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ABSTRACT
In this paper we present a number of improved lower bounds
for range searching in the pointer machine and the group
model. In the pointer machine, we prove lower bounds for
the approximate simplex range reporting problem. In ap-
proximate simplex range reporting, points that lie within a
distance of ε ·diam(s) from the border of a query simplex s,
are free to be included or excluded from the output, where
ε ≥ 0 is an input parameter to the range searching problem.
We prove our lower bounds by constructing a hard input set
and query set, and then invoking Chazelle and Rosenberg’s
[CGTA’96] general theorem on the complexity of navigation
in the pointer machine.

For the group model, we show that input sets and query
sets that are hard for range reporting in the pointer ma-
chine (i.e. by Chazelle and Rosenberg’s theorem), are also
hard for dynamic range searching in the group model. This
theorem allows us to reuse decades of research on range re-
porting lower bounds to immediately obtain a range of new
group model lower bounds. Amongst others, this includes
an improved lower bound for the fundamental problem of
dynamic d-dimensional orthogonal range searching, stating
that tqtu = Ω((lgn/ lg lgn)d−1). Here tq denotes the query
time and tu the update time of the data structure. This
is an improvement of a lg1−δ n factor over the recent lower
bound of Larsen [FOCS’11], where δ > 0 is a small constant
depending on the dimension.
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1. INTRODUCTION
Range searching is one of the most fundamental topics

in computational geometry. Here the goal is to represent
an input set of geometric objects, i.e. maintain a data
structure, such that given a query range, one can efficiently
compute various statistics over the input objects intersect-
ing the query. The input objects are typically points in
d-dimensional space and the most common query ranges are
axis-aligned rectangles, simplices, halfspaces and balls. The
type of information computed when answering a query in-
cludes counting the number of input objects in the inter-
section (range counting), reporting the k objects in the in-
tersection (range reporting), determining whether the inter-
section is empty (range emptiness) and computing the sum
of a set of weights assigned the input objects in the inter-
section (weighted range counting and range searching in the
semi-group and group model).

In this paper we present improved lower bounds for a num-
ber of range searching problems. In the pointer machine
model, we present the first lower bounds for approximate
simplex range reporting. Secondly, we present a new pow-
erful theorem for proving lower bounds for dynamic range
searching in the group model. This theorem allows us to
reuse decades of research in pointer machine range report-
ing lower bounds to immediately obtain a range of improved
group model lower bounds.

1.1 Range Reporting in the Pointer Machine
The pointer machine model was introduced in 1979 by

Tarjan [18]. In this model, a range reporting data structure
is represented by a directed graph. Each node of the graph
may store either an input object or some auxiliary data. The
nodes have constant out-degrees and one node is designated
as the root. When answering a query, the data structure
starts by reading the root node. The data structure then
examines the contents of that node and if the node stores
an input object, the data structure may choose to report



that object if it intersects the query range. Following that,
it either terminates or selects an edge leaving the root and
retrieves the node pointed to by that edge. This process
continues, where at each step, the data structure selects an
edge leaving one of the previously seen nodes and retrieves
the node pointed to by that edge. When the process ter-
minates, we require that all input objects that intersects
the query range have been reported, i.e. each reported in-
put object must be stored in at least one of the explored
nodes. Thus a data structure in the pointer machine model,
is a data structure where all memory accesses are through
pointers and random accesses are disallowed.

The space of a pointer machine data structure is defined
as the number of nodes in the corresponding graph, and the
query time is the number of nodes explored when answering
a query.

While the pointer machine model is somewhat constrained
compared to the popular word-RAM model, there are several
motivations for studying the complexity of range searching
in this model. First and foremost, we can prove polynomi-
ally high and often very tight lower bounds in this model.
This stands in sharp contrast to the highest query time lower
bound for any static data structure problem in the word-
RAM (or cell probe model), which is a mere Ω(lg n/ lg lgn),
see e.g. [17]. Additionally, most word-RAM range reporting
upper bounds are really pointer-based, or can easily be im-
plemented without random accesses with a small overhead,
typically at most an O(lgn) multiplicative cost in the query
time and/or space. Thus pointer machine lower bounds in-
deed shed much light on the complexity of range reporting
problems.

Previous Results.
With only a few exceptions (see [1, 3]), lower bounds for

range reporting in the pointer machine model have all been
proved by appealing to a theorem initially due to Chazelle [5]
and later refined by Chazelle and Rosenberg [10]. Since our
lower bounds also rely on this theorem, we introduce it in
the following: First, let P be a set of input objects to a
range searching problem and let R be a set of query ranges.
Then we say that R is (t, h)-favorable if

1. |R ∩ P | ≥ t for all R ∈ R.

2. |R1∩R2∩· · ·∩Rh∩P | = O(1) for all sets of h different
queries R1, . . . , Rh ∈ R.

Letting k denote the output size of a query, Chazelle and
Rosenberg proved that

Theorem 1 (Chazelle and Rosenberg [10]). Let P
be a set of n input objects to a range searching problem and
R a set of m query ranges. If R is (Ω(tq), h)-favorable, then
any pointer machine data structure for P with query time
tq +O(k) must use space Ω(mtq/h).

This theorem completely reduces the task of proving pointer
machine range reporting lower bounds to a geometric prob-
lem of constructing a hard input and query set. In the case
of simplex range reporting, Chazelle and Rosenberg [10] used
this theorem to prove that any pointer machine data struc-
ture with query time tq + O(k) for d-dimensional simplex
range reporting must use space Ω((n/tq)

d−ε), where ε > 0
is an arbitrarily small constant. Thus to obtain a query
time as inefficient as O(

√
n+ k) for simplex range reporting

in R10, one needs space almost Ω(n5). This is extremely
prohibitive for most natural applications.

Because of the high space/time requirement for most ex-
act range reporting problems, researchers also look at the
approximate version of the question: for a query range s,
if an input object is within distance ε · diam(s) from the
boundary of s, the data structure has the freedom to arbi-
trarily include or exclude it from the output. There is an
extensive literature in this area but the result most rele-
vant to us, is the data structure by Arya, da Fonseca, and
Mount [4] for approximate simplex range searching in the
semi-group model. Their data structure answers queries in

O(lgn+lg(1/ε)+1/εd−1−u) time and uses O(n/ε
u2d
d−1 ) space

for any integer u ≥ 0. While their data structure is for semi-
group range searching, they briefly describe a data structure
for reporting with the same space and query time, except for
an additional linear term in the number of reported points.
We are not aware of any previous lower bounds for approxi-
mate range reporting for any kind of ranges despite the long
history of the problem.

Since favorable query sets play an important role in our
group model results, we also mention a number of previ-
ous favorable query set constructions. All these results were
used to prove pointer machine range reporting lower bounds
by invoking Theorem 1. Chazelle [5] (or alternatively [6]),
showed that one can construct a (t, 2)-favorable set of Θ(n/t·
(lgn/ lg t)d−1) queries for orthogonal range reporting in d-
dimensional space. Henceforth, t = Ω(1) is an adjustable
parameter. We note that the input to orthogonal range re-
porting is a set of n points and the queries are axis-aligned
rectangles. For the “dual” problem of d-dimensional rect-
angle stabbing (the input is n axis-aligned rectangles and a
query asks to report all rectangles containing a query point),
Afshani, Arge and Larsen [2] showed that one can construct

a (t, 2)-favorable set of n/t · 2Θ
(

lg n

t1/(d−1)

)
queries. For line

range reporting (the input consists of n two-dimensional
points and a query asks to report all points on a query line),
a classical construction of Erdös (see e.g. [14]) shows that

one can construct a (Θ(n1/3), 2)-favorable set of n query
lines. Finally, for convex polytope intersection reporting in
R3 (the input is an n-vertex convex polytope and a query
asks to report all edges of the polytope intersecting a query
plane), Chazelle and Liu [8] showed that one can construct
a (t, 2)-favorable set of Θ(n2/t3) query planes.

1.2 Range Searching in the Group Model
The group model was introduced in 1982 by Fredman [11].

In this model, each input object to a range searching prob-
lem is assigned a weight from a commutative group and the
goal is to preprocess the input into a collection of precom-
puted group elements, such that one can efficiently compute
the group sum of the weights assigned to all input objects
intersecting a query range. In this paper, we focus on dy-
namic range searching in the group model. Here a data
structure must also support updating the weights assigned
to the input objects (while the set of input objects is fixed).

Since the group model was first introduced, there has been
two slightly different definitions of dynamic data structures
in the group model. These types of data structures have
been named weakly oblivious and oblivious data structures,
respectively. The lower bounds we prove apply to oblivious
data structures:



Oblivious Data Structures.
An oblivious data structure in the group model (see [11]

or [13]), is a dynamic data structure with no understand-
ing of the particular group in question, i.e. it can only ac-
cess and manipulate weights through black-box addition and
subtraction. Thus from the data structure’s point of view,
each precomputed group element is just a linear combina-
tion over the weights assigned to the input objects. When
answering a query, such a data structure adds and subtracts
a subset of these linear combinations (another linear com-
bination) to finally yield the linear combination summing
exactly the weights assigned to the input objects intersect-
ing the query range. When given an update request, the
data structure simply re-evaluates every precomputed group
element for which the weight of the updated input object
occurs with non-zero coefficient in the corresponding linear
combination.

We define the query time of an oblivious data structure
as the number of precomputed group elements used when
answering a query, and the update time is defined as the
number of linear combinations that need to be re-evaluated
when updating the weight of an input object. For a more
formal definition, see Section 2.

We note that weakly oblivious data structures differ from
oblivious data structures, in that they are allowed slightly
more elaborate update procedures and therefore lower bounds
proved for weakly oblivious data structures also apply to
oblivious data structures. For a definition of weakly oblivi-
ous data structures, we refer the reader to [13].

Previous Results.
Proving high lower bounds in the group model has until

very recently remained a great barrier. When Fredman [11]
defined the model, he proved a lower bound of Ω(n lgn)
over a sequence of n updates and queries to the partial sums
problem (which is the special case of 1-d orthogonal range
searching where the points have coordinates 0, . . . , n − 1).
This bound holds for oblivious data structures. Follow-
ing that, Fredman and Saks [12] proved an Ω(n lgn/ lg lgn)
lower bound for the same problem, which does however hold
for weakly oblivious data structures.

Chazelle [6, 7] later proved lower bounds for offline range
searching in the group model. He also proved a lower bound
of Ω(n lgn) for offline two-dimensional halfspace range search-
ing [7]. The input to the offline halfspace range searching
problem is a set of n query halfspaces and n input points,
each assigned a weight from a commutative group, and the
goal is to compute for every query halfspace, the group
sum of the weights assigned to the points contained therein.
In [6] he considered offline two-dimensional orthogonal range
searching and proved a lower bound of Ω(n lg lgn). Both
these lower bounds were established using a general theo-
rem for proving lower bounds for offline range searching in
the group model: Letting A denote the incidence matrix
corresponding to the input set of points and queries (i.e.
the matrix with one row for each query Ri and one column
for each point pj , such that entry ai,j is 1 if pj ∈ Ri and it
is 0 otherwise), Chazelle showed that for any 1 ≤ k ≤ n, if
λk denotes the k’th largest eigenvalue of A, then the offline
problem requires Ω(k · lg(λk)) time [7]. Thus proving of-
fline group model lower bounds was reduced to constructing
input and query sets where the incidence matrix has large
eigenvalues.

The next step forward was by Pǎtraşcu and Demaine [16],
who improved the lower bound of Fredman and Saks to
Ω(n lgn), i.e. they matched the initial bound of Fredman,
but also for weakly oblivious data structures. Following
that, Pǎtraşcu [15] considered two-dimensional orthogonal
range searching and proved an Ω(lgn/ lg(s/n+ lgn)) query
time lower bound for the static case. Here s denotes the
space usage of the data structure. He also showed how to
extend this static lower bound to give a query time lower
bound of Ω((lgn/ lg(lgn + tu))2) for dynamic data struc-
tures with update time tu. This bound holds for weakly
oblivious data structures.

None of the above bounds exceed Ω((lgn/ lg lgn)2) per
query, and this barrier was not overcome until Larsen’s [13]
recent results. Larsen moved past this barrier by introducing
one additional restriction on oblivious data structures: Re-
call that an oblivious data structure stores group elements
corresponding to linear combinations over the weights as-
signed to the input objects, and it answers queries by again
computing linear combinations over the precomputed group
elements. Larsen defined the multiplicity of an oblivious
data structure as the largest absolute value of any coeffi-
cient in these linear combinations, and noted that all known
upper bounds use only coefficients amongst {−1, 0, 1}, i.e.
they have multiplicity 1. With this definition, he demon-
strated a connection between oblivious data structures and
the discrepancy of the corresponding range searching prob-
lem. The discrepancy, disc, of a range searching problem
with query ranges R, is the maximum over all sets P of n
input objects, of the deviation of the best 2-coloring of the
objects in P from an even coloring, i.e.

disc = max
P :|P |=n

min
χ:P→{−1,+1}

max
R∈R

|
∑

p∈R∩P

χ(p)|.

More precisely, Larsen’s main theorem states that tqtu =
Ω(disc2 /∆4 lgn), where tq is the worst case query time,
tu the worst case update time and ∆ is the multiplicity of
the data structure. Plugging in the vast amount of discrep-
ancy lower bounds, this relation immediately yielded a whole
range of polynomially high group model lower bounds for
data structures with constant multiplicity. The two bounds
most important to our work (stated here for constant mul-

tiplicity), is a lower bound of tqtu = Ω(n1/3/ lgn) for line

range searching and a bound of tqtu = Ω(lgd−2+µ(d) n) for
d-dimensional orthogonal range searching, where µ(d) > 0
is a small but strictly positive function of d.

1.3 Our Results
In the following two paragraphs, we present our new re-

sults for range searching in the group model and approxi-
mate range reporting in the pointer machine.

Our Group Model Results.
In Section 2, we present an alternative to Larsen’s connec-

tion to discrepancy theory. Our relation allows us to almost
immediately translate range reporting lower bounds in the
pointer machine to dynamic group model lower bounds for
data structures with bounded multiplicity. More specifically,
let P be a set of n input objects to a range searching prob-
lem and R a set of m query ranges over P . We say that R
is strongly (t, h)-favorable if

1. |R ∩ P | = Θ(t) for all R ∈ R.



2. |R1∩R2∩· · ·∩Rh∩P | = O(1) for all sets of h different
queries R1, . . . , Rh ∈ R.

3. |{R ∈ R | p ∈ R}| = O(mt/n) for all p ∈ P .

Thus a favorable query set is strongly favorable, if in ad-
dition, all query ranges contain roughly equally many in-
put objects and all input objects are contained in roughly
equally many query ranges. With this definition, we prove
the following result

Theorem 2. Let P be a set of n input objects to a range
searching problem and R a set of m ≤ n query ranges over
P . If R is strongly (t, 2)-favorable, then any oblivious data
structure for the range searching problem must have tqtu =
Ω(m2t/n2∆4) on the input set P . Here tq denotes the worst
case query time, tu the worst case update time and ∆ the
multiplicity of the data structure. For m = Θ(n) and ∆ =
O(1), this bound simplifies to tqtu = Ω(t).

Fortunately, all the favorable query sets described in Sec-
tion 1.1 are also strongly favorable. By adjusting the pa-
rameter t (in Section 1.1) such that the number of queries
in the favorable query sets is m = Θ(n) and m ≤ n, we
immediately obtain the following lower bounds (listed here
for constant multiplicity):

For d-dimensional orthogonal range searching, we get a
lower bound of

tqtu = Ω((lgn/ lg lgn)d−1).

Compared with the result of Larsen [13], this is an improve-

ment of a lg1−µ(d) n/(lg lgn)d−1 = Ω(lg1−δ n) factor, where
δ > 0 is some small constant. For rectangle stabbing, we
get a matching bound either by a reduction or from the
construction of Afshani, Arge and Larsen [2]. This again
improves over Larsen’s result [13] by a lg1−δ n factor. For

line range searching, we get a lower bound of tqtu = Ω(n1/3),
which is an improvement of a lg n factor over [13]. Addition-
ally, we get a lower bound for convex polytope intersection
searching in R3 of tqtu = Ω(n1/3) using the result of Chazelle
and Liu [8].

Our proof of Theorem 2 is based on carefully bounding
the eigenvalues of the incidence matrix corresponding to P
and R. In fact, we prove the following stronger theorem
during our establishment of Theorem 2:

Theorem 3. Let P be a set of n input objects to a range
searching problem, R a set of m query ranges over P and
A the corresponding incidence matrix. Then for every 3 ≤
k ≤ n, any oblivious data structure for the range searching
problem must have tqtu = Ω(λkk

2/mn∆4) on the input set
P . Here λk denotes the k’th largest eigenvalue of ATA, tq
the worst case query time of the data structure, tu the worst
case update time and ∆ the multiplicity of the data structure.

This theorem can be considered a complement to Chazelle’s
theorem [7] for establishing lower bounds on offline range
searching in the group model, however our dependence on λk
is exponentially better than the one of Chazelle. Using this
theorem, we also obtain a lower bound of tqtu = nΩ(1/ lg lgn)

for orthogonal range searching in non-constant dimension
d = Ω(lgn/ lg lgn) (see Section 2 for a proof).

Our Pointer Machine Results.
In Section 3, we give the first lower bound for approximate

range reporting in the pointer machine model. Specifically,
we show that for any fixed constant δ > 0, any data struc-
ture for approximate simplex range reporting that answers
a simplex query s in tq + O(k) time, where k is the num-
ber of points either inside s or within a distance ε · diam(s)
from the boundary of s, needs space at least nε1+δ−d/t1+δ

q .
This bound matches the upper bound from [4] up to a factor

εδd/(1+δ) when the space is Θ(n), but unfortunately there is
still a rather large gap between the two bounds in the rest
of the tradeoff.

2. THE GROUP MODEL
In this section, we present the proofs of Theorem 2 and

Theorem 3, relating range reporting in the pointer machine
and dynamic range searching in the group model. Before
starting our proof, we present an equivalent but more formal
definition of oblivious data structures (see [13] or [11]):

Oblivious Data Structures.
An oblivious data structure for a range searching problem,

is a factorization of each incidence matrix A, corresponding
to a set n input objects P and a set of m query ranges R,
into two matrices Q and D such that Q ·D = A.

The data matrix D ∈ Zs×n represents the precomputed
group sums stored by the data structure on input P . Each
of the s rows is interpreted as a linear combination over the
weights assigned to the n input objects, and we think of the
data structure as maintaining the corresponding group sums
when given an assignment of weights to the input objects.

The query matrix Q ∈ Zm×s specifies the query algorithm.
It has one row for each query R in R, and we interpret this
row as a linear combination over the precomputed group
elements, denoting which precomputed elements to add and
subtract when answering the query R on input set P .

The worst case query time of an oblivious data structure
is defined as the maximum number of non-zero entries in
a row of Q over all input sets P and query sets R. The
worst case update time is similarly defined as the maximum
number of non-zero entries in a column of D over all P .
The space of the data structure is the maximum number of
columns in Q (equivalently number of rows in D) over all
P and R. Finally, we define the multiplicity as the largest
absolute value of an entry in D and Q over all P and R.

We refer the reader to [13] or [11] for more intuition on
this definition.

2.1 Proofs of Theorem 2 and Theorem 3
In light of the above definition, proving lower bounds for

oblivious data structures boils down to arguing when an
incidence matrix cannot be factored into two sparse matrices
Q and D. The key insight here is, that for sparse matrices Q
and D with bounded coefficients, the product QD must have
small singular values (i.e. (QD)TQD has small eigenvalues).
Thus if A has large singular values, Q and D cannot be
sparse if QD = A. This is precisely the intuition behind our
proof of Theorem 3:

Proof of Theorem 3.
Let P , R and A be as in Theorem 3. Furthermore, let

QD = A be the factorization of A provided by an oblivi-



ous data structure, where Q is an m × s matrix such that
each row has at most tq non-zero entries and where D is an
s × n matrix where each column has at most tu non-zero
entries. Finally, let ∆ be the multiplicity of the oblivious
data structure, i.e. any coefficient in Q and D is bounded
in absolute value by ∆. Now let U(D)Σ(D)V (D)T be the
singular value decomposition of D. Here U(D) and V (D)
are unitary matrices and Σ(D) is a diagonal matrix where
the diagonal entries equals the singular values of D, i.e. if
we let γi(D

TD) ≥ 0 denote the i’th largest eigenvalue of
the n × n positive semi-definite matrix DTD, then the i’th
diagonal entry of Σ(D) is σi,i(D) =

√
γi(DTD). Similarly,

let U(Q)Σ(Q)V (Q)T be the singular value decomposition of
Q. Letting γi(Q

TQ) ≥ 0 denote the i’th largest eigenvalue
of QTQ, we have that the i’th diagonal entry of Σ(Q) is

σi,i(Q) =
√
γi(QTQ). Letting di,j denote entry (i, j) in D,

it now follows from DTD being square and real that∑
i

γi(D
TD) = tr(DTD) =

∑
i,j

d2
i,j ≤ tu∆2n,

where we used that the coefficients ofD are bounded in abso-
lute value by ∆. Similarly, we have

∑
i γi(Q

TQ) ≤ tq∆
2m.

Finally since γi(D
TD) and γi(Q

TQ) are non-negative for
all i, we conclude that γbk/2c(D

TD) = O(tu∆2n/k) and

γdk/2e−1(QTQ) = O(tq∆
2m/k).

Our last step is to bound from above the eigenvalues of
(QD)TQD. Letting γk((QD)TQD) denote the k’th largest
eigenvalue of (QD)TQD, we get from the Courant-Fischer
characterization of eigenvalues that

γk((QD)TQD) = min
S:dim(S)≥n−k+1

max
x∈S:‖x‖2=1

‖QDx‖22,

i.e. γk((QD)TQD) equals the minimum over all subspaces S
of Rn of dimension at least n−k+1, of the maximum square
of the stretch of a unit length vector x when multiplying with
QD. We thus aim to find a subspace S of dimension at least
n−k+1, such that every unit vector in S is scaled as little as
possible when multiplied with QD. We choose the subspace
S consisting of all vectors x, for which 〈vi(D), x〉 = 0 for
i = 1, . . . , bk/2c and 〈vi(Q), Dx〉 = 0 for i = 1, . . . , dk/2e−1.
Here 〈·, ·〉 denotes the standard inner product, vi(D) denotes
the i’th column vector of V (D) and vi(Q) denotes the i’th
column vector of V (Q). Clearly dim(S) ≥ n − k + 1. Now
let x ∈ S be a unit length vector and consider first the
product Dx = U(D)Σ(D)V (D)Tx. Since x is orthogonal
to the first bk/2c row vectors in V (D)T and since σi,i(D) =

O(
√
tun/k∆) for i ≥ bk/2c, we get that ‖Σ(D)V (D)Tx‖2 =

O(
√
tun/k∆). Since U(D) is unitary, this implies ‖Dx‖2 =

O(
√
tun/k∆). Finally, since Dx is orthogonal to the first

dk/2e − 1 row vectors of V (Q)T , we conclude ‖QDx‖22 =
O(tqtu∆4mn/k2). But ATA = (QD)TQD and thus it must
hold that tqtu = Ω(λkk

2/mn∆4). This completes the proof
of Theorem 3.

Proof of Theorem 2.
Let P andR be as in Theorem 2, i.e. R is a strongly (t, 2)-

favorable set of queries. Furthermore, let A be the m × n
incidence matrix corresponding to P and R, where m ≤ n.
Our proof is based on lower bounding the eigenvalues of
M = ATA, and then applying Theorem 3. We lower bound
these eigenvalues using the following theorem of Chazelle
and Lvov:

Theorem 4 (Chazelle and Lvov [9]). Let A be an m×
n real matrix where m ≤ n and let M = ATA. Then M has
at least

n

16 tr(M2)n/9 tr(M)2 − 7/9

eigenvalues that are greater than or equal to tr(M)/4n.

To use Theorem 4, we bound tr(M) and tr(M2). The
first is easily seen to be tr(M) =

∑
R∈R |R| = Ω(mt) and

the latter is bounded by

tr(M2) =
∑
R1∈R

∑
R2∈R

|R1 ∩R2|2

=
∑
R∈R

|R|2 +
∑
R1∈R

∑
R2∈R|R1 6=R2

|R1 ∩R2|2

= O(mt2) +∑
p∈P

∑
R1∈R|p∈R1

∑
R2∈R|p∈R2∧R1 6=R2

|R1 ∩R2|

= O(mt2) +
∑
p∈P

∑
R1∈R|p∈R1

∑
R2∈R|p∈R2∧R1 6=R2

O(1)

= O(mt2) +
∑
p∈P

O((mt/n)2)

= O(mt2).

Plugging these values into Theorem 4, we conclude that
M = ATA has Ω(nm2t2/mt2n) = Ω(m) eigenvalues greater
than Ω(mt/n). Finally invoking Theorem 3, we get that
tqtu = Ω(mt/n · m2/mn∆4) = Ω(m2t/n2∆4), which com-
pletes the proof of Theorem 2.

Implications.
As already mentioned in Section 1.2, we obtain a number

of lower bounds from Theorem 2 by reusing favorable query
sets constructed for proving pointer machine range reporting
lower bounds. Thus in the following, we only mention our
proof of the lower bound for orthogonal range reporting in
non-constant dimension d = Ω(lgn/ lg lgn).

For non-constant dimensions d = Ω(lgn/ lg lgn), Chazelle
and Lvov [9] showed one can construct a set of n points and n
query rectangles such that the corresponding incidence ma-
trix A satisfies tr(ATA) = n1+Ω(1/ lg lgn) and tr((ATA)2) =
O(tr(ATA)2/n). From Theorem 4, this means that ATA

has Ω(n) eigenvalues that are greater than nΩ(1/ lg lgn). The
result follows immediately from Theorem 3.

3. APPROXIMATE SIMPLEX RANGE RE-
PORTING

In this section we show our lower bounds for approximate
simplex range reporting in constant dimensions. The idea
of the proof is as follows. From the result by Chazelle and
Rosenberg [10], we know that thin slab (everything con-
tained between two parallel hyperplanes) queries are hard
for range reporting. Therefore, we consider a set of sim-
plex queries that approximate thin slabs and then appeal to
Theorem 1 and the properties of thin slabs shown in [10].
First, before proving the lower bound, we formally define
the notion of approximations for range reporting.

Definition 1. Given a query range R, define

R+ = {x| dist(x,R) ≤ ε diam(R)}



and R− = {x ∈ R| dist(x, ∂R) ≥ ε diam(R)} where ∂R is
the boundary of R.

For any given query range R, a data structure for approx-
imate range reporting should report all points inside R− and
none of the point outside R+.

We now define the approximate analog of favorable query
sets.

Definition 2. Let P be a set of points and R a set of
queries. Then R is (t, h)-approximate favorable for P if

1. The set {R−|R ∈ R} is (t, h)-favorable for P .

2. For any R ∈ R, |P ∩R+| = O(|P ∩R−|).

We get the following corollary of Theorem 1.

Corollary 1. Let P be a set of points and R a (tq, h)-
approximate favorable set of queries for P . If for any query
R ∈ R, a data structure can report all points in P ∩R− and
none outside P ∩R+ in time O(tq+|R+∩P |), then the space
used by the data structure is Ω(|R|tq/h).

Proof. Since |R+ ∩P | = O(R− ∩P ), the data structure
satisfies the condition of Theorem 1 with respect to the query
set {R−|R ∈ R} and the corollary follows immediately.

Now we construct our set R of (tq, h)-approximate favor-
able queries for d-dimensional approximate simplex range
reporting. First select a set of m = ε1+δ−d/t1+δ

q uniform

random points in [0, 1]d−1, for an arbitrary fixed constant
δ > 0. Then map each point (x1, . . . , xd−1) to Θ(1/ε) points
using the map

(x1, . . . , xd−1)→ 10εd3i(x1 + 1, . . . , xd−1 + 1, 2)

where i ranges over integers such that 1/2 ≤ 20εd3i ≤ 3/4.
For each new point p, consider the slab Hp,2εd2 = {x ∈
[0, 1]d

∣∣ |〈x, p〉 − |p|2| ≤ 2εd2|p|}. The intersection of each

such slab and [0, 1]d−1 × R forms a parallelotope Ip. Let
I ′p = Hp,4εd2 ∩ [−2εd2, 1+2εd2]d−1×R. Let up,0 be a vertex
of I ′p and up,1, . . . , up,d be its neighboring vertices of I ′p. Let
Rp be the simplex whose vertices are up,0 and up0 +d(up,i−
up,0) for i = 1, . . . , d. The query set R is the set of all
Rp’s constructed above. Also define the parallelotope Op =
Hp,10εd3 ∩ [−2d, 2d]d−1 ×R. First, we show some properties
of the constructed queries.

Lemma 1. For any query Rp in the query set R, Ip ⊂
R−p ⊂ Rp ⊂ R+

p ⊂ Op.

Proof. First notice that the diameter of I ′p is bounded
by 2d so the diameter of Rp is bounded by 2d2.

Now we prove the first containment. Notice that every
vertex of I ′p can be written as a convex combination of ver-
tices of Rp so I ′p ⊂ Rp. The distance from any point in Ip
to ∂I ′p is at least 2εd2 ≥ ε diam(Rp) so Ip ⊂ R−p .

Finally we prove the last containment. Since I ′p ⊂ Hp,4εd2∩
[−2εd2, 1 + 2εd2]d−1 × R, by construction, Rp ⊂ Hp,8εd3 ∩
[−3d/2, 3d/2]d−1×R. Thus, R+

p ⊂ Hp,10εd3 ∩ [−2d, 2d]d−1×
R ⊂ Op.

We have the following lemma from [10], adapted to our
parameters.

Lemma 2. (Chazelle and Rosenberg [10] (Lemma 3.1))
The constructed query set R satisfies

1. R is a set of size Θ(m/ε) = Θ(εδ−d/t1+δ
q ).

2. Ip and Op have intersection with [0, 1]d of volume Θ(ε)
for any Rp ∈ R.

3. For any k = lgm different Op’s, there exists a subset
{Op1 , Op2 , . . . , Opd} of size d such that Op1∩· · ·∩Opd∩
[0, 1]d has volume
O(εdm(lgm)d−2) = O(ε1+δ(lg(1/ε))d−2/t1+δ

q ).

Applying this lemma, we show the following.

Lemma 3. Consider tq = ω(lg(1/ε)). Choose tq/ε points
P = {p1, . . . , ptq/ε} independently and uniformly in [0, 1]d.
With probability 1−o(1), the query set R is (tq, O(lg(1/ε)))-
approximate favorable for the point set P .

Proof. Since the volume of the intersection between Ip
and [0, 1]d is Θ(ε), each point pi is included in Ip with
probability Θ(ε). By the Chernoff bound, with probability
1 − exp(Ω(tq)), the number of points in Ip is within a fac-
tor 2 of its expectation of Θ(tq). Similarly with probability
1−exp(Ω(tq)), the number of points in Op is within a factor
2 of its expectation of Θ(tq). Therefore, if tq = ω(lg(1/ε)),
then by the union bound, with probability 1−o(1), |Ip∩P | =
Θ(tq) and |Op ∩ P | = Θ(tq) for all queries Qp.

Next we apply the following lemma from [10].

Lemma 4. (Chazelle and Rosenberg [10] (Lemma 3.4))
With probability 1 − o(1), for all distinct p1, . . . , pk where
k = dlgme = O(lg 1/ε), we have |P∩Op1∩. . . Opk∩[0, 1]d| =
O(1).

By the above lemma and the fact that Rpi ⊂ Opi , we have
|P ∩R−p1 ∩ . . .∩R

−
pk ∩ [0, 1]d| = O(1). Thus, with probability

1− o(1), R is (tq, O(lg(1/ε)))-approximate favorable.

Theorem 5. Consider a function tq = ω(lg(1/ε)). For
any data structure that can answer any query R ∈ R on the
point set P in time O(tq + |R+ ∩ P |), the space it uses is at
least nε1+δ−d/t1+δ

q for any arbitrary constant δ > 0.

Proof. Consider the disjoint union of nε/tq hypercubes
and the corresponding queries constructed above. The union
of the query sets is still (tq, lg(1/ε))-approximate favorable.
Thus, by corollary 1, the space needed is at least nε/tq ·
(εδ−d/t1+δ

q · tq/ lg(1/ε)) = nε1+δ−d/(t1+δ
q lg(1/ε)) for any

δ > 0.

4. CONCLUSION
In this paper, we presented a new theorem for proving

lower bounds on dynamic range searching in the group model.
This theorem allows us to almost immediately translate lower
bounds for range reporting in the pointer machine to lower
bounds in the group model. However, as in the recent result
of Larsen [13], the lower bounds obtained are conditioned on
data structures having low multiplicity. Echoing Larsen, we
believe that proving polynomially high lower bounds, that
are independent of the multiplicity, remains one of the most
important open problems in the group model. This seems
to require a radically different approach. A more modest
goal would be to develop a technique that allows for differ-
ent types of query time and update time tradeoffs than the
linear tradeoffs presented here and in [13], even under the
assumption of constant multiplicity.



We also presented the first lower bounds for approximate
range reporting in the pointer machine. Tightening the gap
between the upper and lower bound for approximate simplex
range reporting remains an interesting open problem. We
believe both are subject to improvement.
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