages that are extracted in round
log2(k) one obtains

βlog2(k)
=

log2(k)−1∏
i=1

(
k

2i
+ 1

)
β0

To compute a bound on the leading product, we consider the square of the above
bound and reorder the terms as

log2(k)−1∏
i=1

(
k

2i
+ 1

)2

=

log2(k)−1∏
i=1

(
k

2i
+ 1

)(
k

2log2(k)−i
+ 1

)

=

log2(k)−1∏
i=1

(
k +

k

2i
+

k

2log2(k)−i
+ 1

)
< (2k + 1)

log2(k)

and we can conclude that

βlog2(k)
< (2k + 1)

log2(k)/2 · 4 · n · τ · β

Zero-Knowledge. The simulation algorithm chooses the randomness for all
the experiments like an honest V would do and then uses the simulator from
Theorem 1 to simulate the calls to PImperfectProof. The computational HVZK
property then follows directly from Theorem 1. ut

4 Applications

As a first general remark, we note that even though our protocol is only honest
verifier zero-knowlegde and proved sound using extraction by rewinding, we can
nevertheless use it as a tool in a bigger protocol that is intended to be UC
secure against malicious adversaries. Such a construction is already known from
[DPSZ12]. The idea is first to generate the verifier’s challenge using a secure
coin-flip protocol. Then honest verifier zero-knowledge suffices, and the cost of
generating the challenge can be amortised over several proofs. Second, if the
function f is an encryption function, the UC simulator can be given the secret
key and can hence extract straight-line. Rewinding then only takes place in the
reduction to show that the UC simulator works.

In the rest of this section we will first show how to rephrase lattice-based encryp-
tion as ivOWFs and then show how to generalize the result from the previous
section such that it applies in this setting.

4.1 Encryption as ivOWFs

As an example, let us consider a variant of the homomorphic encryption scheme
due to Brakerski et al. [BGV12]. Let n,N, λ ∈ N+, p, q ∈ P and q � p. Moreover,
let χ be a distribution over Z such that, with overwhelming probability in k,
e← χ⇒ |e| ≤ q/2. We consider λ to be the computational security parameter.

KG(1λ): Sample t
$←− χn, e

$←− χN and B ← ZN×nq . Let u1 = (1, 0, ..., 0) ∈
Zn+1
q be the unit vector for the first coordinate. Then compute

b← Bt+ p · e

A←
(
uT1

∥∥∥ (bT

−BT

) ∥∥∥ p · In+1

)
where In+1 is the identity matrix with n + 1 rows and columns. Output
pk← A, sk← t.

Encpk(

(
m
r

)
): Check that m ∈ Zp, r ∈ ZN+n+1

q and output

c← A×
(
m
r

)
Decsk(s): Compute

m′ ←
(〈
c,

(
1
t

)〉
mod q

)
mod p

and output m′ ∈ Zp.

Procedure PCompleteProof,f,β

P inputs w to the procedure and V inputs v. We assume for simplicity that the
security parameter k is a 2-power.

pG(v, w,β) :
(1) Let v = (y1, ..., yn), w = (x1, ...,xn). Run iPG(v, w, 3n, 100r,β). If V in
PImperfectProof,f,β aborts then abort, otherwise continue.

(2) For i = 0, 1, . . . , log2(k), execute (in parallel) Expti(bi, n), where ti =
2i+4, bi = 4k · 2−i and where V chooses the randomness for all the experi-
ments, i.e., chooses how to distribute elements in buckets.

(3) Let h = 64k · (log2(k) + 1) be the total number of buckets used in all the
experiments in the previous step and order all the buckets in some arbitrary
order. Bucket j contains some subset of the n input values, let these be
designated by index set Ij . Now, for j = 1, . . . , h, both players compute
γj =

∑
i∈Ij vi and P also computes δj =

∑
i∈Ij xi.

(4) Run iPG(γ, δ, 3h, 100r, nβ). If V in PImperfectProof,f,β aborts then abort,
otherwise accept.

Fig. 3. A protocol to prove the relation RKSP,f,β

For appropriately chosen parameters, the function Encpk is an ivOWF (by the
natural embedding of Zq into the integers) assuming that the LWE problem
is hard. It therefore seems natural to apply our proof framework in the above
setting.
Unfortunately we have to show different bounds for different indices of the preim-
age, which is impossible for the existing proof.

4.2 Refining the Proof Technique

To gain more flexibility, we start out by defining a predicate InfNormβ, which
we define as follows

InfNormβ(x) =

{
> if β ∈ N+ ∧ ∀i ∈ [r] : |x[i]| ≤ β[i]

⊥ else

where β is supposed to be a coordinatewise upper bound on x.

Procedure PImperfectProof,f,β

Let f be an ivOWF and Caux be a commitment scheme over G. P inputs w to the
procedure and V inputs v.

iPG(v, w, T, τ,β) :

(1) Let v = (y1, ..., yn), w = (x1, ...,xn). P samples T values g1, ..., gT
$←− Zr

such that InfNormτ ·β(gi).
(2) P computes ai = f(gi), di = Caux(ai) and sends d = (d1, ..., dT) to V.

(3) V samples s
$←− {0, 1}T and sends s to P.

(4) Both parties set C = {i | s[i] = 1}, O = [T] \ C.
(5) P sends (gi)i∈O as well as the randomness used to generate di to V who

checks that ∀i ∈ O :
(5.1) ai = f(gi)
(5.2) InfNormτ ·β(gi)
(5.3) di = Caux(ai)

If any check fail he aborts.
(6) Let Z = ∅. For i ∈ [n] do the following:

(6.1) Find the first j ∈ C \ Z such that ||gj + xi|| ≤ (τ − 1) · β. If no such j
exists then continue. Else set zi = gj + xi and Z = Z ∪ {1, ..., j}.

(7) If |Z| < n then P aborts.
(8) Else P sends (Z,z1, ..., zn, (aj)j∈Z) as well as the randomness used to gen-

erate dj , j ∈ Z to V.
(9) V checks that

(9.1) InfNorm(τ−1)·β(zi)
(9.2) aj + yi = f(zi)
(9.3) dj = Caux(aj)

If yes, then he outputs accept. Else, he outputs reject.

Fig. 4. Imperfect proof for the relation RKSP,f,β

We call a vector x ∈ Zr to be β-bounded iff InfNormβ(x) = >. For a function
f : Zr → G and the set {c1, ..., ct} one then tries to prove the following relation

RKSP,f,β =

{
(v,w) | v = (c1, ..., ct) ∧w = (x1, ...,xt) ∧[

ci = f(xi) ∧ InfNormβ(xi)]i∈[t]

}

That is, a proof of plaintext knowledge for our defined cryptosystem would then
set β ∈ NN+n+2, f = Encpk with β[1] = βP ,β[2] = ... = β[N + n + 2] = βR
where βP is the bound on the plaintext and βR on the randomness. One then
uses a modified version of the proof PImperfectProof, namely the protocol from
Figure 4 and moreover replaces PCompleteProof with Figure 3.

Theorem 1 and 2 directly generalize to the above setting due to the linearity
of all operations (if the simulators for the rejection sampling just sample from
the appropriate bound for each coordinate). This is possible because none of the
success probabilities changes since these are independent of the bound β in the
first place. The above could be generalized to other predicates which e.g. enforce
`2-norms. We leave this as future work.

References

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyuba-
shevsky, and Gregory Neven. Better zero-knowledge proofs for lattice
encryption and their application to group signatures. In Advances in
Cryptology–ASIACRYPT 2014, pages 551–572. Springer, 2014.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Advances in Cryp-
tology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 169–188. Springer Berlin Heidelberg, 2011.

BDTZ16. Carsten Baum, Ivan Damg̊ard, Tomas Toft, and Rasmus Zakarias. Better
preprocessing for secure multiparty computation. In ACNS 2016. Springer,
2016.

BG93. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Advances in Cryptology—CRYPTO’92, pages 390–420. Springer, 1993.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ITCS ’12, pages
309–325, New York, NY, USA, 2012. ACM.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. SIAM Journal on Computing, 43(2):831–
871, 2014.

CD09. Ronald Cramer and Ivan Damg̊ard. On the amortized complexity of zero-
knowledge protocols. In Advances in Cryptology-CRYPTO 2009, pages 177–
191. Springer, 2009.

DF02. Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commit-
ment scheme based on groups with hidden order. In Advances in Cryptol-
ogy—ASIACRYPT 2002, pages 125–142. Springer, 2002.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure mpc for dishonest majority -
or: Breaking the spdz limits. In ESORICS, pages 1–18, 2013.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Advances
in Cryptology - CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, Berlin, Germany, 2012.

GGH96. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing
from lattice problems. In Electronic Colloquium on Computational Com-
plexity (ECCC), volume 3, pages 236–241, 1996.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer,
2013.

KL14. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC Press, 2014.

LMPR08. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
Swifft: A modest proposal for fft hashing. In Fast Software Encryption,
pages 54–72. Springer, 2008.

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the isis problem, and applications.
In Public-Key Cryptography–PKC 2013, pages 107–124. Springer, 2013.

Lub02. Michael Luby. Lt codes. In Proceedings of the 43rd Symposium on Founda-
tions of Computer Science, page 271. IEEE Computer Society, 2002.

Lyu08. Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Public Key Cryptography–PKC 2008, pages 162–179.
Springer, 2008.

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology–ASIACRYPT 2009,
pages 598–616. Springer, 2009.

NO09. Jesper Buus Nielsen and Claudio Orlandi. Lego for two-party secure com-
putation. In Theory of Cryptography, pages 368–386. Springer, 2009.

	How to prove knowledge of small secrets

