
I/O-Efficient Data Structures for Colored Range and Prefix Reporting

Kasper Green Larsen∗

MADALGO†

Aarhus University, Denmark
larsen@cs.au.dk

Rasmus Pagh

IT University of Copenhagen
Copenhagen, Denmark

pagh@itu.dk

Abstract

Motivated by information retrieval applications, we
consider the one-dimensional colored range reporting
problem in rank space. The goal is to build a static
data structure for sets C1, . . . , Cm ⊆ {1, . . . , σ} that
supports queries of the kind: Given indices a, b, report
the set

⋃
a≤i≤b Ci.

We study the problem in the I/O model, and show
that there exists an optimal linear-space data structure
that answers queries in O(1 + k/B) I/Os, where k de-
notes the output size and B the disk block size in words.
In fact, we obtain the same bound for the harder prob-
lem of three-sided orthogonal range reporting. In this
problem, we are to preprocess a set of n two-dimensional
points in rank space, such that all points inside a query
rectangle of the form [x1, x2]×(−∞, y] can be reported.
The best previous bounds for this problem is either
O(n lg2

B n) space and O(1 + k/B) query I/Os, or O(n)

space and O(lg
(h)
B n + k/B) query I/Os, where lg

(h)
B n

is the base B logarithm iterated h times, for any con-
stant integer h. The previous bounds are both achieved
under the indivisibility assumption, while our solution
exploits the full capabilities of the underlying machine.
Breaking the indivisibility assumption thus provides us
with cleaner and optimal bounds.

Our results also imply an optimal solution to the
following colored prefix reporting problem. Given a
set S of strings, each O(1) disk blocks in length, and a
function c : S → 2{1,...,σ}, support queries of the kind:
Given a string p, report the set

⋃
x∈S∩p∗ c(x), where

p∗ denotes the set of strings with prefix p. Finally, we
consider the possibility of top-k extensions of this result,
and present a simple solution in a model that allows
non-blocked I/O.

∗Is also supported in part by a Google Fellowship in Search

and Information Retrieval.
†Center for Massive Data Algorithmics, a Center of the Danish

National Research Foundation.

1 Introduction

A basic problem in information retrieval is to support
prefix predicates, such as datab*, that match all docu-
ments containing a string with a given prefix. Queries
involving such a predicate are often resolved by comput-
ing a list of all documents satisfying it, and merging this
list with similar lists for other predicates (e.g. inverted
indexes). Recent overviews can be found in e.g. [29, 12].
To our best knowledge, existing solutions either require
super-linear space (e.g. storing all answers) or report a
multi-set, meaning that the same document may be re-
ported many times if it has many words with the given
prefix. In range reporting terminology we are interested
in the colored reporting problem, where each color (doc-
ument) may match several times, but we are only inter-
ested in reporting each color once.

A related problem is that of query relaxation. When
no answers are produced on a query for some given
terms, an information retrieval system may try to “re-
lax” some of the search conditions to produce near-
matches. For example, a search for “colour television”
may be relaxed such that also documents containing
“color” and/or “TV” are regarded as matches, or fur-
ther relaxed to also match “3D” and “screen”. In gen-
eral, terms may be arranged as leaves in a tree (possi-
bly with duplicates), such that inner nodes correspond
to a natural relaxation of the terms below it. When
answering a query we are interested in the documents
containing a term in some subtree. Again, this reduces
to a colored 1D range reporting problem.

1.1 Model of Computation In this paper we study
the above problems in the I/O-model [6] of computation.
In this model, the input to a data structure problem is
assumed too large to fit in main memory of the machine,
and thus the data structure must reside on disk. The
disk is assumed infinite, and is divided into disk blocks,
each consisting of B words of Θ(lg n) bits each. We
use b = Θ(B lg n) to denote the number of bits in a
disk block. To answer a query, the query algorithm
repeatedly makes I/Os, i.e., reads disk blocks into the

main memory, which has size M words. Based on
the contents of the read blocks it finally reports the
answer to the query. The cost of answering a query is
measured in the number of I/Os performed by the query
algorithm.

The indivisibility assumption. A common as-
sumption made when designing data structures in the
I/O-model is that of indivisibility. In this setting, a data
structure must treat input elements as atomic entities,
and has no real understanding of the bits constituting
the words of a disk block. There is one main motivating
factor for using this restriction: It makes proving lower
bounds significantly easier. This alone is not a strong
argument why upper bounds should be achieved under
the indivisibility assumption, but it has long since been
conjectured that for most natural problems, one cannot
do (much) better without the indivisibility assumption.
In this paper, we design data structures without this
assumption, which allows us to achieve optimal bounds
for some of the most fundamental range searching prob-
lems, including the problems above.

1.2 Our contributions In this paper we present the
first data structures for colored prefix reporting queries
that simultaneously have linear space usage and optimal
query complexity in the I/O model [6]. More precisely,
our data structure stores sets C1, . . . , Cm ⊆ {1, . . . , σ}
and supports queries of the kind: Given indices a, b,
report the set

⋃
a≤i≤b Ci. If the reported set has size k,

then the number of I/Os used to answer the query is
O(1 + k/B). If we let n =

∑m
i=1 |Ci| denote the total

data size, then the space usage of the data structure is
O(n) words, i.e. linear in the size of the data.

In fact, in Section 2 we present an optimal solution
to the harder and very well-studied three-sided orthog-
onal range reporting problem in two-dimensional rank-
space, and then use a known reduction [19] to get the
above result (Section 3). Given a set S of n points from
the grid [n] × [n] = {1, . . . , n} × {1, . . . , n}, this prob-
lem asks to construct a data structure that is able to
report all points inside a query rectangle of the form
[x1, x2]× (−∞, y]. We consider the static version of the
problem, i.e. we do not support updates of the set S.
We note that optimal solutions to this problem have
been known for more than a decade in the word-RAM
model, but these solutions are all inherently based on
random accesses. The query time of these data struc-
tures thus remains O(1 + k) when analysed in the I/O-
model, which falls short of the desired O(1+k/B) query
cost.

One of the key ideas in obtaining our results for
three-sided range reporting is an elegant combination
of Fusion Trees and tabulation, allowing us to make

a dynamic data structure partially persistent, free of
charge, when the number of updates to the data struc-
ture is bounded by bO(1). We believe several of the ideas
we develop, or variations thereof, may prove useful for
many other natural problems.

Finally, in Section 4 we consider the top-k variant,
where we only need to report the first k colors in the set,
and k is a parameter of the data structure. In a scatter
I/O model that allows B parallel word accesses we get
a data structure with optimal query complexity also for
this problem. This data structure uses spaceO(n+mB),
which is O(n) if the average size of C1, . . . , Cm is at
least B. Since the scatter I/O model abstracts the
parallel data access capabilities of modern hardware,
we believe that it is worth investigating further, and
our results here may be a first step in this direction.

Notation. We always use n to denote the size of
data in number of elements. For colored prefix reporting
this means that we have m subsets of {1, . . . , σ} of total
size n. As mentioned, we use b to denote the number of
bits in a disk block. Since a block may store B pointers
and input elements, we make the natural assumption
that b = Θ(B lg n), i.e., each disk block consists of B
words, where a word is Θ(lg n) bits.

1.3 Related work The importance of three-sided
range reporting is mirrored in the number of publi-
cations on the problem, see e.g. [10, 24] for the I/O-
model, [22, 17] for the pointer machine, [5, 9, 11, 3, 4]
for the cache-oblivious and [8, 21, 14] for the word-RAM
model. One of the main reason why the problem has
seen so much attention stems from the fact that range
searching with more than three sides no longer admits
linear space data structures with polylogarithmic query
cost and a linear term in the output size. Thus three-
sided range searching is the “hardest” range searching
problem that can be solved efficiently both in terms of
space and query cost, and at the same time, this has
proved to be a highly non-trivial task.

The best I/O model solution to the three-sided
range reporting problem in 2-d, where coordinates can
only be compared, is due to Arge et al. [10]. Their
data structure uses linear space and answers queries in
O(lgB n+k/B) I/Os. This is optimal when coordinates
can only be compared. We note that achieving this
bound in the static setting is a rather simple exercise
and that the main achievement in [10] is to support fast
updates as well. Nekrich reinvestigated the problem in
a setting where the points lie on an integer grid of size
U × U . He demonstrated that for such inputs, it is
possible to achieve O(lg2 lgB U + k/B) query cost while
maintaining linear space [24]. This bound is optimal
by a reduction from predecessor search. His solution

relies on indirect addressing and arithmetic operations
such as multiplication and division. In the same paper,
he also gave several data structures for the case of
input points in rank space. The first uses linear space

and answers queries in O(lg
(h)
B n + k/B) I/Os, where

lg
(h)
B n is the base B logarithm iterated h times, for any

constant integer h. The second uses O(n lg∗B n) space
and answers queries in O(lg∗B n + k/B) I/Os, and the
final data structure uses O(n lg2

B n) space and answers
queries in optimal O(1 + k/B) I/Os. All these data
structures use only comparisons and indirect addressing.

Higher-dimensional orthogonal range reporting has
also received much attention in the I/O model, see
e.g. [27, 1, 2, 25]. The best current data structures
for orthogonal range reporting in d-dimensional space
(d ≥ 3), where coordinates can only be compared,
either answers queries in O(lgB n(lg n/ lg lgB n)d−2 +
k/B) I/Os and uses O(n(lg n/ lg lgB n)d−1) space, or
answers queries in O(lgB n lgd−3 n+k/B) I/Os and uses
O(n(lg n/ lg lgB n)3 lgd−3 n) space [2].

All these results in some sense do not exploit the
full power of the underlying machine. While this
provides for easier lower bounds, it should be clear when
comparing to our results, that this approach might come
at a cost of efficiency. Finally, we note that recent work
by Iacono and Pǎtraşcu [20] also focuses on obtaining
stronger upper bounds (for dynamic dictionaries) in the
I/O model by abandoning the indivisiblity assumption.

2 Three-Sided Orthogonal Range Reporting

In this section we describe our data structure for three-
sided orthogonal range reporting. Recall that in this
problem we are interested in reporting the points in
[x1, x2] × (−∞, y]. If there are k such points, our data
structure answers queries in O(1 + k/B) I/Os and uses
linear space for input points in rank space, i.e., when
the input points lie on the grid [n] × [n]. We set out
with a brief preliminaries section, and then describe our
data structure in Section 2.2.

2.1 Preliminaries In this section, we briefly discuss
two fundamental data structures that we make use
of in our solutions, the Fusion Tree of Fredman and
Willard [16] and a simple data structure that we refer
to as the External Memory Priority Search Tree (EM-
PST). We note that the EM-PST has been used numer-
ous times before as a basic building block, for instance
in Arge et al. [10] dynamic data structure for three-sided
range reporting. For the Fusion Tree, we merely state
the result and use it as a black box.

Fusion Tree. Allowing for full access to the bits in
a disk block yields more efficient data structure solutions

to several fundamental problems. In this paper, we use
the Fusion Tree of Fredman and Willard1:

Lemma 2.1. There exists a linear space data structure
that supports predecessor search in O(lgb n) I/Os on n
elements in a universe of size u, where lg u < b.

Note that b = Ω(lg n), hence for small disk blocks
the Fusion Tree outperforms the comparison based B-
trees. This playes a key role in our improved solutions.

The requirement lg u < b ensures that we can store
an element in a single disk block. In the original Fusion
Tree data structure, much care is taken to implement
various operations on words in constant time. However
this is trivialized in the I/O model, since we can do
arbitrary computations on a disk block in main memory
free of charge.

External Memory Priority Search Tree. The
EM-PST is an external memory data structure that
answers three-sided range queries. We describe the
basic layout of the EM-PST, parametrized with a leaf -
parameter ` and a branching-parameter f .

An EM-PST is constructed from an input set of n
points in the following recursive manner: Select the B
points with smallest y-coordinate among the remaining
points and place them in a root node. Then partition
the remaining points into f equal-sized consecutive
groups wrt. the x-coordinates of the points. Recurse on
each group, and let the recursively constructed trees be
the children of the root node, ordered by x-coordinates
(f − 1 splitter keys are stored in a Fusion Tree at the
root). We end the recursion when the number of points
in a subproblem drops to between ` and f` + B, and
instead create a leaf node. Note that the EM-PST is
both a heap on the y-coordinates and a search tree on
the x-coordinates, hence it’s name. Furthermore, the
height of the tree is O(lgf (n/`)), and there are O(n/`)
nodes in the tree.

The three-sided range reporting data structure of
Arge et al. [10] uses an EM-PST with leaf-parameter
` = B and branching parameter f = B. They augment
each node of the tree with a number of auxiliary data
structures to support fast queries and updates. We omit
the description of these data structures, as we only use
the basic layout of the tree in our solutions.

2.2 Data Structure In this section, we describe our
optimal data structure for three-sided range reporting
in rank space. At a high level, our data structure
places the points in an EM-PST, and augments each
leaf with auxiliary data structures. These allow efficient

1Strictly speaking, we use what Fredman and Willard refer to
as q-heaps, which generalize the more well-known fusion trees.

reporting of all points in a query range [x1, x2]×(−∞, y]
that are associated to nodes on the path from the root
to the corresponding leaf. Since the number of points
associated to nodes on such a path is rather small, we
are able to answer these queries in O(1 + k/B) I/Os.
To report the remaining points in a query range, we
exploit that for each node not on the path to either of
the two leaves containing the predecessors of x1 and x2,
either all the points associated to the node have an x-
coordinate in the query range, or none of them have.
We now give the full details of our solution.

The Data Structure. Suppose there exists a base
data structure for three-sided range reporting that uses
linear space and answers queries in O(1 + k/B) I/Os
when constructed on bO(1) points with coordinates on
the grid [n] × [n]. Let S be the input set of n points,
and construct on S the EM-PST layout described in
Section 2.1, using branching parameter f = 2 and
leaf-parameter ` = B lg2 n. Denote the resulting tree
by T . For each leaf v in T we store two auxiliary data
structures:

1. A base data structure on the O(f` + B) =
O(B lg2 n) = O(b2) points associated to v.

2. For each ancestor w of v, we store a base data struc-
ture on the O(fB lg n) = O(b) points associated to
all nodes that are either on the path from w to the
parent of v or have a sibling on the path. We fur-
thermore augment each of the stored points with
the node it comes from.

Finally, we augment T with one additional auxiliary
data structure. This data structure is a simple array
with n entries, one for each x-coordinate. The ith entry
of the array stores a pointer to the leaf containing the
x-predecessor of i amongst points associated to leaves of
T . If i has no such predecessor, then we store a pointer
to the first leaf of T .

Query Algorithm. To answer a query [x1, x2] ×
(−∞, y], we first use the array to locate the leaf
u1 containing the predecessor of x1, and the leaf u2
containing the predecessor of x2. We then locate the
lowest common ancestor LCA(u1, u2) of u1 and u2.
Since T is a binary tree of height at most dlg ne,
LCA(u1, u2) can be found with O(1) I/Os if each node
contains dlg ne bits describing the path from the root (a
table lookup on the longest common prefix of the two
path descriptions).

We now query the base data structures stored on
the points in u1,u2 and their sibling leaves. This reports
all points in the query range associated to those nodes.
We then query the second base data structure stored in
u1, setting w to the root of T (see 2. above), and the

second base data structure stored in u2 setting w to that
grandchild of LCA(u1, u2) which is on the path to u2.
Observe that this reports all points in the query range
that are either associated to nodes on the paths from
the root to u1 or u2, or to nodes that have a sibling on
the paths.

We now exploit the heap and search tree structure
of T : For a node v not on the paths to u1 and u2, but
with a sibling on one of them, we know that either the
entire subtree rooted at v stores only points with an x-
coordinate inside the query range, or none of the points
in the subtree are inside the query range. Furthermore,
the heap ordering ensures that the points with smallest
y-coordinate in the subtree are associated to v. Thus if
not allB points associated to v was reported above, then
no further points in the subtree can be inside the query
range. We thus proceed by scanning all the reported
points above, and for each node v not on the paths to
u1 and u2, we verify whether all B associated points
were reported. If this is the case, we visit the subtree
rooted at v in the following recursive manner:

If the children of v are not leaves, we scan the B
points associated to both of them, and report those with
a y-coordinate inside the query range. If all B points
associated to a child are reported, we recurse on that
child. If the children are leaves, we instead query the
base data structure stored on the associated points and
terminate thereafter.

As a side remark, observe that if we mark the point
with largest y-coordinate in each node, then all B points
associated to a node with a sibling on one of the two
paths are reported, iff the marked point associated to
the node is reported. Thus the above verification step
can be performed efficiently.

Analysis. The base data structures stored on the
points in the leaves uses O(n) space in total, since each
input point is stored in at most one such data structure.
There are O(n/`) = O(n/(B lg2 n)) leaves, each storing
O(lgf n) = O(lg n) data structures of the second type.
Since each such data structure uses O(B lg n) space, we
conclude that our data structure uses linear space in
total.

The query cost is O(1) I/Os for finding u1,u2 and
LCA(u1, u2). Reporting the points in u1,u2 and their
siblings costs O(1 + k/B) I/Os. Querying the second
base data structures in u1 and u2 also costs O(1 +k/B)
I/Os. Finally observe that we visit a node not on the
paths to u1 or u2 only if all B points associated to it are
reported. Since we spend O(f) = O(1) I/Os scanning
the points associated to children of such a node, we may
charge this to the output size, and we conclude that
our data structure answers queries in O(1 + k/B) I/Os,
assuming that our base data structure is available.

Lemma 2.2. If there exists a linear space data structure
for three-sided range reporting that answers queries in
O(1 + k/B) I/Os on bO(1) points on the grid [n] × [n],
then there exists a linear space data structure for three-
sided range reporting on n points in rank space, that
answers queries in O(1 + k/B) I/Os.

2.3 Base Data Structure In the following we de-
scribe our linear-space data structure that answers
three-sided range queries in O(1 + k/B) I/Os on bO(1)

points on the grid [n] × [n]. We use two different ap-
proaches depending on the disk block size:

If B = Ω(lg1/16 n), then we use the EM-PST of Arge
et al. This data structure uses linear space and answers
queries in O(lgB b

O(1) + k/B) = O(1 + k/B) I/Os since
b = Θ(B lg n) = O(B17).

The hard case is thus when B = o(lg1/16 n), which

implies b = o(lg17/16 n). We first show how we obtain
the desired query bound when the number of input
points is O(b1/8), and then extend our solution to any
constant exponent.

2.3.1 Very Few Input Points. In the following we
let m = O(b1/8) = o(lg17/108 n) denote the number
of input points. Note that if we reduce the m points
to rank space, then we can afford to store a table
with an entry for every possible input and query pair.
Unfortunately, we cannot simply store all answers to
queries, as we would need to map the reported points
back from rank space to their original coordinates,
potentially costing O(1) I/Os per reported point, rather
than O(1/B) I/Os. Our solution combines tabulation
with the notion of partial persistence to achieve the
desired query cost of O(1 + k/B) I/Os.

A dynamic data structure is said to be partially
persistent if it supports querying any past version of the
data structure. More formally, assume that the updates
to a dynamic data structure are assigned increasing
integer IDs from a universe [u]. Then the data structure
is partially persistent if it supports, given a query q and
an integer i ∈ [u], answering q as if only updates with
ID at most i had been performed. We think of these IDs
as time, and say that an update with ID i happened at
time i.

We observe that a partially persistent insertion-only
data structure for 1d range reporting solves the three-
sided range reporting problem: Sweep the input points
to the three-sided problem from smallest y-coordinate
to largest. When a point p = (x, y) is encountered,
we insert p into the 1d data structure using x as its
coordinate, and y as the time of the insertion. To answer
a three-sided query [x1, x2] × (−∞, y], we query the
1d data structure with range [x1, x2] at time y. This

clearly reports the desired points. In the following we
therefore devise an insertion-only 1d range reporting
data structure, and then show how to make it partially
persistent.

1d Insertion-Only Range Reporting. Our 1d
data structure consists of a simple linked list of disk
blocks. Each block stores a set of at most B − 1
inserted points, and we maintain the invariant that all
coordinates of points inside a block are smaller than all
coordinates of points inside the successor block. Note
however that we do not require the points to be sorted
within each block. Initially we have one empty block.

When a point p is inserted with coordinate x, we
scan through the linked list to find the block containing
the predecessor of x. We add p to that block. If the
block now contains B points, we split it into two blocks,
each containing B/2 points. We partition the points
around the median coordinate, such that all points
inside the first block have smaller coordinates than those
in the second. This clearly maintains our invariant.

To answer a query [x1, x2] we assume for now that
we are given a pointer to the block containing the
predecessor of x1. From this block we scan forward in
the linked list, until a block is encountered where some
point has coordinate larger than x2. In the scanned
blocks, we report all points that are inside the query
range. Because of the ordering of points among blocks,
this answers the query in O(1 + k/B) I/Os.

Partial Persistence. We now modify the inser-
tion algorithm to make the data structure partially per-
sistent:

1. When a block splits, we do not throw away the old
block, but instead maintain it on disk. We also
assign increasing integer IDs to each created block,
starting from 1 and incrementing by one for each
new block.

2. We store an array with one entry for each block ID.
Entry i stores a pointer to the block with ID i.

3. Whenever a successor pointer changes, we do not
throw away the old value. Instead, each block
stores (a pointer to) a Fusion Tree that maintains
all successor pointers the block has had. Thus
when a successor pointer changes, we insert the new
pointer into the Fusion Tree with key equal to the
time of the change.

4. Finally, we augment each point with its insertion
time.

Note that once a block splits, the old block will not
receive further updates. The blocks that have not yet

split after a sequence of updates constitutes the original
data structure after the same updates, and these are the
only blocks we update during future insertions.

We answer a query [x1, x2] at time y in the following
way: Assume for now that we can find the ID of the
block that contained the predecessor of x1 at time y.
Note that this block might have split at later updates,
but is still stored in our data structure. We use the
array and the ID to retrieve this block, and from there
we simulate the original query algorithm. When the
original query algorithm requests a successor pointer,
we find the predecessor of y in that block’s Fusion Tree,
yielding the successor pointer of the block at time y.
We stop when a block containing a point inserted at
time at most y and having coordinate larger than x2 is
encountered. For all the blocks scanned through this
procedure, we report the points that are in the query
range and were inserted at time at most y. This answers
the query correctly as the blocks scanned contain all
points that would have been scanned if the query was
asked at time y, and potentially some more points
inserted after time y.

By Lemma 2.1 we get that each predecessor search
costs O(1) I/Os since we have at most m = O(b1/8)
successor pointer updates. Thus the total query cost is
O(1+k/B) I/Os since the successor of a block at time y
contains at least B/2 points that were inserted at time
at most y, which allows us to charge the predecessor
search to the output size. To argue that the space of
our data structure is linear, we charge splitting a block
to the at least B/2 insertions into the block since it was
created. Splitting a block increases the number of used
disk blocks by O(1), so we get linear space usage.

Three-Sided Range Reporting. The only thing
preventing us from using the partially persistent data
structure above to solve the three-sided range reporting
problem, is a way to find the ID of the block containing
the predecessor of x1 at time y. For this, we use
tabulation.

The key observation we use for retrieving this ID is
that if we reduce the coordinates of the input points for
the three-sided range reporting problem to rank space
before inserting them into the partially persistent 1d
data structure, then only the coordinates of points and
the update time of each successor pointer changes, i.e.,
the ID of the block containing a particular point remains
the same. Thus we create a table with an entry for
every input and query pair to the three-sided range
reporting problem in rank space. Each entry of the table
contains the ID of the block in the partially persistent
1d structure from which the query algorithm must start
scanning.

To summarize, we solve the three-sided range re-

porting problem by building the partially persistent 1d
data structure described above. We then store two Fu-
sion Trees, one on the x-coordinates and one on the
y-coordinates of the input points. These allow us to re-
duce a query to rank space. Furthermore, we store a
table mapping input and query pairs in rank space to
block IDs. Finally, we store an integer that uniquely
describes the input point set in rank space (such an
integer easily fits in lg n bits). To answer a query
[x1, x2] × (−∞, y], we use the Fusion Trees to map the
query to rank space wrt. the input point set. We then
use the unique integer describing the input set, and the
query coordinates in rank space, to perform a lookup
in our table, yielding the ID of the block containing
the predecessor of x1 at time y. Finally, we execute
the query algorithm for the original query (not in rank
space) on the partially persistent 1d data structure, us-
ing the ID to locate the starting block.

Since there are m = O(b1/8) input points, we get
reduction to rank space in O(1) I/Os by Lemma 2.1.
Querying the 1d data structure costs O(1 + k/B) I/Os
as argued above, thus we conclude:

Lemma 2.3. There exists a linear space data structure
for three-sided range queries on O(b1/8) points on the
grid [n]× [n], that answers queries in O(1 +k/B) I/Os.

2.3.2 Few Points In this section we extend the
result of the previous section to give a linear space
data structure that answers three-sided range queries in
O(1 + k/B) I/Os on bO(1) points when B = o(lg1/16 n).

Let m = bO(1) denote the number of input points.
We construct the EM-PST layout described in Sec-
tion 2.1 on the input points, using branching parameter
f = b1/16 and leaf parameter ` = B. The height of
the constructed tree T is O(1). In each internal node v
of T , we store the data structure of Lemma 2.3 on the
O(fB) = O(b1/8) points associated to the children of v.

We answer a query [x1, x2] × (−∞, y] using an
approach similar to the one employed in Section 2.2.
We first find the two leaves u1 and u2 containing the
predecessors of x1 and x2 among points stored in leaves.
This can easily be done using Fusion Trees stored on the
split values in each node of T . To report the points in
the query range that are associated to a node on the
two paths from the root to u1 and u2, we simply scan
the points associated to each node on the paths. What
remains are the subtrees hanging off the query paths.
These are the subtrees with a root node that is not on
the query paths, but which has a parent on the query
paths. These subtrees are handled by first traversing
the two paths from LCA(u1, u2) to u1 and u2 (subtrees
hanging off at a higher node cannot contain points inside
the x-range of the query). In each node v on these paths,

we query the data structure of Lemma 2.3 with a slightly
modified query range: In a node v on the path to u1, we
increase x1 to not include x-coordinates of points in the
child subtree containing u1. Similarly, on the path to u2,
we decrease x2 to not include x-coordinates of points in
the child subtree containing u2. This can easily be done
by a predecessor search on the split values. We finish by
recursing into each child from which all B points were
reported. Here we again query the data structure of
Lemma 2.3 and recurse on children where all points are
reported.

For the subtrees hanging off the query path, we only
recurse into a node v if all B points associated to v are
reported. There we spend O(1 + k′/B) I/Os querying
the data structure of Lemma 2.3 where k′ denotes the
output size of the query among points associated to
children of v. We charge all this to the output size.
Finally, the height of T is O(1), and we spend O(1)
I/Os in each node on the paths from the root to u1 and
u2, thus we conclude that our data structure answers
queries in O(1 + k/B) I/Os. For the space, simply
observe that each points is stored in only one data
structure of Lemma 2.3. We therefore get

Lemma 2.4. There exists a linear space data structure
for three-sided range reporting on bO(1) points on the
grid [n]× [n], that answers queries in O(1 +k/B) I/Os.

If we combine Lemma 2.2 and 2.4 we finally get
our main result:

Theorem 2.1. There exists a linear space data struc-
ture for three-sided range reporting on n points in rank
space, that answers queries in O(1 + k/B) I/Os.

3 Colored range and prefix reporting

Colored range reporting. Our optimal solution
for three-sided range reporting in rank space immedi-
ately gives an optimal solution to the one-dimensional
colored range reporting problem in rank space. In this
problem, we are given sets C1, . . . , Cm ⊆ {1, . . . , σ}, and
are to preprocess them into a data structure that sup-
ports queries of the form: Given indices (a, b), report
the set

⋃
a≤i≤b Ci. We think of each Ci as an ordered

set of colors, hence the name colored range reporting.
Our optimal solution to this problem follows from a

simple and elegant reduction described in [19]. Below,
we present the reduction as it applies to our problem.

First think of each set Ci as a set of one-dimensional
colored points. The set Ci translates to the |Ci| one-
dimensional points {pi,c | c ∈ Ci}. Here the coordinate
of the point pi,c is i and its color is c. We transform
these sets of points into a colored one-dimensional
point set S in rank space, simply by using the colors

to break ties on the coordinates. More formally, we
replace each point pi,c by the point p′i,c with coordinate

i′ = |(Ci)≤c| +
∑i−1
j=1 |Cj |. Here |(Ci)≤c| denotes the

number of colors in Ci that are less than or equal to
c. Finally, we transform S into a two-dimensional point
set S̄ without colors, by mapping each colored point
p′i,c ∈ S to the two-dimensional point (i′,pred(i′, c))
where pred(i′, c) gives the largest coordinate j ≤ i′, such
that there is a point in S with coordinate j and color c.

To answer a query (a, b), we simply ask the three-
sided query [a′, b′] × (−∞, a′ − 1] on S̄. Here a′ = 1 +∑a−1
j=1 |Cj | and b′ =

∑b
j=1 |Cj |. The correctness follows

from the fact that for each color c with a point in the
range [a, b], there is precisely one point in S that has a
color c inside the range [a′, b′], and also has a predecessor
of color c before a′. It follows that precisely the same
point is inside the query range [a′, b′]× (−∞, a′ − 1] in
S̄, and thus we report one point for each color inside
the query range [a, b]. If we augment points in S̄ with
the color of the point mapping to it, this returns the set
of colors inside the query range. Note that the values a′

and b′ can be obtained by table lookups in O(1) I/Os,
so we can conclude:

Theorem 3.1. There is a linear space data structure
for one-dimensional colored range reporting in rank
space that answers queries in O(1 + k/B) I/Os.

Colored prefix reporting. We now consider the
following problem: Given a set S of strings, each O(1)
disk blocks in length, and a function c : S → 2{1,...,σ},
support queries of the kind: Given a string p, report the
set

⋃
x∈S∩p∗ c(x), where p∗ denotes the set of strings

with prefix p. Building on work of Alstrup et al. [7],
Belazzougui et al. [13] have shown the following:

Theorem 3.2. Given a collection S of n strings, there
is a linear space data structure that, given a string p of
length O(B), returns in O(1) I/Os: 1) The interval of
ranks (within S) of the strings in S ∩ p∗, and 2) The
longest common prefix of the strings in S ∩ p∗.

In particular, the first item means that we have a
reduction of prefix queries to range queries in rank space
that works in O(1) I/Os and linear space. Combined
with Theorem 3.1 this implies an optimal solution for
colored prefix reporting, for prefixes of length O(B).

4 Top-k colored prefix reporting

Suppose that we are interested in reporting just the k
first colors in {1, . . . , σ} that match a prefix query p,
where k is now a parameter of the data structure. As in
Section 3 we focus on the case where p has length O(B).

T
409

A
316

N
259

R
61

Z
39

A
38

O
2

G
12

P
301

E
297

S
228

R
245

T
197

M
201

Figure 1: Part of a trie. Each node is annotated with the
number of distinct colors of strings in the subtree below.
For example, there are 61 colors of strings with prefix
TAR. The shaded nodes are those for which we explicitly
store the top-k list of colors for k = 1000. Queries on
other prefixes are handled by reading all lists of colors in
the nearest shaded nodes in the subtree. For example,
a query on TAR would be answered by reading the lists
corresponding to TARZA, TARZO, and TARG.

The techniques in the previous sections do not seem to
lead to optimal results in the I/O model. However, if we
consider a more powerful, yet arguably realistic, model
with parallel data access, it turns out that a simple data
structure can provide optimal bounds.

We will use the notation topk(Σ) to denote the
largest k elements of a set Σ (where topk(Σ) = Σ if |Σ| <
k). For convenience, we make the standard assumption
that all strings in S end with a special character “$”
which does not appear elsewhere in the input strings.
We note that appending a special character to the end
of each string in S does not change the set of strings
matching a given prefix p.

Scatter-I/O model. We consider a special case
of the parallel disk model [28] where there are B disks,
and each block contains a single word. (Notice that
we use B differently than one would for the parallel
I/O model.) A single I/O operation thus consists
of retrieving or writing B words that may be placed
arbitrarily in storage. To distinguish this from a normal
I/O operation, we propose the notation sI/O (for scatter
I/Os). This model abstracts (and idealizes) the memory
model used by IBM’s Cell architecture [15], which
has been shown to alleviate memory bottlenecks for
problems such as BFS [26] that are notoriously hard
in the I/O model [23].

4.1 Our data structure We construct a collection
Sk consisting of prefixes of strings in S. For each
p ∈ Sk we explicitly store the color set ck(p) =
topk(

⋃
x∈S∩p∗ c(x)). Figure 1 shows part of a trie for

a string collection S, with nodes corresponding to Sk
shaded. Recall that we use p∗ to denote the set of all
strings with prefix p. Given a prefix p, there is a minimal
subset Sp ⊆ Sk ∩ p∗ that covers p in the sense that any
string in S∩p∗ has a string in Sp as a prefix. In Figure 1
we see that TAR is covered by the set TARZA, TARZO,
and TARG. The result of a query for p will be computed
as topk(

⋃
x∈Sp

c(x)).

Choice of Sk. Before giving the formal definition
we present an example with reference to Figure 1.
Suppose that k = 1000 and that it has already been
determined that TES, TERT, and TERM are in Sk. In
determining whether TER should be added to Sk we
consider the number of colors that we would need to
read to answer a query on TER in both cases. If TER 6∈
Sk we can read the lists ck(TERT) and ck(TERM), of
total length 197+201. This is within a factor of two from
the cost of reading the 245 distinct colors directly, so we
will not save much by including TER in Sk. Once we
have decided that TER6∈ Sk we can consider the prefix
TE. A query for ck(TE) can be answered by reading the
lists ck(TES), ck(TERT) and ck(TERM) of total length
228 + 197 + 201. This is more than twice the size of
ck(TE), 297, and for this reason we take TE∈ Sk such
that ck(TE) is stored explicitly.

Formally, we give an inductive definition of Sk
where prefixes of strings in S are considered in order
of decreasing length. Prefix p is included in Sk if either
p ∈ S or the following condition holds:

∑
x∈Sp

|ck(x)| >
2|
⋃
x∈Sp

ck(x)|. Since Sp depends only on prefixes
longer than p, this is well-defined. Intuitively, we build
a data structure for ck(p) if this will reduce the cost of
reading all elements in ck(p) by a factor of more than 2.
This happens if more than half of the elements in the
multiset

⋃
x∈Sp

ck(x) are duplicates.

Support structure. For each prefix p of a string
in S we store the sequence of pointers to the nodes
Sp ⊆ Sk that cover p. Using a hash table the list of
a prefix p can be retrieved in O(1) I/Os.

Space usage. The following accounting argument
shows that the total space usage for the stored lists is
O(

∑
x∈S |ck(x)|). Since no string in S is a prefix of

another (they all end with the special character “$”),
each |ck(x)| is at most |c(x)| and hence the space usage
is linear in the size of the data:

For each x ∈ S place |ck(x)| credits on x — this
is

∑
x∈S |ck(x)| credits in total. If we build a data

structure for a prefix p, the lists merged to form it have
a total of at least 2|ck(p)| credits. This is enough to
pay for the space used, ck(p) credits, and for placing
|ck(p)| credits on p. By induction, we can pay for all

lists constructed using the original credits, which implies
linear space usage.

The support structure uses space O(mB): There
can be at most O(B) pointers to a given node, one for
each ancestor in the trie, i.e., O(mB) pointers in total.

Queries. On a query for a prefix p we use the
support structure to identify the set Sp of lists that
should be read to form the result, and the number
of items to read from each. The total number of
elements in these lists, including duplicates, is at most
2k by the way we constructed Sk (if there were more,
a merged list would have been created). Since we
can read O(k) positions in memory that contain all k
elements to be reported, it is trivial to retrieve them
in O(1 + k/B) sI/Os. This is the only point where we
use the extra power of the model — all previous steps
involve standard I/Os.

5 Open problems

An obvious question is if our results for the I/O model
can be extended to the cache-oblivious model [18]. Also,
it would be interesting to investigate whether our results
can be obtained with the indivisibility assumption, or if
the problem separates the I/O model with and without
the indivisibility assumption. Finally, it would be
interesting to see if top-k colored prefix (and range)
reporting admits an efficient solution in the I/O model,
or if the top-k version separates the I/O and scatter I/O
models.

Acknowledgement. We thank ChengXiang Zhai for
making us aware of query relaxation in information
retrieval.

References

[1] P. Afshani. On dominance reporting in 3D. In Proc.
16th European Symposium on Algorithms, pages 41–51,
2008.

[2] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In
Proc. 50th IEEE Symposium on Foundations of Com-
puter Science, pages 149–158, 2009.

[3] P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious
range reporting with optimal queries requires superlin-
ear space. In Proc. 25th ACM Symposium on Compu-
tational Geometry, pages 277–286, 2009.

[4] P. Afshani and N. Zeh. Improved space bounds
for cache-oblivious range reporting. In Proc. 22nd
ACM/SIAM Symposium on Discrete Algorithms, pages
1745–1758, 2011.

[5] P. K. Agarwal, L. Arge, A. Danner, and B. Holland-
Minkley. Cache-oblivious data structures for orthogo-
nal range searching. In Proc. 19th ACM Symposium
on Computational Geometry, pages 237–245, 2003.

[6] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31:1116–1127, 1988.

[7] S. Alstrup, G. Brodal, and T. Rauhe. Optimal static
range reporting in one dimension. In Proc. 33rd ACM
Symposium on Theory of Computation, pages 476–482,
2001.

[8] S. Alstrup, G. S. Brodal, and T. Rauhe. New data
structures for orthogonal range searching. In Proc.
41st IEEE Symposium on Foundations of Computer
Science, pages 198–, 2000.

[9] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen.
Cache-oblivious planar orthogonal range searching and
counting. In Proc. 21st ACM Symposium on Compu-
tational Geometry, pages 160–169, 2005.

[10] L. Arge, V. Samoladas, and J. S. Vitter. On two-
dimensional indexability and optimal range search in-
dexing. In Proc. 18th ACM Symposium on Principles
of Database Systems, pages 346–357, 1999.

[11] L. Arge and N. Zeh. Simple and semi-dynamic
structures for cache-oblivious planar orthogonal range
searching. In Proc. 22nd ACM Symposium on Compu-
tational Geometry, pages 158–166, 2006.

[12] H. Bast and I. Weber. Type less, find more: fast
autocompletion search with a succinct index. In
Proc. 29th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 364–371, 2006.

[13] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast
prefix search in little space, with applications. In Proc.
18th European Symposium on Algorithms, pages 427–
438, 2010.

[14] G. S. Brodal, A. C. Kaporis, S. Sioutas, K. Tsakalidis,
and K. Tsichlas. Dynamic 3-sided planar range queries
with expected doubly logarithmic time. In Proc. 20th
International Symposium on Algorithms and Compu-
tation, pages 193–202, 2009.

[15] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata.
Cell Broadband Engine Architecture and its first
implementation—A performance view. IBM Journal of
Research and Development, 51(5):559–??, Sept. 2007.

[16] M. L. Fredman and D. E. Willard. Surpassing the in-
formation theoretic bound with fusion trees. Journal of
Computer and System Sciences, 47(3):424–436, 1993.
See also STOC’90.

[17] O. Fries, K. Mehlhorn, S. Näher, and A. Tsakalidis. A
log log n data structure for three-sided range queries.
Information Processing Letters, 25:269–273, June 1987.

[18] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In Proc.
40th IEEE Symposium on Foundations of Computer
Science, pages 285–297, 1999.

[19] P. Gupta, T. Hyderabad, R. Janardan, and M. Smid.
Computational geometry: Generalized intersection
searching, June 19 2003.

[20] J. Iacono and M. Pǎtraşcu. Using hashing to solve
the dictionary problem (in external memory). In Proc.
23rd ACM/SIAM Symposium on Discrete Algorithms,

2012. To appear.
[21] A. Kaporis, A. N. Papadopoulos, S. Sioutas, K. Tsaka-

lidis, and K. Tsichlas. Efficient processing of 3-sided
range queries with probabilistic guarantees. In Proc.
13th International Conference on Database Theory,
pages 34–43.

[22] E. M. McCreight. Priority search trees. SIAM Journal
on Computing, 14(2):257–276, 1985.

[23] K. Mehlhorn and U. Meyer. External-memory
breadth-first search with sublinear I/O. In Proc. 10th
European Symposium on Algorithms, volume 2461 of
Lecture Notes in Computer Science, pages 723–735,
2002.

[24] Y. Nekrich. External memory range reporting on
a grid. In Proc. 18th International Symposium on
Algorithms and Computation, pages 525–535, 2007.

[25] Y. Nekrich. I/O-efficient point location in a set of
rectangles. In Proc. 8th Latin American Theoretical
Informatics Symposium, pages 687–698, 2008.

[26] D. P. Scarpazza, O. Villa, and F. Petrini. Effi-
cient breadth-first search on the cell/BE processor.
IEEE Transactions on Parallel and Distributed Sys-
tems, 19(10):1381–1395, 2008.

[27] D. E. Vengroff and J. S. Vitter. Efficient 3-D range
searching in external memory. In Proc. 28th ACM
Symposium on Theory of Computation, pages 192–201,
1996.

[28] J. S. Vitter and E. A. M. Shriver. Algorithms for
parallel memory I: Two-level memories. Algorithmica,
12(2/3):110–147, 1994.

[29] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2):6:1–6:56,
Mar. 2006.

