
Optimal Non-Adaptive Cell Probe Dictionaries and Hashing

Kasper Green Larsen
Aarhus University
larsen@cs.au.dk

Rasmus Pagh
University of Copenhagen

pagh@di.ku.dk

Toniann Pitassi
Columbia University
tonipitassi@gmail.com

Or Zamir
Institute for Advanced Study

orzamir90@gmail.com

Abstract

We present a simple and provably optimal non-adaptive cell probe data structure for the
static dictionary problem. Our data structure supports storing a set of n key-value pairs from
[u] × [u] using s words of space and answering key lookup queries in t = O(lg(u/n)/ lg(s/n))
non-adaptive probes. This generalizes a solution to the membership problem (i.e., where no
values are associated with keys) due to Buhrman et al. and matches a recent lower bound by
Persiano and Yeo.

Using the ideas underlying our data structure, we also obtain the first implementation of
a n-wise independent family of hash functions with optimal evaluation time in the cell probe
model.

1

1 Introduction

The static membership problem is arguably the simplest and most fundamental data structure
problem. In this problem, the input is a set S of n integer keys x1, . . . , xn ∈ [u] = {0, . . . , u − 1}
and the goal is to store them in a data structure, such that given a query key x ∈ [u], the data
structure supports reporting whether x ∈ S.

The classic solution to the membership problem is to use hashing. The textbook hashing-based
solution is hashing with chaining, where one draws a random hash function h : [u] → [m] and
creates an array A with m = O(n) entries. Each entry A[i] of the array stores a linked list of all
keys x ∈ S such that h(x) = i. To answer a membership query for x, we compute h(x) and scan
the linked list in entry A[h(x)]. If h is drawn from a universal family of hash functions, the time
to answer queries is O(1) in expectation.

The expected query time can be made worst case O(1) using e.g. perfect hashing [FKS84] or
(static) Cuckoo hashing [Pag01, PR01]. In the latter solution, we store two arrays A1 and A2 of size
O(n) each. These arrays merely store keys in their entries, not linked lists or other data structures.
We then draw two hash functions h1 and h2 and guarantee that each key x ∈ S is stored in either
A1[h1(x)] or A2[h2(x)]. It thus suffices with two lookups to determine if x ∈ S.

All of the above solutions may also be easily extended to solve the dictionary problem in which
the data to be stored is a set of n key-value pairs {(xi, yi)}ni=1. Upon a query x, the data structure
must return the value yi such that xi = x, or report that no such pair exists.

1.1 Adaptivity and Membership

A common feature of all the hashing based solutions to the membership and dictionary problem, is
that they are adaptive. That is, the memory locations they access depend heavily on the random
choice of hash functions. Persiano and Yeo [PY20] recently showed that such adaptivity is crucial
to obtain constant query time. More concretely, they studied the membership problem in the cell
probe model (see below) and proved super-constant lower bounds for non-adaptive data structures.
A non-adaptive data structure is one in which the memory cells to access on a query x is completely
determined from x. Such non-adaptive data structures thus allow retrieving all necessary memory
cells in parallel when answering a query. Cuckoo hashing, and other hashing based data structures,
are adaptive as they require first reading the random seeds of hash functions and only thereafter
can determine which remaining memory cells to access. It is quite remarkable that this one round
of adaptivity is enough to reduce the query time from super-constant to constant.

The Cell Probe Model. The cell probe model by Yao [Yao81] is the de-facto model for proving
data structure lower bounds. In this model, a data structure consists of a memory of s cells with
integer addresses 0, . . . , s− 1, each storing w bits. Computation is free of charge in this model and
only the number of memory cells accessed/probed when answering a query counts towards the query
time. A lower bound in the cell probe model thus applies to any data structure implementable in
the classic word-RAM upper bound model.

Non-Adaptive Membership. Buhrman, Miltersen, Radhakrishnan and Venkatesh [BMRV02]
showed that it is possible to store a data structure of size O(n lg u) bits such that membership
queries can be answered in O(lg u) non-adaptive bit probes (i.e. the cell probe model with w = 1).
This of course implies a membership data structure with O(lg u) probes in the cell probe model,

2

but it is not clear how to extend it to solve the dictionary problem with the same time and space
complexity. Furthermore, the data structure by Buhrman et al. is non-explicit in the sense that
they give a randomized argument showing existence of an efficient data structure. Buhrman et
al. also show a lower bound of t = Ω(lg(u/n)/ lg(s/n)) bit probes. In the setting where n is
polynomially smaller than u and s is O(n), this matches the upper bound up to constant factors.

The bit probe lower bound result was strengthened to a cell probe lower bound by Persiano
and Yeo [PY20] (without citing [BMRV02]), where a membership query must again probe t =
Ω(lg(u/n)/ lg(s/n)) cells to answer membership queries in the natural setting where w = Θ(lg u).
Persiano and Yeo also cite Brody et al. [BL15] for obtaining a matching upper bound. However,
this is not quite true. Brody et al. [BL15] present a dynamic non-adaptive data structure for the
predecessor search problem, allowing insertions and deletions of keys while supporting predecessor
queries in O(lg u) probes. A predecessor query for a key x must return the largest x′ ∈ S such
that x′ ≤ x. Such a data structure clearly also supports membership queries. However, their data
structure critically uses s = Θ(2w) = Θ(u) memory (cells of arbitrary addresses in 0, . . . , 2w are
updated). This may be far more than linear in n for natural settings of parameters. Also, the lower
bound t = Ω(lg(u/n)/ lg(s/n)) degenerates to constant when s = Θ(u). Indeed, if memory cells of
addresses 0, . . . , u−1 may be used, a simple bit-vector with constant time operations suffices for the
static membership problem. Brody et al. [BL15] however prove that for dynamic data structures
for predecessor search, this query time is optimal even with Θ(u) space.

For the static membership (and dictionary) problem, the best known non-adaptive solution is
due to Berger et al. [BHP+06] who construct a (dynamic) dictionary with query time t = O(lg u)
and space s = O(n lg n). Their solution is aimed at the I/O model, i.e., a single memory access
can retrieve B ≥ 1 keys or values. In the Word RAM model this corresponds to having word size
B lg u. Their strongest results for the dictionary problem requires word size Ω(lg(n) lg(u)), while
our results hold for word size lg u.

This still leaves open the problem of obtaining an optimal static and non-adaptive membership
data structure, in both the word-RAM model, and in the cell probe model.

Our Contribution. In this work, we present a simple and optimal non-adaptive cell probe data
structure for the dictionary and membership problem:

Theorem 1. For any s = Ω(n), there is a non-adaptive static cell probe data structure for the
dictionary problem, storing n key-value pairs (xi, yi) ∈ [u]× [u] using s memory cells of w = Θ(lg u)
bits and answering queries in t = O(lg(u/n)/ lg(s/n)) probes.

This matches the lower bound by Persiano and Yeo [PY20]. As stated in the theorem, our data
structure is implemented in the cell probe model, meaning that we treat computation as free of
charge. Implementing the data structure in the more standard upper bound model, the word-RAM,
would require the construction of a certain type of explicit bipartite expander graph.

The expansion property we require is much weaker than what is typically studied in the expander
graph literature and also than what is required from Berger et al.’s solution. Namely, we only require
the existence of t-left-regular bipartite graphs with expansion factor one; however our bipartite
graph is highly imbalanced. Our expansion property corresponds to an imbalanced disperser, and
therefore is well-studied and has other applications (e.g., [GUV09]). Such dispersers exist by a
counting argument, but it remains an open problem to obtain explicit constructions.

3

1.2 Hash Functions with High Independence

When using hash functions in the design of data structures and algorithms, it is often assumed
for simplicity of analysis that truly random hash functions are available. Such a hash function
h : [u] → [m] maps each key independently to a uniform random value in [m]. Or said differently,
when drawing the random hash function h, we choose a uniform random function in the family of
hash functions H consisting of all (deterministic) functions from [u] to [m]. Implementing such a
hash function in practice is often infeasible as it requires u lgm random bits and thus the storage
requirement may completely dominate that of any data structure making use of the hash function.

Fortunately, much weaker hash functions suffice in many applications. The simplest property
of a family of hash functions H ⊆ [u] → [m], is that it is universal [CW77]. A universal family
of hash functions has the property that for a uniform random h ∈ H, it holds for every pair
of keys x ̸= y ∈ [u] that Pr[h(x) = h(y)] ≤ 1/m. Universal hashing for instance suffices for
implementing hashing with chaining with expected constant time membership queries, but is not
sufficient for implementing Cuckoo hashing [CK09]. The next step up from universal hashing is the
notion of n-wise independent hashing. A family of hash functions H is n-wise independent if, for
h drawn uniformly from H, it holds for any set of k distinct keys x1, . . . , xn that h(x1), . . . , h(xn)
are independent and uniformly random (or nearly uniformly random). The prototypical example
of an n-wise independent family of hash function (with nearly uniform hash values) is

H :=

{
hα0,...,αn−1(x) =

(
n−1∑
i=0

αix
i mod p

)
mod m | α0, . . . , αn−1 ∈ [p]

}
where p is any prime greater than or equal to u. That is, to draw a hash function h from H,
we sample α0, . . . , αn−1 uniformly and independently in [p] and let h(x) be the evaluation of the
polynomial (

∑
i αix

i mod p) mod m1. Clearly, the evaluation time of this hash function is Θ(n).
Whether it is possible to implement n-wise independent hash functions with faster evaluation time
has been the focus of much research. On the lower bound side, Siegel [Sie89] proved that any
implementation of an n-wise independent hash function h : [u] → [m] using s memory cells of
w = Θ(lg u) bits, must probe at least t = Ω(min{lg(u/n)/ lg(s/n), n}) memory cells to evaluate
h. The hash function above matches the second term in the minimum. For the first term, the
result that comes closest is a recursive form of tabulation hashing by Christiani et al. [CPT15] that
gives an n-wise independent family of hash functions that can be implemented using s = O(nu1/c)
space and evaluation time t = O(c lg c) for any c = O(lg u/ lg n). Rewriting the space bound gives
c = lg u/ lg(s/n) and thus t = O(lg(u) lg(lg(u)/ lg(s/n))/ lg(s/n)). This is about a lg lg u factor
away from the lower bound of Siegel in terms of the query time t. This algorithm is adaptive and
requires s ≥ n1+Ω(1) as they need lg u/ lg(s/n) = O(lg u/ lg n).

Our Contribution. Designing an optimal n-wise independent family of hash functions thus
remains open, with or without adaptivity. In this work, we show how to implement such a function
in the cell probe model (where computation is free):

Theorem 2. For any s = Ω(n) and p = Ω(u), there is a non-adaptive static cell probe data
structure for storing an n-wise independent hash function h : [u] → Fp using s memory cells of
w = Θ(lg p) bits and answering evaluation queries in t = O(lg(u/n)/ lg(s/n)) probes.

1Technically, this hash function is only approximately n-wise independent, in the sense that the hash values of
any n keys are independent, but only approximately uniform random.

4

We remark that Siegel’s lower bound is valid in the cell probe model, and thus our data structure
is optimal. Furthermore, Siegel’s lower bound holds also for adaptive data structures, whereas ours
is even non-adaptive. Compared to the work of Christiani et al., we have a faster evaluation time
and only require s = Ω(n). The downside is of course that our solution is only implemented in the
cell probe model. Implementing our hash function in the word-RAM model would require the same
type of explicit expander graph as for implementing our non-adaptive dictionary (and a bit more),
further motivating the study of such expanders (see Section 4).

2 Non-Adaptive Dictionaries

We consider the dictionary problem where we are to preprocess a set X of n key-value pairs from
[u]× [u] into a data structure, such that given an x ∈ [u], we can quickly return the corresponding
value y such that (x, y) ∈ X or conclude that no such y exists. We assume that any for any key x,
there is at most one value y such that (x, y) ∈ X.

We focus on non-adaptive data structures in the cell probe model. Non-adaptive means that
the memory cells probed on a query depends only on x. We assume u = Ω(n) and that the cell size
w is Θ(lg u).

As mentioned in Section 1, we base our data structure on expander graphs. We recall the
standard definitions of bipartite expanders in the following:

Definition 1. A (u, s, t)-bipartite graph with u left vertices, s right vertices and left degree t is
specified by a function Γ : [u] × [t] → [s], where Γ(x, y) denotes the yth neighbor of x. For a set
S ⊆ [u], we write Γ(S) to denote its neighbors {Γ(x, y) : x ∈ S, y ∈ [t]}.

Definition 2. A bipartite graph Γ : [u]× [t] → [s] is a (K,A)-expander if for every set S ⊆ [u] with
|S| = K, we have |Γ(S)| ≥ A ·K. It is a (≤ Kmax, A)-expander if it is a (K,A)-expander for every
K ≤ Kmax.

The literature on bipartite expanders, see e.g. [GUV09], is focused on graphs with near-optimal
expansion A = (1 − ε)t, i.e. very close to the largest possible expansion with degree t. However,
for our non-adaptive dictionaries, we need significantly less expansion. We call such expanders
non-contractive and define them as follows:

Definition 3. A bipartite graph Γ : [u]× [t] → [s] is a (≤ Kmax)-non-contractive expander if it is
a (≤ Kmax, 1)-expander.

Said in words, a bipartite is a (≤ Kmax)-non-contractive expander, if every set of at most
K ≤ Kmax left-nodes has at least K neighbors.

Before presenting our dictionary, we present the second ingredient in our dictionary, namely
Hall’s marriage theorem. For a bipartite graph with left-vertices X, right-vertices Y and edges E,
an X-perfect matching is a subset of disjoint edges from E such that every vertex in X has an
edge. Hall’s theorem then gives the following:

Theorem 3 (Hall’s Marriage Theorem). A bipartite graph with left-vertices X and right-vertices Y
has an X-perfect matching if and only if for every subset S ⊆ X, the set of neighbors Γ(S) satisfies
|Γ(S)| ≥ |S|.

With these ingredients, we are ready to present our dictionary.

5

Dictionary from Non-Contractive Expander. Given a set of n key-value pairsX = {(xi, yi)}ni=1 ⊂
[u]× [u] and a space budget of s memory cells, we build a data structure as follows:

Construction. Initialize s memory cells and let Γ : [u] × [t] → [s] be a (≤ n)-non-contractive
expander for some t. Construct the bipartite graph G with a left-vertex for each xi and a right
vertex for each of the s memory cells. Add an edge from xi to each of the nodes Γ(xi, j) for
i = 0, . . . , t − 1. Note that this is a subgraph of the bipartite (≤ n)-non-contractive expander
corresponding to Γ. It follows that for every subset S ⊆ {xi}ni=1, we have |Γ(S)| ≥ |S|. We
now invoke Hall’s Marriage Theorem (Theorem 3) to conclude the existence of an {xi}ni=1-perfect
matching on G. Let M = {(xi, vi)}ni=1 denote the edges of the matching. For each such edge
(xi, vi), we store the key-value pair (xi, yi) in the memory cell of address vi. For all remaining s−n
memory cells, we store a special Nil value.

Querying. Given a query x ∈ [u], we query the t memory cells of address Γ(x, i) for i =
0, . . . , t − 1. If any of them stores a pair (x, y), we return y. Otherwise, we return Nil to indicate
that no pair (x, y) exists in X.

Analysis. Correctness follows immediately from Hall’s Marriage Theorem. The space usage is s
memory cells of w = Θ(lg u) bits and the query time is t. The required perfect matching M can be
computed in poly(n, s) times after performing O(nt) queries to obtain the edges of the subgraph
induced by the left-vertices {xi}ni=1. We thus have the following result:

Lemma 1. Given a bipartite (≤ n)-non-contractive expander Γ : [u] × [t] → [s], there is a non-
adaptive dictionary for storing a set of n key-value pairs using s cells of w = Θ(lg u) bits and
answering queries in t evaluations of Γ and t memory probes. The dictionary can be constructed
in poly(n, s) time plus O(nt) evaluations of Γ.

Lemma 1 thus gives us a way of obtaining a non-adaptive dictionary from an expander. What
remains is to give expanders with good parameters. As mentioned, we do not have optimal explicit
constructions of such expanders. However, for the cell probe model where computation is free of
charge, we merely need the existence of Γ and not that it is efficiently computable. Concretely, a
probabilistic argument gives the following:

Lemma 2. For any s ≥ 2n and any u ≥ n, there exists a (non-explicit) (≤ n)-non-contractive
expander Γ : [u]× [t] → [s] with t = lg(u/n)/ lg(s/n) + 5.

Combining Lemma 1 and Lemma 2 implies our Theorem 1.

Non-Explicit Expander. In the following, we prove Lemma 2. For this, consider drawing
Γ : [u]× [t] → [s] uniformly among all such functions/expanders. That is, we let Γ(x, y) be uniform
random and independently chosen in [s] for each x ∈ [u] and y ∈ [t]. For each S ⊆ [u] with |S| ≤ n
and each T ⊆ [s] with |T | = |S| − 1, define an event ES,T that occurs if Γ(S) ⊆ T . We have that
Γ is a (≤ n)-non-contractive expander if none of the events ES,T occur. For a fixed ES,T , we have

6

Pr[ES,T] = (|T |/s)t|S| and thus a union bound implies

Pr[Γ is not a (≤ n)-non-contractive expander] ≤∑
S,T

Pr[ES,T] =

n∑
i=1

∑
S⊆[u]:|S|=i

∑
T⊆[s]:|T |=i−1

Pr[ES,T] ≤

n∑
i=1

(
u

i

)(
s

i

)
(i/s)ti ≤

n∑
i=1

(eu/i)i(es/i)i(i/s)ti =

n∑
i=1

(
e2uit−2

st−1

)i

≤

n∑
i=1

(
e2(u/n)(n/s)t−1

)i
.

For s ≥ 2n and t ≥ lg(u/n)/ lg(s/n) + 5, this is at most
∑n

i=1(e
2/16)i < 1 and thus proves

Lemma 2.

3 Hashing

In this section, we show how to construct a n-wise independent hash function with fast evaluation
in the cell probe model. As a data structure problem, such a data structure has a query h(x) for
each x ∈ [u]. Upon construction, the data structure draws a random seed and initializes s memory
cells of w bits. The data structure satisfies that the values h(x) are uniform random in Fp and
n-wise independent. Here the randomness is over the choice of random seed.

Similarly to our dictionary, our hashing data structures makes use of a bipartite expander. How-
ever, we need a (very) slightly stronger expansion property. Concretely, we assume the availability
of a (≤ n, 2)-expander Γ : [u] × [t] → [s] (rather than a (≤ n, 1)-expander). The expander Γ thus
satisfies that for any S ⊆ [u] with |S| ≤ n, we have |Γ(S)| ≥ 2|S|.

In addition to the (≤ n, 2)-expander Γ, we also need another function assigning weights to the
edges of Γ. We say that Π : [u] × [t] → Fp makes Γ useful if the following holds: Construct from
(Γ,Π) the u× s matrix AΓ,Π such that entry (x, y) equals∑

j:Γ(x,j)=y

Π(x, j) mod p

We have that (Γ,Π) is useful if every subset of n rows in AΓ,Π is a linearly independent set of vector
over Fs

p. We show later that for any (≤ n, 2)-expander Γ, there exists at least one Π making Γ
useful:

Lemma 3. If Γ : [u]×[t] → [s] is a (≤ n, 2)-expander, then for p ≥ 2eu, there exists a Π : [u]×[t] →
Fp such that (Γ,Π) is useful.

7

In the cell probe model, we may assume that Γ and Π are free to evaluate and are known to a
data structure since computation is free of charge. With such a pair (Γ,Π) we may now construct
our data structure for n-wise independent hashing.

Construction. Initialize the data structure by filling each of the s memory cells by uniformly
and independently chosen values in Fp (the seed). Let z0, . . . , zs−1 denote the values in the memory
cells.

Querying. To evaluate h(x) for an x ∈ [u], compute and return the value

t−1∑
j=0

Π(x, j)zΓ(x,j) mod p.

Analysis. Observe that the value returned on the query x equals

t−1∑
j=0

Π(x, j)zΓ(x,j) mod p ≡
s−1∑
y=0

∑
j:Γ(x,j)=y

Π(x, j)zΓ(x,j) mod p.

But this is the same as (AΓ,Πz)x, i.e. the inner product of the x’th row of AΓ,Π with the randomly
drawn vector z. Since the rows of AΓ,Π are n-wise independent and z is drawn uniformly, we
conclude that the query values h(0), . . . , h(u− 1) are n-wise independent as well. The query time
is t probes and the space usage is s cells of lg p bits. We thus conclude

Lemma 4. Given a bipartite (≤ n, 2) expander Γ : [u] × [t] → [s] and a p ≥ 2eu, there is a cell
probe data structure for evaluating an n-wise independent hash function h : [u] → Fp using s cells
of w = Θ(lg p) bits and answering queries in t cell probes.

An argument similar to the proof of Lemma 2, we show the existence of the desired expanders:

Lemma 5. For any s ≥ 2n and any u ≥ n, there exists a (non-explicit) (≤ n, 2) expander Γ :
[u]× [t] → [s] with t = 2 lg(u/n)/ lg(s/n) + 4.

Combining Lemma 5, Lemma 3 and Lemma 4 proves Theorem 2.
What remains is to prove Lemma 3 and Lemma 5. We start with Lemma 3.

Proof. (of Lemma 3) We give a probabilistic argument. Let Γ : [u]×[t] → [s] be a (≤ n, 2)-expander.
Draw Π : [u]× [t] → Fp by letting Π(x, j) be chosen uniformly and independently from Fp. Define
an event Eβ for every β ∈ Fu

p with 1 ≤ ∥β∥0 ≤ n (∥β∥0 gives the number of non-zeros) that occurs
if βAΓ,Π = 0. We have that (Γ,Π) is useful if none of the events Eβ occur.

Consider one of these events Eβ. Since Γ is a (≤ n, 2)-expander, we have that the set of
rows in AΓ,Π corresponding to non-zero coefficients of β have at least 2∥β∥0 distinct columns
containing an entry that is chosen uniformly at random and independently from Fp. We thus have

8

Pr[Eβ] ≤ p−2∥β∥0 . A union bound finally implies:

Pr[(Γ,Π) is not useful] ≤
n∑

i=1

∑
β∈Fu

p :∥β∥0=i

Pr[Eβ] ≤

n∑
i=1

(
u

i

)
pip−2i ≤

n∑
i=1

(eu/(ip))i.

For p ≥ 2eu, this is less than 1, which concludes the proof of Lemma 3.

Lastly, we prove Lemma 5.

Proof. (of Lemma 5) The proof follows that of Lemma 2 uneventfully. Draw Γ randomly, with each
Γ(x, y) uniform and independently chosen in [s]. Again, we define an event ES,T for each S ⊆ [u]
with |S| ≤ n and each T ⊆ [s] with |T | = 2|S| − 1. The event ES,T occurs if Γ(S) ⊆ T . We have

Pr[Γ is not an (≤ n, 2)-expander] ≤∑
S,T

Pr[ES,T] ≤

n∑
i=1

(
u

i

)(
s

2i

)
((2i)/s)ti ≤

n∑
i=1

(eu/i)i(s/(2i))2i((2i)/s)ti =

n∑
i=1

(
eu(2i)t−3

st−2

)i

≤

n∑
i=1

(
e(u/n)(2n/s)t−2

)i
For s ≥ 4n and t ≥ 2 lg(u/n)/ lg(s/n) + 4 ≥ lg(u/n)/ lg(s/(2n)) + 4, this is less than 1, completing
the proof of Lemma 5.

4 Conclusion and Open Problems

In this work, we gave optimal non-adaptive cell probe dictionaries and data structures for evaluating
n-wise independent hash functions. Our data structures rely on the existence of bipartite expanders
with quite weak expansion properties, namely (≤ n, 1) and (≤ n, 2)-bipartite expanders. If efficient
explicit constructions of such expanders were to be developed, they would immediately allow us
to implement our dictionary in the standard word-RAM model. They would also go a long way
towards a word-RAM implementation of n-wise independent hashing. We thus view our results as
strong motivation for further research into such expanders.

9

Next, we remark that our non-explicit constructions of (≤ n, 1) and (≤ n, 2) expanders are
essentially optimal. Concretely, a result of Radhakrishnan and Ta-Shma [RT00] shows that any
(u, s, t)-bipartite graph with expansion 1 requires t = Ω(lg(u/n)/ lg(s/n)). In more detail, The-
orem 1.5 (a) of [RT00] proves that if G is a (u, s, t)-bipartite graph that is an (n, ϵ) disperser
(every set of n left-nodes has at least (1 − ε)s right-nodes), then for ε > 1/2, the left-degree, t, is
Ω(lg(u/n)/ lg(1/(1− ε))). Since a (≤ n, 1)-non-contractive expander is also an (n, ϵ)-disperser with
(1− ϵ) = n/s, the lower bound t = Ω(lg(u/n)/ lg(s/n)) follows.

Finally, we also observe a near-equivalence between non-adaptive data structures for evaluating
n-wise independent hash functions and non-contractive bipartite expanders. Concretely, assume we
have a word-RAM data structure for evaluating an n-wise independent hash function from [u] to
[u] and assume w = lg u for simplicity. If the data structure uses s space and answers queries in t
time (including memory lookups and computation), then we may obtain an explicit expander from
the data structure. Concretely, we form a right node for every memory cell, a left node for every
query and an edge corresponding to each cell probed on a query. Now observe that if there was a
set of n left nodes S with |Γ(S)| < n, then from those |Γ(S)| memory cells, the data structure has
to return n independent and uniform random values in [u]. But the cells only have |Γ(S)|w < n lg u
bits, i.e. a contradiction. Hence the resulting expander is non-contractive. If the query time of
the data structure was t, we may obtain the edges incident to a left node simply by running the
corresponding query algorithm. Since the query algorithm runs in t time, it clearly accesses at most
t right nodes and computing the nodes to access can also be done in t time. A similar connection
was observed by [CPT15].

References

[BHP+06] Mette Berger, Esben Rune Hansen, Rasmus Pagh, Mihai Pătraşcu, Milan Ruzic, and
Peter Tiedemann. Deterministic load balancing and dictionaries in the parallel disk
model. In Phillip B. Gibbons and Uzi Vishkin, editors, SPAA 2006: Proceedings of the
18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, Cam-
bridge, Massachusetts, USA, July 30 - August 2, 2006, pages 299–307. ACM, 2006.

[BL15] Joshua Brody and Kasper Green Larsen. Adapt or die: Polynomial lower bounds for
non-adaptive dynamic data structures. Theory Comput., 11:471–489, 2015.

[BMRV02] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors
optimal? SIAM Journal on Computing, 31(6):1723–1744, 2002.

[CK09] Jeffrey Cohen and Daniel M. Kane. Bounds on the independence required for cuckoo
hashing. Manuscript, 2009.

[CPT15] Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. From independence to expansion
and back again. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 813–820. ACM, 2015.

[CW77] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In
Proceedings of the ninth annual ACM symposium on Theory of computing, pages 106–
112, 1977.

10

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with
0(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes. J. ACM, 56(4):20:1–
20:34, 2009.

[Pag01] Rasmus Pagh. On the cell probe complexity of membership and perfect hashing. In
Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 425–432. ACM, 2001.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Friedhelm Meyer auf der
Heide, editor, Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus, Den-
mark, August 28-31, 2001, Proceedings, volume 2161 of Lecture Notes in Computer
Science, pages 121–133. Springer, 2001.

[PY20] Giuseppe Persiano and Kevin Yeo. Tight static lower bounds for non-adaptive data
structures. CoRR, abs/2001.05053, 2020.

[RT00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and
depth-two superconcentrators. SIAM J. Discret. Math., 13(1):2–24, 2000.

[Sie89] Alan Siegel. On universal classes of fast high performance hash functions, their time-
space tradeoff, and their applications (extended abstract). In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, USA,
30 October - 1 November 1989, pages 20–25. IEEE Computer Society, 1989.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981.

11

