
Boosting, Voting Classifiers and

Randomized Sample Compression Schemes

Arthur da Cunha∗1, Kasper Green Larsen†1, and Martin Ritzert‡2

1Aarhus University
2Georg-August Universität Göttingen

Abstract

In boosting, we aim to leverage multiple weak learners to produce a strong learner. At the
center of this paradigm lies the concept of building the strong learner as a voting classifier, which
outputs a weighted majority vote of the weak learners. While many successful boosting algo-
rithms, such as the iconic AdaBoost, produce voting classifiers, their theoretical performance
has long remained sub-optimal: The best known bounds on the number of training examples
necessary for a voting classifier to obtain a given accuracy has so far always contained at least
two logarithmic factors above what is known to be achievable by general weak-to-strong learn-
ers. In this work, we break this barrier by proposing a randomized boosting algorithm that
outputs voting classifiers whose generalization error contains a single logarithmic dependency
on the sample size. We obtain this result by building a general framework that extends sample
compression methods to support randomized learning algorithms based on sub-sampling.

1 Introduction

Boosting is a powerful machine learning primitive that allows improving the performance of a base
learning algorithmA by training a committee/ensemble of classifiers. The classic AdaBoost (Freund
& Schapire, 1997) algorithm for binary classification is perhaps the most well-known boosting
algorithm. Given an input domain X and a set S = (x1, y1), . . . , (xn, yn) of n labeled samples from
X × {−1, 1}, the main idea of AdaBoost is to iteratively invoke A on reweighed versions of S.
Each invocation returns a hypothesis ht : X → {−1, 1} and these hypotheses are finally combined
into a voting classifier f as f(x) = sign(

∑T
t=1 αtht(x)) for constants αt > 0. The weights used

in iteration t are such that samples (xi, yi) that are misclassified by many previous hypotheses hj
with j < t receive a large weight, and correctly classified samples receive smaller weights. This
intuitively guides the attention of A towards samples that previous hypotheses struggle with. More
modern variants of boosting include the highly practical XGBoost (Chen & Guestrin, 2016) and
LightGBM (Ke et al., 2017) implementations of Gradient Boosting (Friedman, 2001). See the
survey by Natekin & Knoll (2013) for further details on boosting and its applications.

∗dac@cs.au.dk
†larsen@cs.au.dk
‡ritzert@informatik.uni-goettingen.de

1

Weak-to-Strong Learning. Historically, boosting was invented to address a theoretical question
of Kearns (1988); Kearns & Valiant (1994) on so-called weak-to-strong learning. A γ-weak learner
W is a learning algorithm which, when queried with a training set S and a distribution D over
S, returns a hypothesis h with RD(h) ≤ 1/2 − γ. Here RD(h) = Pr(x,y)∼D[h(x) ̸= y]. An (ε, δ)-
strong learner on the other hand, is a learning algorithm such that for any distribution D over
X × {−1, 1}, when given m(ε, δ) i.i.d. samples from D, returns with probability at least 1 − δ a
hypothesis f : X → {−1, 1} with RD(f) ≤ ε. A strong learner may thus obtain arbitrarily high
accuracy when given enough samples m(ε, δ).

With these definitions, Kearns and Valiant asked whether it is always possible to obtain a strong
learner from a weak learner. This was answered affirmatively (Schapire, 1990), and AdaBoost is
the prototypical such weak-to-strong learner. A natural question is, given n samples, what is the
smallest RD(f) achievable for a weak-to-strong learner when given access to a γ-weak learner W?
If H denotes a hypothesis set such that W always outputs hypotheses from H, then if H has VC-
dimension d, it has been shown (Shalev-Shwartz & Ben-David, 2014) that with probability 1 − δ,
AdaBoost outputs a voting classifier f with

RD(f) = O

(
d ln(n/d) lnn

γ2n
+

ln(1/δ)

n

)
. (1)

This bound remains the best known for any weak-to-strong learner that outputs a voting classifier.
Since voting classifiers play a crucial role in our work, we make clear that those are classifier that
makes predictions by taking a weighted majority vote among a set of base classifiers.

On the lower bound side, Larsen & Ritzert (2022) showed that for any weak-to-strong learner,
it holds with constant probability over a set of n training samples, that the produced hypothesis f
satisfies

RD(f) = Ω

(
d

γ2n

)
.

Note that this lower bound holds for all weak-to-strong learners, not just those that output a voting
classifier. Furthermore, they complemented the lower bound by a boosting algorithm achieving an
optimal

RD(f) = O

(
d

γ2n
+

ln(1/δ)

n

)
. (2)

Thus, at a high level, the sample complexity of weak-to-strong learning is fully understood. How-
ever, the algorithm by Larsen and Ritzert is somewhat contrived as the produced hypothesis is
a majority-of-majorities and not a voting classifier. Concretely, using recent results to simplify
their algorithm (Larsen, 2023), Larsen and Ritzert combine classic Bagging by Breiman (1996)
with a variant of AdaBoost known as AdaBoost∗ν (Rätsch et al., 2005). They thus create multiple
sub-samples of the training data, train a voting classifier on each, and combine them by taking a
majority of their predictions.

Contribution I: A New Voting Classifier. In light of the above, it remains a natural and basic
theoretical question whether the optimal weak-to-strong learning sample complexity in Eq. (2) can
be achieved by a simple voting classifier.

Our first main contribution is a new boosting algorithm, shown as Algorithm 1, that produces
a voting classifier with an improved generalization error in terms of the number of samples n. In
the algorithm description, a > 0 is a sufficiently large constant. We prove the following sample
complexity bound for Algorithm 1:

2

Algorithm 1 Sampled Boosting

Input: Training set S = {(x1, y1), . . . , (xn, yn)},
γ-weak learner W, failure probability δ,
upper bound N ≥ n.

Result: Voting classifier f
1: D1 ←

(
1
n , . . . ,

1
n

)
2: α← 1

2 ln(
1/2+γ/2
1/2−γ/2)

3: m← a · γ−2(d+ ln(1/γ))
4: K ← 32 · (γ−2 ln(N/δ) + 1)
5: for k = 1, . . . ,K do
6: Draw m samples Sk ∼ Dm

k

7: Invoke W on Sk with the uniform distribution to obtain hk

8: for i = 1, . . . , n do
9: Dk+1(i)← Dk(i) exp(−αyihk(xi))

10: end for
11: Zk ←

∑n
i=1Dk(i) exp(−αyihk(xi))

12: Dk+1 ← Dk+1/Zk

13: end for
14: return f(x) = 1

K

∑K
k=1 hk(x)

Theorem 1.1. Let D be an unknown distribution over X × {−1, 1} and let S ∼ Dn. Then for
every δ > 0, it holds with probability at least 1− δ over S and the randomness of Algorithm 1 with
S, δ, a γ-weak learner W and N = n as input, that the voting classifier f produced satisfies

RD(f) ≤ O

(
(d+ ln(1/γ)) ln(n/δ)

γ4n

)
.

While the dependencies on some of the parameters are worse than previous works, it is the first
voting classifier whose sample complexity has just a single logarithmic dependency on n.

At a high level, our new algorithm creates numerous small sub-samples of the training data and
combines classifiers trained on each of them. Proving that this is beneficial requires highly novel
analysis techniques. Our second main contribution is thus a new general framework for analyzing
randomized learning algorithms that use sub-sampling during training. This method builds on the
sample compression framework of Littlestone & Warmuth (1986) and we hope it may prove useful
in the future development and analysis of efficient learning algorithms. We introduce this new
framework in the following subsection and then discuss the connection between Algorithm 1 and
the framework.

1.1 Sample Compression Schemes

Learning and compression have been known to be tightly connected for decades. One of the earliest
and clearest connections between the two originates in the work of Littlestone & Warmuth (1986).
In essence, they argue that if the hypothesis produced by a learning algorithm can be compressed
to be fully described as a function of a few training samples, then it generalizes well. We describe
this connection further in the following.

3

Let X be an input domain and Y an output domain. A compression scheme consists of an
encoding map κ that maps any sequence S ∈ (X × Y)∗ to a subsequence κ(S) of S, and a recon-
struction function ρ : (X ×Y)∗ → YX mapping any S ∈ (X ×Y)∗ to a function ρ(S) : X → Y. The
compression scheme must satisfy for any S that ρ(κ(S))(x) = y for all (x, y) ∈ S. The size of the
compression scheme is the supremum over S of |κ(S)|.

Consider now a learning algorithm A and assume there is a corresponding compression scheme
(κ, ρ) of size s, such that when A produces a hypothesis hS : X → Y from a training set S, then
the corresponding compression scheme satisfies ρ(κ(S)) = hS . In this case, we can prove a bound
on the generalization of hS for a training set S ∼ Dn. In a nutshell, we observe that there are only
M =

∑
i≤s

(
n
i

)
possible choices for κ(S). Since ρ(S′) for a fixed subset S′ ⊆ S is determined from

the samples in S′ alone, and the remaining n−|S′| samples are i.i.d. from D, a union bound over the
M choices for S′ shows that with probability at least 1− δ, there is no S′ with ρ(S′)(x) = y for all
(x,y) ∈ S and yet RD(ρ(S

′)) is larger than O(ln(M)/n+ ln(1/δ)/n) = O((s ln(n/s) + ln(1/δ))/n).
Thus, in particular, RD(hS) = RD(ρ(κ(S))) = O((s ln(n/s) + ln(1/δ))/n).

Interestingly, the factor ln(n/s) in the generalization bound can be removed if the compression
scheme satisfies an additional property of stability introduced by Bousquet et al. (2020). A com-
pression scheme is stable if for any training set S and subset S′ ⊆ S with κ(S) ⊆ S′, it holds that
ρ(κ(S)) = ρ(κ(S′)). In words, if we remove training samples not part of the compression κ(S) from
S, then the resulting training set S′ is still compressed to the same. Bousquet et al. proved the first
tight generalization bounds for Support Vector Machines by constructing a suitable stable sample
compression scheme.

Contribution II: Randomized Compression Schemes. In this work, we introduce the notion
of a randomized compression scheme and use it to prove generalization of Algorithm 1. Such a ran-
domized compression scheme consists of a distribution Dκ over encoding maps. The reconstruction
function ρ is not randomized, but simply defined as for regular compression schemes.

As a further extension to the standard compression framework, we give κ an upper bound n of
the cardinality of the training sample considered. Furthermore, we allow a bit more freedom in the
encoding by not requiring κ(S) to be a subsequence of S. More precisely,

• The distribution Dκ is over (deterministic) encoding functions k that map any sequence
S ∈ (X × Y)∗ and integer n ∈ N with n ≥ |S|, to a sequence k(S, n) such that every element
of k(S, n) appears in S.

We dedicate the symbol “⊑” to represent that every element of a sequence appear in another
sequence. Formally, given sequences S = (s1, . . . , sm) and T = (t1, . . . , tn), we write S ⊑ T if and
only if {si | i ∈ [m]} ⊆ {tj | j ∈ [n]}.

Note that the definition above allows the samples in k(S, n) to appear in a different order than
in S and to appear a different number of times.

A randomized compression scheme has failure probability at most δ if for all S ∈ (X ×Y)∗ and
n ≥ |S|, it holds that

Pr
k∼Dκ

[∃(x, y) ∈ S : ρ(k(S, n))(x) ̸= y] ≤ δ.

A randomized compression scheme is stable if for any S ∈ (X×Y)∗, n ≥ |S| and any subsequence
S′ of S in the support of k(S, n), the distribution of k(S′, n) for k ∼ Dκ is the same as the
distribution of k(S, n) conditioned on k(S, n) ⊑ S′.

4

Given n ∈ N, the size sn of a randomized compression scheme is the supremum over (S, j) in
∪ni=1((X ×Y)i×{i, . . . , n}), and k in the support of Dκ, of the number of distinct (x, y) in k(S, j).

Our main technical result for proving generalization via randomized compression is the following
theorem:

Theorem 1.2. Let D be an unknown distribution over X × Y and let S ∼ Dn. Let (Dκ, ρ) be a
stable randomized compression scheme with failure probability δ and size s = sn. Then for every
β > 2δ, it holds with probability at least 1− β over S and k ∼ Dκ that

RD(ρ(k(S, n))) ≤ O

(
s+ ln(1/β)

n

)
,

where RD(h) = Pr(x,y)∼D[h(x) ̸= y].

Similarly to the stable compression schemes of Bousquet et al. (2020), the generalization bound
in Theorem 1.2 depends linearly on s and not as s ln(n/s) like the bounds of Littlestone & Warmuth
(1986) without stability.

In light of Theorem 1.2, we prove generalization of our new boosting algorithm, Algorithm 1,
by showing that there is a corresponding randomized compression scheme of size s = sn = O((d+
ln(1/γ)) ln(n/δ)/γ4) and invoking Theorem 1.2.

1.2 Main Ideas in Algorithm 1

Having presented our randomized compression framework, let us now discuss the main ideas and
obstacles overcome by Algorithm 1 and how they relate to randomized compression. We also argue
why the classic compression frameworks are insufficient for our purpose, thus further motivating
our randomized framework.

In striving to improve the sample complexity of voting classifiers, a natural approach would
be to apply the classic stable compression framework of Bousquet et al. (2020), as it is known to
improve sample complexity by a logarithmic factor. However, combining classic sample compression
with boosting appears tricky. To see this, notice that boosting algorithms invoke a weak learner
W with a distribution D over the full training set S. The weak learner then returns a hypothesis
hD, depending on D, that is used in a final classifier f . For the purpose of invoking a compression
framework to argue generalization of f , we would like to argue that a small subset k(S) ⊆ S may
be used to reconstruct f . However, we have no control over the weak learnerW and it is completely
unclear that we would be able to recover each hD used in f without including all of S in k(S).

For the reader familiar with AdaBoost, Algorithm 1 is seen to resemble it quite closely. However,
for standard AdaBoost, the weak learner W would be invoked directly on the distributions Dk in
Algorithm 1. In order to give an efficient compression, we instead draw samples Sk ∼ Dm

k and
invoke W on just the samples. This way, we can intuitively reconstruct the hypotheses hk from
just the samples S1, . . . ,SK and this is precisely what we do in our proof of Theorem 1.1, i.e. we
let our encoding be the samples in S1, . . . ,SK .

However, we still need the final classifier produced by Algorithm 1 to be correct on the training
data (the compression scheme must have small failure probability). This puts a constraint on the
number of samples m and iterations K. Here we use an observation from previous work (Karbasi
& Larsen, 2024) on parallel boosting, showing that the set Sk forms a (γ/2)-approximation for the
distribution Dk with good probability (see the formal correctness proof for details). At a high level,

5

this implies that the hypothesis hk returned by the weak learner has error at most 1/2−γ/2 under
Dk. A (mostly) standard analysis of AdaBoost then shows that after K iterations, the resulting
voting classifier f is correct on all the training data (and thus the compression scheme has small
failure probability).

A natural question is whether we really need the randomness from our new framework, or
whether the classic stable compression framework by Bousquet et al. (2020) could be used instead.
To use their framework, we would need to deterministically pick the sets Sk. While it is known
that a random Sk ∼ Dm forms a γ/2-approximation with constant probability when m = Ω(d/γ2),
it is not clear how to compute such a set deterministically in time less than the number of distinct
hypotheses the weak learner might choose from (which may be as large as

(
n
d

)
when constrained to

S).
In light of the above, our new randomized compression framework thus provides a means to

analyzing learning algorithms that use random sampling to quickly find sub-samples S′ ⊂ S with
desirable properties that are hard to guarantee deterministically.

Let us finally give a brief argument that Algorithm 1 is stable (formal details appear later).
That is, we need to argue that for any subsequence S′ ⊆ S of the training data, if we condi-
tion on S1, . . . ,SK ⊑ S′, then the distribution of S1, . . . ,SK is the same as the distribution of
S′
1, . . . ,S

′
K resulting from instead running Algorithm 1 on the input S′. We argue this by induc-

tion roughly as follows: Assume we have already shown it for the prefix S1, . . . ,Sk and S′
1, . . . ,S

′
k.

Then the distribution of the hypotheses h1, . . . ,hk and h′
1, . . . ,h

′
k in the two executions would

be identical. Now for any h1, . . . , hk in the support of this distribution, the weights Dk+1,D
′
k+1

computed by Algorithm 1 are completely determined as Dk+1(j) = exp(−yj
∑k

ℓ=1 αhℓ(xj))/Z and

D′
k+1(j) = exp(−yj

∑k
ℓ=1 αhℓ(xj))/Z

′ where Z and Z ′ are normalization factors making Dk+1 and
D′

k+1 probability distributions. The crucial point is that the “weight” of each point xj ∈ S′ is the
same in Dk+1 and D′

k+1 up to the normalization terms Z and Z ′. When we further condition on
Sk+1 ⊆ S′, this effectively rescales Dk+1 by setting all weights outside S′ to 0 and changing the
normalization factor to Z ′, making the distribution the same as for S′

k+1.

1.3 Other Related Work

Let us finally describe other relevant previous works, in particular results showing barriers for
further improving the sample complexity of voting classifiers.

First, one natural approach to training a voting classifier f(x) = sign(
∑

t αtht(x)) with a sample
complexity matching the best previously known for voting classifiers (Eq. (1)) is to ensure that f
has all margins on the training data Ω(γ). The margin of f on a sample (x, y) is defined as

marginf (x, y) := y ·
∑

t αtht(x)∑
t|αt|

.

Margins were originally introduced to explain the excellent practical performance of AdaBoost and
its variants (Bartlett et al., 1998). Several uniform convergence based generalization bounds have
been shown for large margin voting classifiers (Bartlett et al., 1998; Breiman, 1999), with the state-
of-the-art being the kth margin bound by Gao & Zhou (2013). Simplified to all margins being at
least γ, they showed that with probability at least 1 − δ over a set of n training samples from a
distribution D, it simultaneously holds that all voting classifiers f with all margins at least γ on

6

the training data, have

RD(f) = O

(
d ln(n/d) lnn

γ2n
+

ln(1/δ)

n

)
.

Here d denotes the VC-dimension of the hypothesis set H to which all ht in the voting classifiers f
belong. AdaBoost∗ν (Rätsch et al., 2005) is a boosting algorithm that guarantees that the resulting
voting classifier has all margins Ω(γ). Using the uniform convergence bound above recovers the
previously best sample complexity of voting classifiers stated in Eq. (1) for the AdaBoost∗ν algorithm.

It follows that if the uniform convergence bound for large margin voting classifiers could be
strengthened to O(d/(γ2n) + ln(1/δ)/n), then AdaBoost∗ν would be an optimal weak-to-strong
learner. Unfortunately, lower bounds against uniform convergence (Grønlund et al., 2019, 2020)
show example distributions and hypothesis sets such that with constant probability over n samples,
it holds that there exists a voting classifier f with all margins at least γ and yet

RD(f) = Ω

(
d ln(γ2n/d)

γ2n

)
. (3)

Abandoning the hope of proving that a voting classifier is optimal via uniform convergence, a natural
goal would be to show that a concrete boosting algorithm, like AdaBoost or AdaBoost∗ν is optimal,
i.e. to exploit concrete properties of the boosting algorithm to argue for better generalization than
that in Eq. (3). Unfortunately, recent work (Høgsgaard et al., 2023) shows that all previous boosting
algorithms that produce voting classifiers, satisfy that with constant probability over n samples, the
produced voting classifier f has a sample complexity of at least that in Eq. (3). At a high level, the
work of Høgsgaard et al. (2023) shows that any boosting algorithm that always invokes the weak
learner W with a distribution D having support on the full training data set has a generalization
error of at least Eq. (3). The only known boosting algorithm avoiding this pitfall is the optimal,
but non-voting classifier, by Larsen & Ritzert (2022), and our new Algorithm 1. In summary,
several barriers need to be overcome to avoid at least one logarithmic factor overhead in the sample
complexity as a function of n.

1.4 Preliminaries

Throughout the paper, we assume for simplicity that the training sets contain no duplicates. One
can see that this assumption does not reduce the generality of our arguments by, e.g., letting
X ′ = X × [0, 1] and changing the input distribution D to D′ over X ′×Y, where D′ generates a pair
(x′,y) by letting x′ = (x, r) for (x,y) ∼ D and r uniform in [0, 1]. The weak learner then simply
ignores r. Finally, as the reader may have noticed, we reserve boldface letters for random variables
(e.g., x ∈ R vs. x ∼ N (0, 1)).

2 Generalization via Randomized Compression

In this section, we prove Theorem 1.2 that establishes generalization via randomized compression
schemes. So let S ∼ Dn be a training set of size n and let s = sn.

Proof. Partition S into 2s buckets of n/2s samples each and denote these buckets by S1, . . . ,S2s.
For every subset I ∈

(
[2s]
s

)
of s indices of buckets, let SI denote the concatenation of the samples in

7

buckets Si with i ∈ I. Here the notation
(
[2s]
s

)
refers to all subsets of [2s] of cardinality s. Finally,

define S̄I as the concatenation of the buckets Si with i /∈ I.
Now consider a random k ∼ Dκ. For each I ∈

(
[2s]
s

)
, let EI denote the event that k(S, n) ⊑ SI .

Notice that Pr[∪IEI] = 1 since the size of the compression scheme is s.
Next, for each I and parameter α > 0 define pI,α to be the probability

Pr
k∼Dκ,

SI ,S̄I∼Dn/2

[
∀(x, y) ∈ S̄I , ρ(k(SI , n))(x) = y ∧ RD(ρ(k(SI , n))) ≥ α

]
.

To bound pI,α, fix any SI and k in the supports of SI and k. If RD(ρ(k(SI , n))) < α, then SI and
k contribute 0 to pI,α. Otherwise, since S̄I is independent of SI , we have that PrS̄I∼Dn/2 [∀(x, y) ∈
S̄I , ρ(k(SI , n))(x) = y] ≤ (1− α)n/2 ≤ exp(−αn/2). Thus pI,α ≤ exp(−αn/2).

Moreover, it holds that

Pr
k∼Dκ,S∼Dn

[RD(ρ(k(S, n))) ≥ α] ≤ Pr
k,S

[∃(x, y) ∈ S : ρ(k(S, n))(x) ̸= y]

+ Pr
k,S

[
∀(x, y) ∈ S, ρ(k(S, n))(x) = y ∧ RD(ρ(k(S, n))) ≥ α

]
.

By definition, we have Pr[∃(x, y) ∈ S : ρ(k(S, n))(x) ̸= y] < δ. Also, since ∪IEI always occur,

Pr
k∼Dκ,
S∼Dn

[
∀(x, y) ∈ S, ρ(k(S, n))(x) = y ∧ RD(ρ(k(S, n))) ≥ α

]
= Pr

k,S

[
∀(x, y) ∈ S, ρ(k(S, n))(x) = y ∧ RD(ρ(k(S, n))) ≥ α ∧ ∪IEI

]
≤
∑
I

Pr
k,S

[
∀(x, y) ∈ S, ρ(k(S, n))(x) = y ∧ RD(ρ(k(S, n))) ≥ α ∧ EI

]
≤
∑
I

Pr
k,S

[
∀(x, y) ∈ S, ρ(k(S, n))(x) = y ∧ RD(ρ(k(S, n))) ≥ α | EI

]
.

Now observe that since (Dκ, ρ) is a stable randomized compression scheme, the distribution of
ρ(k(S, n)) conditioned on EI is the same as ρ(k′(SI , n)) for a fresh k′ ∼ Dκ. Thus,∑

I

Pr
k∼Dκ,
S∼Dn

[
∀(x, y) ∈ S, ρ(k(S, n))(x) = y ∧ RD(ρ(k(S, n))) ≥ α | EI

]
=
∑
I

Pr
k∼Dκ,
S∼Dn,

SI∼Dn/2

[
∀(x, y) ∈ S, ρ(k(SI , n))(x) = y ∧ RD(ρ(k(SI , n))) ≥ α

]

≤
∑
I

Pr
k∼Dκ,

SI∼Dn/2,
S̄I∼Dn/2

[
∀(x, y) ∈ S̄I , ρ(k(SI , n))(x) = y ∧ RD(ρ(k(SI , n))) ≥ α

]

≤
(
2s

s

)
exp(−αn/2).

Overall, we conclude that

Pr
k∼Dκ,
S∼Dn

[RD(ρ(k(S, n))) ≥ α] ≤ δ +

(
2s

s

)
exp(−αn/2).

Finally, we obtain the thesis by considering β ≥ 2δ and choosing α = 2(s ln(4)+ ln(2/β))/n so that(
2s
s

)
exp(−αn/2) ≤ β/2.

8

3 Efficient Boosting via Randomized Compression

In this section, we present our proof that Algorithm 1 achieves the sample complexity stated in
Theorem 1.1. Recall that we are given access to a γ-weak learner W. For any data set S ∈
(X × {−1, 1})∗ and distribution D over S, we can query the weak learner with S and D and it
will return a hypothesis h : X → {−1, 1} such that RD(h) ≤ 1/2 − γ. We assume the hypotheses
returned by the weak learner belong to a hypothesis set H of VC-dimension d.

The parameter N in Algorithm 1 is an upper bound on |S| = n. It is merely used for sake of
analysis when invoking the stable compression framework. It ensures that K remains the same if
the algorithm is executed on a subset S′ of the training set with the same value of N . When using
the algorithm, one should simply set N to n.

At a high level, the algorithm runs AdaBoost with a few twists. We maintain weighted distri-
butions Dk over the training data. In each step, the weak learner is invoked to obtain a hypothesis
hk with a small error under distribution Dk. However, unlike in AdaBoost, we do not invoke
the weak learner on the full training data. Instead, we sample some m = O((d + ln(1/γ))γ−2)
samples, denoted Sk, from Dk and instead train on this sample with a uniform weighing to
obtain hk. Furthermore, where AdaBoost would normally update all weights by eα or e−α for
α = (1/2) ln((1−RDk

(hk))/RDk
(hk)), we simply fix α as if RDk

(hk) was 1/2− γ/2.

3.1 Corresponding Randomized Compression Scheme

We now argue that Algorithm 1 naturally corresponds to a randomized compression scheme. Let
S = (x1, y1), . . . , (xn, yn) be the training sequence and N ≥ n. Consider an execution of the
randomized Algorithm 1 and let h1, . . . ,hK be the hypotheses obtained. From such an execution,
we define an encoding map k that maps (S,N) to the sequence S1 ◦ · · · ◦ SK , where ◦ denotes
concatenation and Si is the sample associated with hi (see line 6). The randomized algorithm thus
gives a distribution Dκ over such encoding maps.

Our reconstruction function ρ on a sequence of Km samples partitions the samples into K
consecutive groups S1, . . . , SK of m samples. It then invokes the weak learner W on each Si with
the uniform distribution to obtain hi and finally produces the function mapping any x ∈ X to
sign((1/K)

∑K
k=1 hk(x)).

Notice that ρ(k(S,N))(x) = sign(f(x)), i.e. the reconstruction function makes the same pre-
dictions as the returned voting classifier. Hence if we can show that the obtained randomized
compression scheme has a small failure probability and is stable, then we may use Theorem 1.2
to bound the generalization error of Algorithm 1. In particular, our compression scheme has size
O(Km). Combining this bound on the size with Theorem 1.2 proves Theorem 1.1.

In the following, we first argue that the obtained compression scheme has failure probability at
most δ (Lemma 3.1). We then argue that it is indeed stable (Lemma 3.3).

3.2 Small Failure Probability

We show that for any training set S, with good probability over the execution of Algorithm 1 with
N ≥ |S| = n, if we consider the voting classifier f(x) = (1/K)

∑K
i=1 hi(x), then f correctly classifies

all the training data S. Concretely, we show:

9

Lemma 3.1. For any training set S = (x1, y1), . . . , (xn, yn), it holds with probability at least 1− δ
over the execution of Algorithm 1 with N ≥ n that the voting classifier f(x) = (1/K)

∑K
i=1 hi(x)

satisfies sign(f(xi)) = yi for all i ∈ [n].

The proof of Lemma 3.1 makes use of the notion of an ε-approximation. For a concept c : X →
{−1, 1}, a hypothesis set H and a distribution D over X , a set of samples S is an ε-approximation
for (c,D,H) if for all h ∈ H, it holds that∣∣∣∣ Prx∼D

[h(x) ̸= c(x)]− |{x ∈ S : h(x) ̸= c(x)}|
|S|

∣∣∣∣ ≤ ε.

The following result ensures that a large enough set of samples S ∼ Dn is an ε-approximation with
good probability.

Theorem 3.2 (Li et al. 2001; Talagrand 1994; Vapnik & Chervonenkis 1971). There is a universal
constant b > 0, such that for any 0 < ε, δ < 1, any concept c : X → {−1, 1}, any H ⊆ X → {−1, 1}
of VC-dimension d and distribution D over X , it holds with probability at least 1 − δ over a set
S ∼ Dn that S is an ε-approximation for (c,D,H) provided that n ≥ b((d+ ln(1/δ))ε−2).

We now present our formal argument.

Proof of Lemma 3.1. Fix any set S of n samples (x1, y1), . . . , (xn, yn) and let c : (X ∩S)→ {−1, 1}
denote the concept with c(xi) = yi for each i = 1, . . . , n.

Define an indicator random variable Xk for each step k = 1, . . . ,K taking the value 1 if Sk

fails to be a γ/2-approximation for (c,Dk,H). Note that for any outcome S1, . . . , Sk−1 of the
random samples S1, . . . ,Sk−1, we get from Theorem 3.2 and our choice of m = a((d+ln(1/γ))γ−2)
that Pr[Xk = 1 | ∀i < k : Si = Si] ≤ γ2/32 for a large enough constant a > 0. It follows
from a Chernoff bound that Pr[

∑
iXi > γ2K/16] ≤ exp(−γ2K/32) = δ/(eN) < δ/2. Let us now

assume that at most γ2K/16 of the samples Si fail to be a γ/2-approximation. We claim that
f(x) = (1/K)

∑K
k=1 hk(x) satisfies yif(xi) ≥ γ/128 in this case.

To see this, consider the exponential loss

n∑
i=1

exp

(
−αyi

K∑
k=1

hk(xi)

)
.

We compare this to the final weights DK+1. Since DK+1 is a probability distribution, we have

1 =

n∑
i=1

DK+1(i)

=

n∑
i=1

DK(i) exp(−αyihK(xi))

Zk

=
1

n

n∑
i=1

exp(−αyi
∑K

k=1 hk(xi))∏K
k=1 Zk

.

From this, we observe that

n∑
i=1

exp

(
−αyi

K∑
k=1

hk(xi)

)
= n

K∏
k=1

Zk.

10

To bound the Zk, we analyze two cases. First, if Xk = 0, then we know that Sk is a γ/2-
approximation for Dk. Furthermore, since W is a γ-weak learner, we have that RSk

(hk) ≤ 1/2− γ
where RSk

(hk) denotes the fraction of mispredictions among samples in Sk. By the definition of a
γ/2-approximation, this further implies RDk

(hk) ≤ 1/2 − γ/2. If Xk = 1, then we simple bound
RDk

(hk) ≤ 1.
We now observe that

Zk =

m∑
i=1

Dk(i) exp(−αyihk(xi))

=
∑

i:hk(xi)̸=yi

Dk(i)e
α +

∑
i:hk(xi)=yi

Dk(i)e
−α

= RDk
(hk)e

α + (1−RDk
(hk))e

−α.

For Xk = 0, this is upper bounded by

Zk ≤ (1/2− γ/2)eα + (1/2 + γ/2)e−α

= 2
√

(1/2− γ/2)(1/2 + γ/2)

=
√

1− γ2.

For Xk = 1, it is upper bounded by

Zk ≤ eα

=
√
(1/2 + γ/2)/(1/2− γ/2)

≤
√

1 +
γ

1/2− γ/2

≤
√
1 + 4γ.

Using that
∑K

k=1Xk ≤ γ2K/16, we thus conclude

K∏
k=1

Zk ≤ (1− γ2)(K−γ2K/16)/2(1 + 4γ)γ
2K/32

≤ exp
(
γ3K/8− γ2(K − γ2K/16)/2

)
≤ exp(−γ2K/4)

≤ (δ/N)2.

We therefore have
n∑

i=1

exp

(
−αyi

K∑
k=1

hk(xi)

)
≤ δ/N.

By non-negativity of the exponential function, this implies that exp(−αyi
∑K

k=1 hk(xi)) ≤ δ/N for
all i. Raising both sides of the inequality to the power 1/(Kα) gives exp(−yif(xi)) ≤ (δ/N)1/Kα ⇒
yif(xi) ≥ ln(N/δ)/(Kα). From above, we had that eα ≤

√
1 + 4γ hence α ≤ (1/2) ln(1 + 4γ) ≤

(1/2) ln(e4γ) = 2γ. Hence we conclude that yif(xi) ≥ ln(N/δ)/(K2γ) ≥ γ/128.

11

3.3 Stability

In the following, we argue that the compression scheme corresponding to Algorithm 1 is indeed
stable.

Fix a γ-weak learner W, a failure probability δ and an upper bound N on the training set
size. Given S ∈ ∪Ni=1(X × Y)i, let Exec(S,N) = S1, . . . ,SK denote the sequence of samples
associated with the execution of Algorithm 1 on input S,W, δ,N . In this way, the sequence Si is
the sample drawn at line 6 on the ith iteration of the for loop starting at line 5. The randomized
compression scheme k underlying Algorithm 1, as discussed in Section 3.1, can then be described
by k(S,N) = S1 ◦ · · · ◦ SK .

Lemma 3.3. The randomized compression scheme k given by k(S,N) = Exec(S,N) is stable.

Proof. Given n ∈ [N], let S ∈ (X × Y)n and let S′ be a subsequence of S. Let Exec(S,N) =
S1, . . . ,SK and Exec(S′, N) = S′

1, . . . ,S
′
K . We will show that for all k ∈ [K] it holds that

conditioning on Si ⊑ S′ for i ∈ [k] implies that S1 ◦ · · · ◦ Sk follows the same distribution as
S′
1 ◦ · · · ◦ S′

k. We argue by induction on k and conclude the thesis by considering k = K.
For the base case, we have that S1 consists of m i.i.d. samples from the uniform distribution over

S. Therefore, conditioning on S1 ⊑ S′ makes the m samples i.i.d. following the uniform distribution
over S′ and, thus, makes S1 identically distributed to S′

1 (this uses our assumption that S contains
no duplicates).

Now, for the induction step, suppose that for some k ∈ [K − 1] we have that, for all T ⊑ S,

Pr
[
S1 ◦ · · · ◦ Sk = T

∣∣ Si ⊑ S′ ∀i ∈ [k]
]
= Pr

[
S′
1 ◦ · · · ◦ S′

k = T
]
.

We consider T ⊑ S′ since otherwise both sides of the equation are zero. For i ∈ [k+ 1], let Di and
hi be the distribution (see line 6) and hypothesis (see line 7) corresponding to the ith iteration of
for loop starting at line 5 when executing Algorithm 1 on input S,W, δ,N . Define D′

is and h′
is

associated with the execution on S′,W, δ,N analogously.
For the remaining of the proof, we condition on the event that Si ⊑ S′ for all i ∈ [k]. The

induction hypothesis implies that S1, . . . ,Sk and S′
1, . . . ,S

′
k follow the same distribution. Now

fix any Tk = S1, . . . , Sk in the support of this distribution. Note that conditioning on Tk fixes
the hypotheses h1, . . . ,hk and h′

1, . . . ,h
′
k to the same fixed h1, . . . , hk. This further fixes Dk+1 to

Dk+1(j) = exp(−αyj
∑k

ℓ=1 hℓ(xj))/Z where Z is a normalization factor making Dk+1 a probability

distribution. Similarly for S′, it fixes D′
k+1 to D′

k+1(j) = exp(−αyj
∑k

ℓ=1 hℓ(xj))/Z
′ for the j ∈ S′.

The crucial observation is that any xj occurring in both S′ and S have the same weight in
Dk+1 and D′

k+1 up to the normalization factors Z and Z ′. This implies that if we further condition
on Sk+1 ⊑ S′, the samples in Sk+1 are i.i.d. from Dk+1 but where every j /∈ S′ has Dk+1(j) = 0
and the resulting distribution is scaled accordingly. This makes the distribution identical to D′

k+1

(using the assumption that S contains no duplicates), which concludes the proof.

4 Conclusion

In this work, we took a first step towards developing voting classifiers with an optimal sample
complexity for weak-to-strong learning. Concretely, we improve the dependency on the number of
samples n by a logarithmic factor over previous works. To analyze our new algorithm, we further

12

introduce a new framework of randomized compression schemes that we hope may prove useful in
future work.

Our work leaves open a number of intriguing directions to pursue. First, can we develop a
voting classifier with an optimal sample complexity as in Eq. (2)? Or, as a first and more modest
goal, can we develop a voting classifier with only a single logarithmic sub-optimal dependency
on n, like our Algorithm 1, but with an optimal dependency on the remaining parameters d, γ
and δ? Another question is whether our analysis of Algorithm 1 is tight, or could it perhaps be
improved to yield an even better sample complexity? Also, for previous algorithms like AdaBoost,
the current best analysis gives a sample complexity as in Eq. (1) with two logarithmic factors of
sub-optimality. Can the analysis be improved for some of those algorithms? We know that it
can never be improved to an optimal sample complexity (in light of (Høgsgaard et al., 2023), see
the discussion in Section 1.3), but perhaps one of the logarithmic factors can be removed. The
same holds for the uniform convergence bounds for large-margin voting classifiers. Can these be
improved by a logarithmic factor?

References

Bartlett, P., Freund, Y., Lee, W. S., and Schapire, R. E. Boosting the margin: a new explanation
for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651 – 1686, 1998.

Bousquet, O., Hanneke, S., Moran, S., and Zhivotovskiy, N. Proper learning, helly number, and
an optimal svm bound. In Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual
Event [Graz, Austria], volume 125 of Proceedings of Machine Learning Research, pp. 582–609.
PMLR, 2020.

Breiman, L. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Breiman, L. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517, 1999.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting system. In KDD, pp. 785–794. ACM,
2016. ISBN 978-1-4503-4232-2.

Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Friedman, J. H. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001.

Gao, W. and Zhou, Z. On the doubt about margin explanation of boosting. Artif. Intell., 203:
1–18, 2013.

Grønlund, A., Kamma, L., Larsen, K. G., Mathiasen, A., and Nelson, J. Margin-based generaliza-
tion lower bounds for boosted classifiers. Advances in Neural Information Processing Systems,
32, 2019.

Grønlund, A., Kamma, L., and Larsen, K. G. Margins are insufficient for explaining gradient
boosting. In Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

13

Høgsgaard, M. M., Larsen, K. G., and Ritzert, M. Adaboost is not an optimal weak to strong
learner. In ICML, volume 202 of Proceedings of Machine Learning Research, pp. 13118–13140.
PMLR, 2023.

Karbasi, A. and Larsen, K. G. The impossibility of parallelizing boosting. In International Con-
ference on Algorithmic Learning Theory, ALT, 2024. To appear.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. Lightgbm: A
highly efficient gradient boosting decision tree. In NIPS, 2017.

Kearns, M. Learning boolean formulae or finite automata is as hard as factoring. Technical Report
TR-14-88 Harvard University Aikem Computation Laboratory, 1988.

Kearns, M. and Valiant, L. Cryptographic limitations on learning boolean formulae and finite
automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

Larsen, K. G. Bagging is an optimal PAC learner. Conference on Learning Theory (COLT 2023),
195:450–468, 2023.

Larsen, K. G. and Ritzert, M. Optimal weak to strong learning. Advances in Neural Information
Processing Systems (NeurIPS 2022), 2022.

Li, Y., Long, P., and Srinivasan, A. Improved bounds on the sample complexity of learning. Journal
of Computer and System Sciences, 62:516 – 527, 2001.

Littlestone, N. and Warmuth, M. Relating data compression and learnability. Unpublished
manuscript, 1986.

Natekin, A. and Knoll, A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7,
2013. ISSN 1662-5218.

Rätsch, G., Warmuth, M. K., and Shawe-Taylor, J. Efficient margin maximizing with boosting.
Journal of Machine Learning Research, 6(12), 2005.

Schapire, R. E. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Shalev-Shwartz, S. and Ben-David, S. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Talagrand, M. Sharper Bounds for Gaussian and Empirical Processes. The Annals of Probability,
22(1):28 – 76, 1994.

Vapnik, V. N. and Chervonenkis, A. Y. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

14

	Introduction
	Sample Compression Schemes
	Main Ideas in Algorithm 1
	Other Related Work
	Preliminaries

	Generalization via Randomized Compression
	Efficient Boosting via Randomized Compression
	Corresponding Randomized Compression Scheme
	Small Failure Probability
	Stability

	Conclusion

