
The NFA Acceptance Hypothesis:
Non-Combinatorial and Dynamic Lower Bounds

Karl Bringmann∗ Allan Grønlund† Marvin Künnemann‡

Kasper Green Larsen§

Abstract

We pose the fine-grained hardness hypothesis that the textbook algorithm for the NFA
Acceptance problem is optimal up to subpolynomial factors, even for dense NFAs and fixed
alphabets.

We show that this barrier appears in many variations throughout the algorithmic lit-
erature by introducing a framework of Colored Walk problems. These yield fine-grained
equivalent formulations of the NFA Acceptance problem as problems concerning detection
of an s-t-walk with a prescribed color sequence in a given edge- or node-colored graph. For
NFA Acceptance on sparse NFAs (or equivalently, Colored Walk in sparse graphs), a tight
lower bound under the Strong Exponential Time Hypothesis has been rediscovered several
times in recent years. We show that our hardness hypothesis, which concerns dense NFAs,
has several interesting implications:

• It gives a tight lower bound for Context-Free Language Reachability. This proves
conditional optimality for the class of 2NPDA-complete problems, explaining the cubic
bottleneck of interprocedural program analysis.

• It gives a tight (n+ nm1/3)1−o(1) lower bound for the Word Break problem on strings
of length n and dictionaries of total size m.

• It implies the popular OMv hypothesis. Since the NFA acceptance problem is a static
(i.e., non-dynamic) problem, this provides a static reason for the hardness of many
dynamic problems.

Thus, a proof of the NFA Acceptance hypothesis would resolve several interesting barriers.
Conversely, a refutation of the NFA Acceptance hypothesis may lead the way to attacking the
current barriers observed for Context-Free Language Reachability, the Word Break problem
and the growing list of dynamic problems proven hard under the OMv hypothesis.

∗Saarland University and Max-Planck-Institute for Informatics, Saarland Informatics Campus. bringmann@cs.
uni-saarland.de. This work is part of the project TIPEA that has received funding from the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement
No. 850979).

†Aarhus University and Kvantify. jallan@cs.au.dk, ag@kvantify.dk.
‡Karlsruhe Institute of Technology. marvin.kuennemann@kit.edu. Research partially supported by the

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 462679611.
§Aarhus University. larsen@cs.au.dk. Supported by Independent Research Fund Denmark (DFF) Sapere

Aude Research Leader grant No 9064-00068B.



1 Introduction

Consider a classic problem that lies at the heart of introductory undergraduate courses on the
theory of computation: Given a nondeterministic finite automaton (NFA)M and a string x over
some alphabet Σ, determine whether x is accepted by M . The textbook algorithm for solving
this problem uses dynamic programming and solves the problem in time O(|M | · |x|). Optimality
of this algorithm is known for sparse NFAs, assuming the Strong Exponential Time Hypothesis
and up to subpolynomial factors, as we will discuss in detail in Section 1.2. We put forth the
following fine-grained hardness hypothesis, in which we conjecture optimality of this decades-old
algorithm also for dense NFAs.

Hypothesis 1 (NFA Acceptance hypothesis, informal version). The textbook O(|M | · |x|) time
algorithm for NFA Acceptance over any fixed alphabet Σ is optimal up to subpolynomial factors,
even if M is a dense NFA.

In this paper, we shed light on the many guises of the NFA Acceptance problem and highlight
the ramifications of the above hardness hypothesis on fine-grained complexity theory in P.

1.1 The many guises of the NFA Acceptance problem

To express equivalent formulations of the NFA Acceptance problem, consider the following prob-
lem: Given a directed, simple graph G = (V,E) with edge colors c : E → Σ, distinguished nodes
s, t ∈ V and a color sequence c1, . . . , c` ∈ Σ, determine whether there is a walk of length ` from
s to t such that the color sequence of the traversed edges is equal to c1, . . . , c`. In a graph with
n nodes and m ≥ n edges, this problem is easily solved in time O(m`), by maintaining a set
S ⊆ V of states reachable from s via a walk with color sequence c1, . . . , ci, over all 1 ≤ i ≤ `.

There are natural variants of this problem, by considering node colors rather than edge
colors, undirected rather than directed graphs, as well as various restrictions on the size of
the alphabet : We call these problems Directed/Undirected Σ-Edge-Colored/Σ-Node-
Colored Walk, see Section 2 for a formal definition. All of these problems can be solved
in time O(m`). These Colored Walk problems arise in different communities, typically with
different generalizations:

• (Formal language theory:) NFA Acceptance is a fundamental problem in formal language
theory, as it is the membership problem for regular languages. Directed Σ-Edge-
Colored Walk is precisely the special case in which the NFA has no loops (transitions
from some state q to itself) or multiple transitions between any two states (with differ-
ent labels from the terminal set).1 In Section A, we will show that this special case is
fine-grained equivalent to the general case of the NFA Acceptance problem.

• (Hidden Markov models:) A Hidden Markov Model (HMM) is a Markov chain in which
every state has a distribution over possible observations Σ it emits. In the Viterbi Path
problem, the task is to determine, given a sequence c1, . . . , c` of observations over Σ and
a HMM M , the most likely walk through M to emit c1, . . . , c`. An extension of the NFA
Acceptance algorithm, well-known as Viterbi’s algorithm [Vit67], solves this problem in
time O(m`), where m denotes the size of M . Exploiting the weighted nature of this
problem, Viterbi’s algorithm has been proven optimal up to subpolynomial factors under
the weighted k-Clique hypothesis [BT17]. Σ-Node-Colored Walk is equivalent to the
following interesting unweighted special case of the problem: in a HMM for which every

1Formulating the NFA Acceptance problem as a colored walk problem is not uncommon, see, e.g., [ACJR22].
Here we use the Colored Walk problem as a umbrella to express various related problems in a common language.

1



node v emits a single observation σv with probability 1, determine whether there exists
any walk with positive probability for emitting the observations c1, . . . , c`.2

• (Combinatorial Pattern matching, Bioinformatics:) In some applications in combinatorial
pattern matching, e.g., in bioinformatics, it is natural to represent a set of strings using
a node-labeled graph G: Here, every node u is equipped with a string Lu ∈ Σ∗ and
the represented set of strings is simply the list of all concatenations Lu1 . . . Luk over all
walks u1 . . . uk in G. A natural question is to perform pattern matching on these graphs,
i.e., find an occurrence, or more generally, all occurrences of a given pattern P in some
string T occurring in G. A line of work, see, e.g., [MW92, ALL00, Nav00, JZGA20]
derives algorithms for exact and approximate matches of a string, see also [EGMT19] for
references. Σ-Node-Colored Walk is equivalent to detecting an exact occurrence in a graph
in which every node is labeled by a single character in Σ.2

• (Database Theory:) An important topic in the area of graph databases are regular path
queries, see, e.g. [MW95, Bar13, CS21] and references therein. Here, a database is given
as a graph G = (V,E) with edge labels over Σ and the aim is to support queries, which
on input a regular expression q, return information about walks in the graph whose labels
match the regular expression q (variants of these queries include emptiness, counting, or
enumeration of such walks or their endpoints). The emptiness query can be solved in time
O((|V | + |E|)|q|) using a straightforward approach of constructing a product graph of G
and an NFA representing q; conditional optimality of this approach has been investigated
in [CS21]. The special case in which q describes a single string of length ` is precisely the
Σ-Edge-Colored Walk problem.2

Interestingly, it turns out that all the special cases discussed above are equivalent in a fine-
grained sense. In particular, the NFA Acceptance problem, as well as all no(1)-Edge-ColoredWalk
and n-Node-Colored Walk problems are equivalent to the following seemingly simple problem:

Directed 2-Edge-Colored Walk
Input: Directed graph G = (V,E), s, t ∈ V , c : E → {1, 2}, ` ∈ N, colors c1, . . . , c` ∈ {1, 2}
Question: Exist s = v0, v1, . . . , v` = t with (vi−1, vi) ∈ E and c(vi−1, vi) = ci for all 1 ≤ i ≤ `?

For a formal statement of this equivalence and its proof, see Sections 2 and A.
Thus, the same barrier has been observed across different communities, with extensions of

the O(m`)-time algorithm in various distinct directions. The only generalization with a tight
conditional lower bound for all graph densities is known in the weighted setting of Viterbi’s
algorithm [BT17].

A refutation of the NFA Acceptance hypothesis would thus immediately be interesting for a
host of communities – as a case in point, several works derive essentially the same conditional
lower bounds for sparse graphs and for combinatorial algorithms, see Section 1.2. Furthermore,
refuting the hypothesis is a prerequisite to obtaining faster algorithms also for the discussed
generalizations, e.g., for approximating the Viterbi Path problem.

1.2 Support for the hypothesis

The current support for the hypothesis is threefold: (I) there are tight conditional lower bounds
for sparse NFAs based on the Orthogonal Vectors Hypothesis (OVH) and thus the Strong Expo-
nential Time Hypothesis (SETH), (II) there is a tight combinatorial lower bound for all densities

2 The equivalence of detecting an s-t-walk with a given color sequence and detecting any walk with a given
color sequence is discussed in Section A.

2



of NFAs based on the combinatorial k-Clique hypothesis, and (III) simply the lack of a faster
algorithms despite the centrality and age of this problem. We discuss these reasons in detail:

Support I: Hardness for sparse NFAs It is known that an O((n`)1−ε))-time algorithm for
acceptance of a length-` string by an n-state NFA would refute OVH and SETH. This can be
viewed as a tight conditional lower bound for sparse NFAs with m = O(n) transitions, but it
fails to provide a tight lower bound for NFAs with m = Θ(nα) transitions with 1 < α ≤ 2.
Several versions of this result have been proven and published in recent years. A subset of
the authors have learned the result phrased for NFAs from Russell Impagliazzo in 2015. Since
regular expressions of size n can be easily converted to an NFA with O(n) states and transitions,
the quadratic conditional lower bounds for regular expression membership/matching in [BI16,
BGL17] translate to NFA Acceptance lower bounds. Subsequently, the lower bound for sparse
NFAs has been derived from the perspective of string matching in labeled graphs [EGMT19], of
NFA Acceptance [PS20], and of regular path queries in graph databases [CS21].3

Interestingly, the same lower bound already holds under a weaker hypothesis, specifically
Formula-SETH [AB18, Sch20, GHT21].

Support II: Combinatorial Hardness Beyond sparse NFAs, the literature provides, per-
haps a bit implicitly, a (combinatorial) reduction from k-Clique to NFA Acceptance with a dense
NFA with n states with the following implications: (1) an O((`n2)1−ε)-time combinatorial4 NFA
Acceptance algorithm for any ` = nβ, β > 0 would give a combinatorial O(n(1−ε′)k)-time k-Clique
algorithm for all sufficiently large k, and (2) an O((`n2)ω/3−ε)-time NFA Acceptance algorithm
would give a O(n(ω/3)k−ε′)-time k-Clique algorithm for sufficiently large k, breaking the state of
the art for current k-Clique algorithms, see [NP85, ABVW15].

These lower bounds can be obtained either by adapting the reduction from weighted k-
Clique in [BT17] to the unweighted case, or as a special case of [ABBK17, Theorem I.5]5, or as
an appropriate generalization of the reduction from Triangle Detection to NFA Acceptance with
` ≈ n in [PS20], or as an appropriate generalization of the reduction from Triangle Detection to
regular path queries with queries of length ` ≈ n in [CS21]. For a self-contained reduction see
Section B.

These reductions suggest that to break the NFA Acceptance hypothesis, a non-trivial appli-
cation of fast matrix multiplication techniques is needed. Put differently, our hypothesis boils
down to postulating that fast matrix multiplication is not applicable for the NFA Acceptance
problem.

Support III: Long-standing State of the Art Finally, the NFA Acceptance hypothesis is
plausible simply due to the lack of any improved algorithms. To the best of our knowledge, the
best algorithm for NFA Acceptance for dense NFAs over a constant-sized alphabet Σ runs in
time O(n2`/2Ω(

√
logn)) (see Section 5).

Let us contrast the state of the art for NFA Acceptance, i.e., the membership problem for reg-
ular languages, to the membership problem for context-free languages, specifically context-free
grammar parsing. The fine-grained complexity of this problem has parallels to NFA Acceptance:
The best combinatorial algorithms decide membership of a length-n string in a fixed grammar
Γ in mildly subcubic time O(n3/polylog n), see [ABVW15] for an overview. Any truly sub-
cubic combinatorial algorithm would refute the combinatorial k-Clique algorithm [ABVW15].
However, by a highly non-trivial application of fast matrix multiplication, Valiant [Val75] gave

3By the the fine-grained equivalence of the Colored Walk problems of Section 2, these results turn out to be
essentially equivalent in their main statement. However, some aspects of the reductions can differ.

4Here, a combinatorial algorithm refers to an algorithm that avoids the algebraic techniques underlying fast
matrix multiplication algorithms, see Section 1.4 for a discussion.

5In the theorem, simply choose αN = αn = β.

3



an algorithm for context-free grammar parsing in time O(nω) for constant-sized grammars, but
this is known already since 1975! It appears unlikely that a similar algorithm using fast matrix
multiplication for NFA Acceptance has been overlooked for decades.

In Section C, we also discuss why natural algorithmic approaches towards refuting the NFA
Acceptance hypothesis appear to fail.

It is apparent that the NFA Acceptance hypothesis poses a significant barrier. Finally, we
remark that [PS20] recently posed our NFA Acceptance hypothesis as an open problem.6

1.3 Evidence against the hypothesis

The only evidence against the NFA Acceptance hypothesis that we are aware of is the existence
of (co-)nondeterministic verifiers with running time O((n2`)1−ε). This is even known for the
weighted generalization to the Viterbi Path problem [BI16], but can be proven directly (see
Section B) or follows as a consequence of our reduction in Section 3 combined with [CMS22].
This rules out tight deterministic reductions from SAT and OV to NFA Acceptance with dense
NFAs, assuming a nondeterministic variant of SETH [CGI+16]. However, there are several
hypotheses with a similar status, in particular, the APSP hypothesis, 3SUM hypothesis and the
Hitting Set hypothesis.

1.4 Applications I: Non-combinatorial lower bounds

Our first major consequence of the NFA Acceptance hypothesis are novel tight conditional
lower bounds against general algorithms where previously only combinatorial lower bounds were
known.

Combinatorial Lower Bounds Among the oldest conditional lower bounds in the polynomial-
time regime are based on Boolean matrix multiplication (BMM), see, e.g. [Lee02] (for a recent
survey of fine-grained complexity theory in P, we refer to [VW18]). The best known algorithm for
BMM uses fast matrix multiplication over the integers, yielding an nω+o(1)-time algorithm, where
ω is the matrix multiplication exponent, with a current state-of-the-art bound of ω < 2.37286
due to works of [Str69, CW90, VW12, LG14, AW21], among others.

Unfortunately, theoretically fast matrix multiplication algorithms generally turn out to be
impractical, as the constants hidden in the O-notation are usually too large for the problem
sizes observed in applications. Therefore, it has become increasingly popular to use the notion
of combinatorial algorithms to exclude the use of algebraic techniques underlying current fast
matrix multiplications, in an attempt to study algorithms whose asymptotic complexity trans-
lates into practical running time. In this direction, it has been hypothesized that BMM does not
admit combinatorial O(n3−ε)-time algorithms with ε > 0. This hypothesis is in fact equivalent
to the nonexistence of truly subcubic combinatorial algorithms for triangle detection, and gives
tight combinatorial lower bounds for problems such as the Sliding Window Hamming Distance
(see [GU18]), CFL Reachability [CCP18] and many more. A generalization of this hypothesis
is that for no k ≥ 3 and ε > 0, k-Clique admits a combinatorial O(nk−ε)-time algorithm, which
implies a combinatorial version of our NFA Acceptance hypothesis, see Section B.

However, there are several downsides to the notion of combinatorial lower bounds: First
and foremost, the notion of combinatorial algorithm is not formally defined, which is hardly
acceptable (see e.g. the discussion in [HKNS15]). Second, in theoretical computer science we are
usually interested in the optimal asymptotic worst-case complexity, so why would we exclude
algorithmic techniques leading to an improved complexity? Third, Strassen’s original algorithm

6Potechin and Shallit note, following the SETH-based lower bound for sparse NFAs: “However, this does not
rule out an improvement when the NFA is dense, and we leave it as an open problem to either find a significant
improvement to this algorithm, or show why such an improvement is unlikely.”

4



is sometimes found to be practical [HSHvdG16]. Hence, there are several reasons to avoid
“combinatorial lower bounds”, as they leave open the very real possibility that faster algorithms
exploiting fast matrix multiplication techniques exist.

How can we distinguish between problems for which faster algorithms via fast matrix multi-
plications exist, and those for which such an improvement is unlikely? Generally speaking, the
current state of the art for problems with tight combinatorial lower bounds can be categorized
as follows:

1. (easy:) Problems whose asymptotic complexity is upper bounded by fast matrix mul-
tiplication, e.g., context-free grammar recognition for constant-sized grammars [Val75],
maximum node-weighted triangle [CL09], and others.

2. (intermediate:) Problems for which improvements via fast matrix multiplication are pos-
sible, but they do not necessarily lead to quasilinear time in the input if ω = 2: e.g.,
Sparse Triangle Listing or intermediate O(n

3+ω
2 )-time problems such as (min,max) prod-

uct, Dominance product, Equality product, and All-Edges Monochromatic Triangle. Only
for a few of these problems, conditional lower bounds give evidence why they do not appear
to belong to the first category, e.g. [Pat10, LPVW20, VWX20, CWX21].

3. (difficult:) Problems for which even using fast matrix multiplication, no improved algo-
rithms are known, e.g., APSP, Sliding Window Hamming Distance, Word Break, Context-
free Language Reachability, Klee’s Measure Problem. To establish that a problem lies in
this category, currently only two hardness assumptions appear applicable: If the problem
can express weights, a reduction from APSP or more generally the weighted k-Clique hy-
pothesis are plausible, e.g. [WW18, BDT16, BT17]. A second possibility is a reduction
based on the 3-uniform Hyperclique hypothesis [LVWW18], which was used, e.g., for Klee’s
measure problem in 3D [Kün22].

The NFA Acceptance hypothesis yields a new route to establish that a problem belongs to
the third category. We describe two such applications: (1) Context-free language reachability
and, more generally, all 2NPDA-complete problems (which suffer from the cubic bottleneck in
interprocedural program analysis), and (2) the Word Break problem.

CFL Reachability and 2NPDA-hard problems In Context-free Language (CFL) Reach-
ability for a fixed context-free grammar Γ, we are given an Σ-edge-colored directed graph G and
distinguished nodes s, t, and the task is to determine whether there is a walk from s to t such
that the sequence of traversed edge colors spells a word in the language given by Γ. The CFL
Reachability problem has many applications in program analysis, verification and database the-
ory (see, e.g., the references in [CMS22, KD23]) . A classic algorithm solves CFL Reachability
in time O(n3) [Yan90], which has been slightly improved to time O(n3/ log n) [Ryt85, Cha08].
In fact, these algorithms extend to the generalization of computing all pairs (s, t) for which such
a walk exists.

The inability to obtain truly subcubic time algorithms for CFL Reachability and related
problems has led researchers to investigate its relationship to the recognition problem for two-
way nondeterministic pushdown automata (2NPDA), which admits a classic cubic time algorithm
due to [AHU68]. Several problems, including CFL Reachability, pushdown automata emptiness,
and related problems in data flow analysis, have been proven 2NPDA-complete in the sense that
they are subcubic equivalent to 2NPDA recognition [Nea89, MR00, HM97], see also [CMS22].

Since then, there have been attempts to obtain conditional lower bounds for 2NPDA-
complete problems: For combinatorial algorithms a conditional lower bound ruling out time
O(n3−ε) for any ε > 0 was shown in [CCP18]. However, it was proven that obtaining a tight lower
bound based on SETH/OVH using deterministic reductions would violate NSETH [CMS22]. Re-
cently, an interesting attempt was made to show that the All-Pairs version of CFL Reachability

5



is strictly harder than matrix multiplication (i.e., does not belong to the first category in the
above list) via a reduction from All-Edges Monochromatic Triangle [KD23].7

In Section 3, we show that proving the NFA hypothesis settles the cubic bottleneck of
2NPDA-complete problems by showing that the NFA Acceptance hypothesis implies that CFL
Reachability, and thus, all 2NPDA-hard problems, have no truly subcubic algorithms. In par-
ticular, this gives conditional optimality of the algorithms due to Yannakakis [Yan90] and Aho
et al. [AHU68].

Word Break In the Word Break problem we are given a string S and a dictionary D (i.e.,
D is a set of strings) and we ask whether S can be split into dictionary words, i.e., whether we
can partition S into substrings such that each substring is in the set D. Denoting the length of
S by n and the total length of all dictionary words by m, this problem has a relatively simple
randomized algorithm running in time Õ(nm1/2 +m).8 This running time was first improved to
Õ(nm1/2−1/18+m) [BI16] and then to the current state of the art O(n(m logm)1/3+m) [BGL17].
In [BGL17] it was also shown that Word Break has no combinatorial algorithm running in time
O(nm1/3−ε + m) for any ε > 0, assuming a hypothesis on combinatorial k-Clique. Under
standard, non-combinatorial hypotheses, no superlinear running time lower bound is known.

In Section 4, we settle this issue by proving a tight conditional lower bound for Word Break
under the NFA Acceptance hypothesis.

1.5 Application II: A static reason for dynamic hardness

In 2015, Henzinger, Forster, Nanongkai and Saranurak [HKNS15] formulated the OMv hypoth-
esis which unifies and strengthens many conditional lower bounds for data structure prob-
lems and dynamic problems and has since been used in various areas such as graph algo-
rithms [HKNS15, Dah16, AD16, HW21], string algorithms [CGLS18, KK22, CGK+22], com-
putational geometry [DI22, LR21], linear algebra [vdBNS19, JPW22], formal languages [GT21],
and database theory [BKS17, CS21, KNOZ23]. In fact, almost all conditional lower bounds for
dynamic problems known under BMM or other hypotheses such as 3SUM or APSP can also
be shown under the OMv hypothesis.9 Thus, there is one reason that allows to rule out faster
algorithms for a wealth of problems, without restricting the class of algorithms that may be
used, and without any undefined notions.

Interestingly, it turns out that the NFA Acceptance hypothesis implies the OMv hypothesis.
The reduction is very direct and has nice implications: (1) It establishes NFA Acceptance
as a static reason for the hardness of a wealth of dynamic problems. (2) It gives additional
reason to believe in the OMv hypothesis, since NFA Acceptance is an additional problem that
has been studied for decades and lacks polynomially improved algorithms. (3) We obtain an
improved running time for NFA Acceptance by a factor 2Θ(

√
logn), by the improved algorithm

for OMv [LW17]. (4) Since NFA Acceptance is a static problem, we can try to obtain similar
lower bounds as from OMv now for static versions of dynamic problems. We give the reduction
in Section 5.

2 Equivalent formulations: Colored Walk Framework

An NFA M is a tuple (Q,Σ, δ, q0, F ) with δ ⊆ Q × Σ × Q, q0 ∈ Q and F ⊆ Q. We say
that M accepts a string x ∈ Σ∗ if and only if there exists some sequence q1, . . . , q|x| ∈ Q with

7Unfortunately, the reduction from Monochromatic Triangle to All-Pairs CFL Reachability given in [KD23]
appears to be flawed. In this reduction, a graph is created where every edge in the original graph is replaced by
a line graph, which in general leads to a quadratic blow-up in the number of nodes. In personal communication,
the authors confirm this issue.

8Throughout the paper we write Õ(T ) :=
⋃
c≥0O(T logc T ), where we denote logc T = (log(T ))c.

9Lower bounds from SETH seem to be an exception from this rule of thumb.

6



(qi, xi+1, qi+1) ∈ δ for all 0 ≤ i < |x| and q|x| ∈ F . Note that we do not allow ε-transitions. The
NFA Acceptance problem asks to determine, given an NFA M and string x over Σ, whether M
accepts x. We usually use n = |Q| to denote the number of states, m = |δ| to denote the number
of transitions and ` = |x| to denote the length of the string x.

We are ready to state our hypothesis formally:

Hypothesis 2 (NFA Acceptance hypothesis, formal version). Let 1 ≤ α ≤ 2 and β, ε > 0 be
arbitrary. There is no (randomized) algorithm that solves the NFA Acceptance problem for NFAs
with n states and m = Θ(nα) transitions, alphabet Σ of size no(1) and strings of length ` = Θ(nβ)
in time O((m`)1−ε) = O(n(α+β)(1−ε)).

It is equivalent to state the hypothesis only for dense NFAs, i.e., α = 2, as we show next.

Lemma 1. The NFA Acceptance hypothesis is equivalent to the following statement: Let β, ε > 0
be arbitrary. There is no (randomized) algorithm that solves the NFA Acceptance problem for
NFAs with n states and m = Θ(n2) transitions, alphabet Σ of size no(1) and strings of length
` = Θ(nβ) in time O((n2`)1−ε) = O(n(2+β)(1−ε)).

Proof. Assume that there exists 1 ≤ α′ < 2 and β′ > 0 such that we can solve the problem with
m = Θ(nα

′
) transitions and sequence length ` = Θ(nβ

′
) in time O(n(α′+β′)(1−ε)). We define

α = 2, β = (2/α′)β′ and consider any instance with m = Θ(nα) = Θ(n2) and ` = Θ(nβ). Create
an equivalent instance by simply introducing n2/α′ ≥ n additional isolated states. This instance
has n′ = Θ(n2/α′) states, the same number of transitions m′ = m = Θ(n2) = Θ((n′)α

′
) and

the same sequence length `′ = ` = Θ(nβ) = Θ((n′)β
′
). By our assumption, we can solve this

instance in time O((n′)(α′+β′)(1−ε)) = O(n(α+β)(1−ε)). This contradicts the assumption for α = 2
and an appropriate β, as desired.

Furthermore, our conditional lower bounds for CFL Reachability and OMv follow already
from the setting α = 2 and β = 1, which can be viewed as the core setting of the NFA Acceptance
hypothesis: Determining whether a given n-state NFA M over a no(1)-sized alphabet Σ accepts
a given length-n string x requires time n3−o(1) in the worst case.

In the remainder of the section, we discuss several equivalent formulations of the NFA Ac-
ceptance hypothesis, using a framework of graph problems that we refer to as Colored Walk
problems.

2.1 Colored Walk Framework

We study the following variants of the Colored Walk problem.

Directed/Undirected Node-C(n)-Colored Walk
Input: directed/undirected graph G = (V,E) with n = |V | and m = |E|, vertices s, t ∈ V ,

coloring c : V → {1, . . . , C(n)}, integer `, color sequence c1, . . . , c`
Question: Exist s = v0, v1, . . . , v` = t with (vi−1, vi) ∈ E and c(vi) = ci for all 1 ≤ i ≤ `?

Directed/Undirected Edge-C(n)-Colored Walk
Input: directed/undirected graph G = (V,E) with n = |V | and m = |E|, vertices s, t ∈ V ,

coloring c : E → {1, . . . , C(n)}, integer `, color sequence c1, . . . , c`
Question: Exist s = v0, v1, . . . , v` = t with (vi−1, vi) ∈ E and c(vi−1, vi) = ci for all i?

Note that all of these problems can be solved in time O(m`). We show that most of these
problem variants are equivalent, in the following sense. Note that statement A1 below is exactly
the NFA Acceptance hypothesis.

7



Lemma 2 (Colored Walk Framework). Let α ∈ [1, 2], β > 0. All of the following statements
A1, A2, A3, A4, A5, B1, B2, B3, and B4 are equivalent:

A Restricted to instances with m = Θ(nα) and ` = Θ(nβ), there is no O(nα+β−ε)-time
algorithm for any ε > 0 for the problem...

1 ... NFA Acceptance with alphabet size no(1).

2 ... Directed Node-2-Colored Walk.

3 ... Directed Node-n-Colored Walk.

4 ... Directed Edge-2-Colored Walk.

5 ... Directed Edge-no(1)-Colored Walk.

B Restricted to instances with m = Θ(nα) and ` = O(nβ), there is no O(nα+β−ε)-time
algorithm for any ε > 0 for the problem...

1 ... Undirected Node-2-Colored Walk.

2 ... Undirected Node-n-Colored Walk.

3 ... Undirected Edge-2-Colored Walk.

4 ... Undirected Edge-no(1)-Colored Walk.

The proof is deferred to Section A.
From now on, we use the term Colored Walk for any of the above problems. In particular,

in the reductions based on the NFA Acceptance hypothesis, we can always use the variant that
is easiest to work with. In particular, all of our reductions in the following sections will start
from Directed Edge-2-Colored Walk (i.e., we will use statement A4). By the above lemma, we
thus obtain conditional lower bounds under the NFA Acceptance hypothesis.

We leave it as an open problem whether Directed/Undirected Edge-C(n)-Colored Walk for
C(n)� no(1) is also equivalent to the above problems.

In Section A, we also show equivalence of Colored Walk to a version without source and
target nodes s, t, specifically, the version in which we determine existence of any walk in the
graph with a given color sequence c1, . . . , c`. Such versions occur e.g., for string matching in
labeled graphs or regular path queries.

3 Hardness of CFL Reachability

Recall that in the CFL Reachability problem we are given a context-free grammar Γ describing
a language L(Γ) over a terminal set Σ as well as a directed graph G = (V,E) with designated
vertices s, t ∈ V where every edge e ∈ E is labeled by a terminal σ(e) ∈ Σ. We call any
sequence of terminals w ∈ Σ∗ a word, and we say that a walk v0, v1, . . . , vt in G spells the word
σ(v0, v1)σ(v1, v2) . . . σ(v`−1, v`), i.e., we concatenate all edge labels along the walk. The task
is to decide whether there is a walk from s to t in G spelling a word in L(Γ), i.e., whether
there is a walk s = v0, v1 . . . , v` = t such that σ(v0, v1)σ(v1, v2) . . . σ(v`−1, v`) ∈ L(Γ). We write
n = |V |,m = |E| and we assume that Γ is fixed, in particular it has constant size and any
running time dependence on the size of Γ can be ignored.

The CFL Reachability problem has a classic algorithm running in time O(n3) [Yan90], which
has been slightly improved to time O(n3/ log n) [Cha08]. For combinatorial algorithms a condi-
tional lower bound ruling out time O(n3−ε) for any ε > 0 was shown in [CCP18].

We prove a tight lower bound for CFL Reachability under the NFA Acceptance hypothesis:

Theorem 1. There is a fixed grammar Γ such that the CFL Reachability problem on Γ has no
O(n3−ε)-time algorithm for any ε > 0 assuming the NFA Acceptance hypothesis.

8



Proof. We reduce from Directed Edge-2-Colored Walk. To this end, we are given a directed
graph G = (V,E) with colors c : E → {1, 2}, designated vertices s, t ∈ V , and a color sequence
c1, . . . , c` ∈ {1, 2}. Let n = |V | andm = |E|. We assume the graph to be dense (i.e., m = Θ(n2))
and we assume ` = Θ(n). By the NFA Acceptance hypothesis in the setting α = 2, β = 1, there
is no algorithm solving all such instances of Directed Edge-2-Colored Walk in time O(n3−ε) for
any ε > 0.

We construct an instance of CFL Reachability as follows. The context-free grammar Γ is the
language of well-formed expressions on two types of parenthesis (also known as Dyck-2) given by
the nonterminal S, the terminals (1, )1, (2, )2, and the production rules S → SS, S → (1S)1, S →
(1)1, S → (2S)2, S → (2)2. We fix this grammar, in particular it has constant size.

We construct a directed graph G′ = (V ′, E′) by starting from the graph G, adding a directed
path of length ` on nodes u0, u1, . . . , u`, and identifying the nodes t and u0. In other words, we
attach a path u1, . . . , u` to the node t, and we use u0 as another name for node t. We set s′ := s
and t′ := u`. For each edge (u, v) ∈ E we set the label to σ(e) := (c(u,v). For each 1 ≤ i ≤ `
we set the label σ(ui−1, ui) := )c`+1−i . This finishes the construction of the CFL Reachability
instance (Γ, G′, s′, t′, σ).

Note that any walk from s′ to t′ in G′ ends with the path u0, u1, . . . , u` and thus with the
labels )c`)c`−1

. . .)c2)c1 . Since there are no other edge labels with closing brackets, we must choose
a walk from s′ = s to u0 = t spelling the word (c1(c2 . . . (c`−1

(c` in order to match all parentheses.
Such a walk corresponds to a walk from s to t in G with color sequence c1, c2, . . . , c`. This
shows that the constructed CFL Reachability instance is a YES-instance if and only if the given
Colored Walk instance is a YES-instance, and thus shows correctness of the reduction.

Note that the constructed graph G′ consists of n+`−1 = O(n) nodes (using our assumption
on `). Therefore, any algorithm for CFL Reachability running in time O(n3−ε) solves the given
Colored Walk instance in time O(n3−ε). This contradicts the NFA Acceptance hypothesis (as
discussed in the first paragraph).

4 Hardness of Word Break

Recall that in the Word Break problem, we are given a string S and a dictionary D (i.e., D is
a set of strings) and we ask whether S can be split into dictionary words, i.e., whether we can
partition S into substrings such that each substring is in the set D. We denote the length of S by
n and the total length of all strings inD bym. In this section, we prove that the NFA Acceptance
hypothesis implies optimality (up to subpolynomial factors) of the O(n(m logm)1/3 + m) time
algorithm given in [BGL17].

Theorem 2. The Word Break problem has no O(nm1/3−ε + m)-time algorithm for any ε > 0
assuming the NFA Acceptance hypothesis. This even holds restricted to m = Θ(nγ) for any
constant γ ∈ (0, 3/2).

Note that the O(n(m logm)1/3 + m) algorithm from [BGL17] solves Word Break in time
Õ(m) whenever m = Ω(n3/2). Since this is near-linear, there is no need for proving a fine-
grained lower bound in this case. Therefore, it is natural that we assume γ < 3/2 in the above
theorem.

Proof of Theorem 2. In the following proof, we use the upper case letters N and M for the
parameters of Word Break in order to differentiate the parameters of Colored Walk.

We reduce from Directed Edge-2-Colored Walk. To this end, we are given a directed graph
G = (V,E) with colors c : E → {1, 2}, designated vertices s, t ∈ V , and a color sequence
c1, . . . , c` ∈ {1, 2}. Let n = |V | andm = |E|. We assume the graph to be dense (i.e., m = Θ(n2))
and we assume ` = Θ(nβ) for β := 3/γ − 1. By the NFA Acceptance hypothesis in the setting

9



α = 2, β, there is no algorithm solving all such instances of Directed Edge-2-Colored Walk in
time O(n2+β−ε) for any ε > 0.

We use the notation 0k to denote the string of length k consisting of k times the letter 0.
We construct the string S and the dictionary D over alphabet {0, 1, 2} as follows:

S := 0s c1 0n c2 0n c3 . . . 0n c`−1 0n c` 0n−t.

D := { 0u c(u, v) 0n−v | (u, v) ∈ E}.

Correctness We claim that the string S can be split into dictionary words if and only if there
is a walk from s to t with color sequence c1, . . . , c` in G. This is straightforward to show: To
match the prefix 0sc1 we must choose a dictionary word corresponding to an edge (s, v1) of
color c1, and the remaining string starts with the prefix 0v1c2. Generally, in the ith step the
remaining string is of the form 0vici0

nci+1 . . . 0
nc`0

n−t, so in order to match the prefix 0vici we
must choose a dictionary word corresponding to an edge (vi, vi+1) of color ci. The last vertex
v` must satisfy v` = t in order to match the suffix 0n−t. Hence, any valid partitioning of the
string S into dictionary words corresponds to a walk s = v0, v1, . . . , v` = t with color sequence
c1, . . . , c` in G, and this is an equivalence.

Running Time The length of the string S is N = Θ(`n) = Θ(n1+β), by the assumption
on `. The total length of all strings in D is M = Θ(nm) = Θ(n3), by the assumption that
G is dense. Note that M = Θ(N3/(1+β)) = Θ(Nγ) by our setting of β = 3/γ − 1, so we
constructed instances with the desired setting of parameters. If Word Break can be solved in
time O(NM1/3−ε + M), then by plugging in the bounds on N and M , our setting of Directed
Edge-2-Colored Walk can be solved in time O(n1+β(n3)1/3−ε + n3) = O(n2+β−3ε + n3). Since
γ < 3/2 we have β = 3/γ − 1 > 1 and thus by setting ε′ := min{3ε, 2 + β − 3} > 0 we can
bound the running time by O(n2+β−ε′). This contradicts the NFA Acceptance hypothesis in the
setting α = 2, β.

5 Hardness of OMv

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, an algorithm is initially
given an n×n Boolean matrixM . Then the following repeats for n rounds: In the ith round, the
algorithm is given an n-dimensional Boolean vector vi and has to compute Mvi. The algorithm
must compute the output Mvi before it can proceed to the next round. The running time of an
OMv algorithm is the total running time for the initialization and all n rounds together.

By naively multiplyingMvi in time O(n2) in each of the n rounds, OMv can be solved in time
O(n3). This running time has been improved to n3/2Ω(

√
logn) [LW17]. The OMv Hypothesis,

due to Henzinger et al. [HKNS15], postulates that OMv cannot be solved in strongly subcubic
time.

Hypothesis 3 (OMv Hypothesis). For any constant ε > 0, OMv has no O(n3−ε)-time algorithm
(with an error probability of at most 1/3).

Many data structure problems and dynamic problems have matching lower bounds under
the OMv Hypothesis, as its usefulness has been established in various areas such as graph al-
gorithms [HKNS15, Dah16, AD16, HW21], string algorithms [CGLS18, KK22, CGK+22], com-
putational geometry [DI22, LR21], linear algebra [vdBNS19, JPW22], formal languages [GT21],
and database theory [BKS17, CS21, KNOZ23].

We show the following relation to the NFA Acceptance hypothesis:

Theorem 3. The NFA Acceptance hypothesis implies the OMv Hypothesis.

10



In particular, all implications of the OMv Hypothesis shown in [HKNS15, Dah16, AD16,
HW21, CGLS18, KK22, CGK+22, DI22, LR21, vdBNS19, JPW22, GT21, BKS17, CS21, KNOZ23]
also hold under the NFA Acceptance hypothesis.

Proof of Theorem 3. We reduce from Directed Edge-2-Colored Walk. To this end, we are given
a directed graph G = (V,E) with colors c : E → {1, 2}, designated vertices s, t ∈ V , and a color
sequence c1, . . . , c` ∈ {1, 2}. We assume the graph to be dense (m = Θ(n2)) and we assume
` = Θ(n). By the NFA Acceptance hypothesis in the setting α = 2, β = 1, there is no algorithm
solving all such instances of Directed Edge-2-Colored Walk in time O(n3−ε) for any ε > 0.

Let N := max{n, `}. If N > n we add N − n isolated dummy vertices to G.
Consider for each color c ∈ {1, 2} the transposed adjacency matrix M (c) corresponding to

the edges with color c, i.e., M (c) ∈ {0, 1}N×N where M (c)
u,v = 1 if and only if (v, u) ∈ E and

c(v, u) = c. Let u0 ∈ {0, 1}N be the indicator vector for s, i.e., u0[v] = 1 if and only if v = s.
Suppose there is an algorithm A solving OMv in time O(n3−ε) for some ε > 0. We use A to

preprocess M (1) and M (2) (as independent OMv instances). For each i = 1, . . . , `, we compute
ui := M (ci)ui−1 using algorithm A on the corresponding OMv instance. Finally, we accept the
colored walk instance if and only if u`[t] = 1.

Inductively, it is straightforward to show that ui[v] = 1 if and only if there is a walk from s
to v with color sequence c1, . . . , ci; hence correctness follows. Note that for each of the two OMv
instances we execute at most ` ≤ N rounds (and we can add dummy rounds to obtain exactly
N rounds). Therefore, algorithm A solves both instances in total time O(N3−ε) over all rounds.
Since N = max{n, `} = O(n) by our assumption on `, it follows that we can solve the given
Directed Edge-2-Colored Walk instance in time O(n3−ε), contradicting the NFA Acceptance
hypothesis (as discussed in the first paragraph). This finishes the proof.

Remark: As described above, the reduction is not many-one, since we create two instances
of OMv corresponding to the matrices M (1) and M (2). However, by a slight adaptation we can
make the reduction many-one. To this end, we construct the matrix

M =

(
M (1) 0

0 M (2)

)
,

which stacks the matrices M (1),M (2) in block matrices along the main diagonal. We use al-
gorithm A to preprocess the OMv instance M . Then given a vector u ∈ {0, 1}N and a color
c ∈ {1, 2}, we can compute the Boolean product M (c)u by one call to the OMv instance M : To
this end, we set u′ := (u1, . . . , uN , 0, . . . , 0) ∈ {0, 1}2N if c = 1, and u′ := (0, . . . , 0, u1, . . . , uN ) ∈
{0, 1}2N if c = 2, and we call A to compute Mu′. This yields M (c)u, padded with some zeroes.
Therefore, each step ui := M (ci)ui−1 performed in the above reduction can be implemented by
one call to the OMv instance M . This makes the reduction many-one.

6 Conclusion

In this work, we have posed the NFA Acceptance hypothesis, discussed implications of a proof
or refutation and considered its connections to standard assumptions in fine-grained complexity
theory. At the very least, the NFA Acceptance hypothesis should be understood as a technical
challenge towards progress for many interesting problems. Specifically, without refuting it, we
cannot expect:

• Context-Free Language Reachability in time O(n3−ε),

• the Word Break problem in time O(m+ nm1/3−ε),

• approximating the Viterbi path in time O((m`)1−ε),

11



• pattern matching in string-labeled graphs in time O((m`)1−ε),

• regular path queries in graph databases in time O((|q| ·m)1−ε), and

• polynomal improvements for any data structure problems and dynamic problems with
tight OMv-hardness, including problems from graph algorithms [HKNS15, Dah16, AD16,
HW21], string algorithms [CGLS18, KK22, CGK+22], computational geometry [DI22,
LR21], linear algebra [vdBNS19, JPW22], formal languages [GT21], and database the-
ory [BKS17, CS21, KNOZ23].

We leave the following open problems:

• Refute the NFA Acceptance hypothesis or prove that it is implied by any standard fine-
grained hypothesis.

• Prove an equivalence of NFA Acceptance and Directed nγ-Edge-Colored Walk for any
γ > 0, ideally for all 0 < γ ≤ 2.

• Prove an equivalence of NFA Acceptance with and without ε-transitions for densities m =
Θ(nα) with 1 ≤ α < 2.

Acknowledgements We thank Virginia Vassilevska Williams, Thatchaphol Saranurak, and
Rupak Majumdar for helpful discussions on the NFA hypothesis. We also thank Thatchaphol
Saranurak for popularizing this hypothesis by tweeting the open problem on Colored Walk and
its implication for OMv, crediting one of the authors of this paper.

References

[AB18] Amir Abboud and Karl Bringmann. Tighter connections between formula-sat and
shaving logs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and
Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[ABBK17] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-
grained complexity of analyzing compressed data: Quantifying improvements over
decompress-and-solve. In Chris Umans, editor, 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 192–203. IEEE Computer Society, 2017.

[ABVW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the cur-
rent clique algorithms are optimal, so is valiant’s parser. In 56th Annual IEEE
Symposium on Foundations of Computer Science, 2015.

[ACJR22] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.
Counting the answers to a query. SIGMOD Rec., 51(3):6–17, 2022.

[AD16] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic
planar graph algorithms. In Irit Dinur, editor, IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pages 477–486. IEEE Computer Society, 2016.

[AHU68] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Time and tape complexity
of pushdown automaton languages. Inf. Control., 13(3):186–206, 1968.

12



[ALL00] Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in
hypertext. J. Algorithms, 35(1):82–99, 2000.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10
- 13, 2021, pages 522–539. SIAM, 2021.

[Bar13] Pablo Barceló. Querying graph databases. In Richard Hull and Wenfei Fan,
editors, Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 -
27, 2013, pages 175–188. ACM, 2013.

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for
maximum weight rectangles. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, volume 55 of LIPIcs, pages 81:1–81:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[BGL17] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for
regular expression membership testing. In Chris Umans, editor, 58th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 307–318. IEEE Computer Society, 2017.

[BI16] Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to
match? In 57th Annual IEEE Symposium on Foundations of Computer Science,
2016.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds
for string problems and dynamic time warping. In Venkatesan Guruswami, editor,
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 79–97. IEEE Computer Society,
2015.

[BKS17] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunc-
tive queries under updates. In Emanuel Sallinger, Jan Van den Bussche, and Floris
Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May
14-19, 2017, pages 303–318. ACM, 2017.

[BT17] Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes
imply faster clique algorithms. In Doina Precup and Yee Whye Teh, editors, Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 311–321. PMLR, 2017.

[CCP18] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Optimal
dyck reachability for data-dependence and alias analysis. Proc. ACM Program.
Lang., 2(POPL):30:1–30:30, 2018.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamo-
han Paturi, and Stefan Schneider. Nondeterministic extensions of the strong expo-
nential time hypothesis and consequences for non-reducibility. In Madhu Sudan,
editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical

13



Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 261–270.
ACM, 2016.

[CGK+22] Raphaël Clifford, Pawel Gawrychowski, Tomasz Kociumaka, Daniel P. Martin, and
Przemyslaw Uznanski. The dynamic k-mismatch problem. In Hideo Bannai and
Jan Holub, editors, 33rd Annual Symposium on Combinatorial Pattern Matching,
CPM 2022, June 27-29, 2022, Prague, Czech Republic, volume 223 of LIPIcs,
pages 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[CGLS18] Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana
Starikovskaya. Upper and lower bounds for dynamic data structures on strings.
In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, volume 96 of LIPIcs, pages 22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[Cha08] Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In George C.
Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008, pages 159–169. ACM, 2008.

[CL09] Artur Czumaj and Andrzej Lingas. Finding a heaviest vertex-weighted triangle is
not harder than matrix multiplication. SIAM J. Comput., 39(2):431–444, 2009.

[CMS22] Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper. Subcubic certificates
for CFL reachability. Proc. ACM Program. Lang., 6(POPL):1–29, 2022.

[CS21] Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path
queries. In Ke Yi and Zhewei Wei, editors, 24th International Conference on
Database Theory, ICDT 2021, March 23-26, 2021, Nicosia, Cyprus, volume 186
of LIPIcs, pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal on Symbolic Computation, 9(3):251–280, 1990.

[CWX21] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Algorithms,
reductions and equivalences for small weight variants of all-pairs shortest paths. In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-
16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
47:1–47:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Dah16] Søren Dahlgaard. On the hardness of partially dynamic graph problems and con-
nections to diameter. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yu-
val Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, volume 55 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[DI22] Justin Dallant and John Iacono. Conditional lower bounds for dynamic geomet-
ric measure problems. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and
Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA
2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs,
pages 39:1–39:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

14



[EGMT19] Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On
the complexity of string matching for graphs. In Christel Baier, Ioannis Chatzi-
giannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Col-
loquium on Automata, Languages, and Programming, ICALP 2019, July 9-12,
2019, Patras, Greece, volume 132 of LIPIcs, pages 55:1–55:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[GHT21] Daniel Gibney, Gary Hoppenworth, and Sharma V. Thankachan. Simple reduc-
tions from formula-sat to pattern matching on labeled graphs and subtree isomor-
phism. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in
Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 232–242.
SIAM, 2021.

[GT21] Daniel Gibney and Sharma V. Thankachan. Text indexing for regular expression
matching. Algorithms, 14(5):133, 2021.

[GU18] Pawel Gawrychowski and Przemyslaw Uznanski. Towards unified approximate pat-
tern matching for hamming and l_1 distance. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Collo-
quium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018,
Prague, Czech Republic, volume 107 of LIPIcs, pages 62:1–62:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 21–30. ACM, 2015.

[HM97] Nevin Heintze and David A. McAllester. On the cubic bottleneck in subtyping and
flow analysis. In Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, Warsaw, Poland, June 29 - July 2, 1997, pages 342–351. IEEE Computer
Society, 1997.

[HSHvdG16] Jianyu Huang, Tyler M. Smith, Greg M. Henry, and Robert A. van de Geijn.
Strassen’s algorithm reloaded. In John West and Cherri M. Pancake, editors, Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November
13-18, 2016, pages 690–701. IEEE Computer Society, 2016.

[HW21] Monika Henzinger and Xiaowei Wu. Upper and lower bounds for fully retroac-
tive graph problems. In Anna Lubiw and Mohammad R. Salavatipour, editors,
Algorithms and Data Structures - 17th International Symposium, WADS 2021,
Virtual Event, August 9-11, 2021, Proceedings, volume 12808 of Lecture Notes in
Computer Science, pages 471–484. Springer, 2021.

[JPW22] Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regres-
sion. CoRR, abs/2201.00228, 2022.

[JZGA20] Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the complexity of
sequence-to-graph alignment. J. Comput. Biol., 27(4):640–654, 2020.

[KD23] Paraschos Koutris and Shaleen Deep. The fine-grained complexity of CFL reach-
ability. Proc. ACM Program. Lang., 7(POPL):1713–1739, 2023.

15



[KK22] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarith-
mic queries and updates. In Stefano Leonardi and Anupam Gupta, editors, STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome,
Italy, June 20 - 24, 2022, pages 1657–1670. ACM, 2022.

[KNOZ23] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Conjunctive queries
with free access patterns under updates. In Floris Geerts and Brecht Vandevoort,
editors, 26th International Conference on Database Theory, ICDT 2023, March
28-31, 2023, Ioannina, Greece, volume 255 of LIPIcs, pages 17:1–17:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Kün22] Marvin Künnemann. A tight (non-combinatorial) conditional lower bound for
klee’s measure problem in 3d. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3,
2022, pages 555–566. IEEE, 2022.

[Lee02] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix mul-
tiplication. J. ACM, 49(1):1–15, 2002.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th In-
ternational Symposium on Symbolic and Algebraic Computation (ISSAC’14), pages
296–303, 2014.

[LPVW20] Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic
triangles, intermediate matrix products, and convolutions. In Thomas Vidick,
editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages
53:1–53:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[LR21] Joshua Lau and Angus Ritossa. Algorithms and hardness for multidimensional
range updates and queries. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference,
volume 185 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[LVWW18] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight
hardness for shortest cycles and paths in sparse graphs. In Artur Czumaj, edi-
tor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1236–
1252. SIAM, 2018.

[LW17] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector mul-
tiplication. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 2182–2189. SIAM, 2017.

[MR00] David Melski and Thomas W. Reps. Interconvertibility of a class of set constraints
and context-free-language reachability. Theor. Comput. Sci., 248(1-2):29–98, 2000.

[MW92] Udi Manber and Sun Wu. Approximate string matching with arbitrary costs for
text and hypertext. In Proc. International Workshop on Advances in Structural
and Syntactic Pattern Recognition, pages 22–33, 1992.

[MW95] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph
databases. SIAM J. Comput., 24(6):1235–1258, 1995.

16



[Nav00] Gonzalo Navarro. Improved approximate pattern matching on hypertext. Theor.
Comput. Sci., 237(1-2):455–463, 2000.

[Nea89] Radford Neal. The computational complexity of taxonomic inference. Unpublished
manuscript, 1989.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419,
1985.

[Pat10] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In
Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
603–610. ACM, 2010.

[PS20] Aaron Potechin and Jeffrey O. Shallit. Lengths of words accepted by nondeter-
ministic finite automata. Inf. Process. Lett., 162:105993, 2020.

[Ryt85] Wojciech Rytter. Fast recognition of pushdown automaton and context-free lan-
guages. Inf. Control., 67(1-3):12–22, 1985.

[Sch20] Philipp Schepper. Fine-grained complexity of regular expression pattern matching
and membership. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 80:1–
80:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug 1969.

[Val75] Leslie G. Valiant. General context-free recognition in less than cubic time. J.
Comput. Syst. Sci., 10(2):308–315, 1975.

[vdBNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic
matrix inverse: Improved algorithms and matching conditional lower bounds. In
David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 456–480. IEEE Computer Society, 2019.

[Vit67] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inf. Theory, 13(2):260–269, 1967.

[VW12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-
Winograd. In Proc. 44th Annual ACM Symposium on Theory of Computing Con-
ference (STOC’12), pages 887–898, 2012.

[VW18] Virginia Vassilevska Williams. Fine-grained algorithms and complexity. In Proc.
21st International Conference on Database Theory (ICDT’18), pages 1:1–1:1, 2018.

[VWX20] Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle
listing and APSP. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pages 786–797. IEEE, 2020.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

17



[WW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences be-
tween path, matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

[Yan90] Mihalis Yannakakis. Graph-theoretic methods in database theory. In Daniel J.
Rosenkrantz and Yehoshua Sagiv, editors, Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, April 2-4,
1990, Nashville, Tennessee, USA, pages 230–242. ACM Press, 1990.

A Equivalences of Colored Walk

In this section, we prove the equivalences of Colored Walk problems stated in Lemma 2. We
also prove an equivalence to a version without source and target nodes, see Lemma 11 at the
end of this section. Throughout this section we abbreviate Colored Walk as CW.

Lemma 2 (Colored Walk Framework). Let α ∈ [1, 2], β > 0. All of the following statements
A1, A2, A3, A4, A5, B1, B2, B3, and B4 are equivalent:

A Restricted to instances with m = Θ(nα) and ` = Θ(nβ), there is no O(nα+β−ε)-time
algorithm for any ε > 0 for the problem...

1 ... NFA Acceptance with alphabet size no(1).

2 ... Directed Node-2-Colored Walk.

3 ... Directed Node-n-Colored Walk.

4 ... Directed Edge-2-Colored Walk.

5 ... Directed Edge-no(1)-Colored Walk.

B Restricted to instances with m = Θ(nα) and ` = O(nβ), there is no O(nα+β−ε)-time
algorithm for any ε > 0 for the problem...

1 ... Undirected Node-2-Colored Walk.

2 ... Undirected Node-n-Colored Walk.

3 ... Undirected Edge-2-Colored Walk.

4 ... Undirected Edge-no(1)-Colored Walk.

For the node version of the problem, we say that the (node) color sequence of a walk
v0, v1, . . . , vk is the sequence c(v1), c(v2), . . . , c(vk). Similarly, for the edge version we say that the
(edge) color sequence of a walk v0, v1, . . . , vk is the sequence c(v0, v1), c(v1, v2), . . . , c(vk−1, vk).

The remainder of this section is devoted to the proof of Lemma 2 (and to the proof of
Lemma 11). To this end, we define the following notion of reductions. Here, a parameter is a
function mapping any instance to a natural number, e.g., n,m, ` are parameters of the above
problems.

Definition 1. Let X,Y be problems with the same set of parameters P . We say that there is a
P -preserving (many-one) reduction from X to Y , written X ≤P Y if there is an algorithm A that
given an instance I of X computes an equivalent instance J of Y such that for all parameters
p ∈ P we have p(J) ≤ p(I)1+o(1), and A runs in almost-linear time N1+o(1) in its input size N .

The following lemmas show {n,m, `}-preserving reductions between the problems from Lemma 2.

Lemma 3. Directed Node-2-CW ≤{n,m,`} Directed Edge-2-CW

18



Proof. Given a directed graph G with node coloring c : V → {1, 2}, we define the edge coloring
c′ : E → {1, 2} by setting c′(u, v) := c(v) for all edges (u, v) ∈ E. This yields an equivalent
Directed Edge-2-CW instance, since for any walk v0, v1, . . . , v` in G, the sequence of node col-
ors c(v1), . . . , c(v`) is the same as the sequence of edge colors c′(v0, v1), . . . , c′(v`−1, v`). The
reduction preserves the exact values of all parameters.

Lemma 4. Directed Edge-no(1)-CW ≤{n,m,`} NFA Acceptance with no(1) terminals

Proof. This is a simple statement, as NFA Acceptance with no(1) terminals is the generalization of
Directed Edge-no(1)-CW where we allow loops and we allow multiple edges (with different labels)
between two nodes. Since the two problems are formulated in a different language, we make the
correspondence explicit: Given a directed graph G = (V,E) with designated vertices s, t ∈ V and
edge coloring c : E → {1, . . . , C} as well as a color sequence c1, . . . , c` ∈ {1, . . . , C}, we construct
the NFA M = (Q,Σ, δ, q0, F ) by setting Q := V , Σ := {1, . . . , C}, δ := {(u, c(u, v), v) | (u, v) ∈
E}, q0 := s, F := {t}, and we construct the string S := c1c2 . . . c` ∈ Σ`. It is straightforward to
show that M accepts S if and only if there is a walk from s to t with color sequence c1c2 . . . c`
in G. All parameters are preserved since |Q| = |V |, |δ| = |E| and ` remains unchanged.

Lemma 5. NFA Acceptance with no(1) terminals ≤{n,m,`} Directed Node-no(1)-CW

Proof. Given an NFA M = (Q,Σ, δ, q0, F ) with set of states Q, input alphabet Σ, transitions
δ ⊆ Q × Σ × Q, initial state q0, and set of accepting states F ⊆ Q, as well as a string S ∈ Σ`,
we first transform it into an equivalent instance without loops and with exactly one accepting
state.

To remove loops, we replace the states Q by two copies: Q̂ := Q × {1, 2}. Each transition
(q, σ, q′) is replaced by two transitions ((q, 1), σ, (q′, 2)) and ((q, 2), σ, (q′, 1)); note that this
ensures that we have no loops (i.e., no transition starts and ends in the same state). We also
replace q0 by q̂0 := (q0, 1) and F by F̂ := F × {1, 2}. It is easy to check that the new NFA
accepts S if and only if the old NFA accepts S, and the size of the NFA is only changed by a
constant factor.

To ensure exactly one accepting state, we add a new state f0 to Q̂. We fix an arbitrary
symbol σ ∈ Σ, and we add transitions (f, σ, f0) for all f ∈ F̂ . Finally, we replace F̂ by {f0} and
S by Sσ. Note that this results in an equivalent instance with exactly one accepting state and
all sizes stay the same up to constant factors. Therefore, in the following we assume without
loss of generality that the given NFA M = (Q,Σ, δ, q0, F ) satisfies F = {f0} and has no loops.
Moreover, we can assume without loss of generality that Σ = {1, . . . , |Σ|}.

We define a graph G = (V,E) with vertex set V = Q×Σ. For each transition (q, σ′, q′) ∈ δ,
we add the edges ( (q, σ) , (q′, σ′) ) ∈ E for all σ ∈ Σ. We define the vertex coloring c : V →
{1, . . . , |Σ|} by c( (q, σ) ) = σ. Observe that for any choice of “starting color” σ0 ∈ {1, . . . , |Σ|},
the mapping from any transition sequence q0

σ1→ q1
σ2→ q2 . . .

σ`→ q` in M to the walk v0 :=
(q0, σ0) , v1 := (q1, σ1) , . . . , v` := (q`, σ`) in G is indeed a one-to-one mapping from transition
sequences in M to walks in G starting in the node (q0, σ0) such that the string read by the
transition sequence equals the color sequence of the walk. In particular, M accepts the string
S if and only if there is a walk from s := (q0, σ0) to t := (f0, S[`]) in G with color sequence
S[1], . . . , S[`]. Thus, for any NFAM we can construct, in linear time in the output, an equivalent
Directed Node-|Σ|-CW instance.

We verify that the parameters are preserved for |Σ| = |Q|o(1): The number of vertices in G
is bounded by |V | = |Q| · |Σ| = |Q|1+o(1), similarly, we have |E| ≤ |δ| · |Σ| = |δ|1+o(1). Finally,
the length ` of the color sequence equals the length of the string S.

Lemma 6. Directed Node-n-CW ≤{n,m,`} Directed Node-2-CW

19



Proof. Given a directed graph G with node coloring c : V → {1, . . . , C}, we let B := dlog2Ce
and define a graph G′ = (V ′, E′) with vertex set V ′ = V × [B]. For every edge (u, v) ∈ E, we
add the edge ( (u,B) , (v, 1) ) ∈ E′, and for every v ∈ V and 1 ≤ i < B, we add the “path” edge
( (v, i) , (v, i+1) ) ∈ E′. For a color c ∈ {1, . . . , C}, let bin(c, i) be the i-th bit in the B-bit binary
representation of c. We define the node coloring c′ : V ′ → {1, 2} by c′( (v, i) ) = bin(c(v), i) + 1
for all v ∈ V, i ∈ [B]. Thus, for any Directed Node-n-CW instance G, s, t, (c1, . . . , c`), we define
a corresponding instance on the graph G′ with source (s,B), target (t, B) and color sequence
c′1, . . . , c

′
`B where we set c′(j−1)B+i := bin(cj , i) + 1 for all 1 ≤ j ≤ ` and 1 ≤ i ≤ B. It is

straightforward to verify that v0, v1, . . . , v` is a walk in G with color sequence c1 = c(v1), . . . , c` =
c(v`) if and only if v′0, v′1, . . . , v′`B with v′(j−1)B+i = (vj , i), 1 ≤ j ≤ `, 1 ≤ i ≤ B is a walk in G′

with color sequence c′1 = c′(v′1), . . . , c′`B = c′(v′`B).
Note that for C = n, we have B = O(log n) and thus |V ′| = B|V | ≤ |V |1+o(1), |E′| =

|E|+ |V |B ≤ |E|1+o(1) and `B ≤ `1+o(1).

To reduce from Node-2-CW in a directed graph G to Edge-2-CW in an undirected graph
G′, the straightforward approach is the following: each vertex v is replaced by two vertices, vin

and vout, such that a directed edge (u, v) can be represented by the undirected edge {uout, vin}.
Additionally, we introduce the edges {vin, vout} of color c(v). If we were allowed to introduce an
additional color c̃ /∈ {1, 2}, we could label each edge {uout, vin} with c̃, and any walks with node
color sequence c1, c2, . . . , c` in G would uniquely correspond to walks with edge colors sequence
in c̃, c1, c̃, c2, . . . c̃, c` and vice versa. To avoid the blow-up in the number of colors, however, we
must reuse a color for c̃, say c̃ = 1. Since this would allow a walk to use an edge {uin, vout} in
the “reverse” direction towards uin whenever we are supposed to “check” that a node has color
1, we might obtain illegal transitions in the resulting walk. An analogous reasoning applies for
a reduction to undirected Node-2-CW.

We use slightly more involved gadgetry for both reductions: For a given directed graph
G = (V,E) and an integer P , we create an undirected graph G′ = (V ′, E′) with vertex set
V ′ = {vin, vout, v

(1), . . . , v(P ) | v ∈ V } as follows: we introduce, for each edge (u, v) ∈ E, the
edges {uout, vin} in E′, as well as, for all v ∈ V , all “path edges” {vin, v

(1)}, {v(P ), vout} and
{v(i), v(i+1)} for all 1 ≤ i < P . By choosing the color sequences for all path vertices/edges
appropriately, we will be able to enforce that every edge is used in “forward” direction, i.e.,
any feasible walk traverses an edge {uout, vin}, then all path edges toward vout, then an edge
{vout, win}, and so on.

Lemma 7. Directed Node-2-CW ≤{n,m,`} Undirected Edge-2-CW

Proof. Given a directed graph G = (V,E), we construct the undirected version G′ using path
length P = 4 as described above. We define the coloring c′ : E → {1, 2} as follows: for all
(u, v) ∈ E, we set c′(uout, vin) = 1. For each v ∈ V , we set the colors of the path edges to

(c′(vin, v
(1)) , c′(v(1), v(2)) , c′(v(2), v(3)) , c′(v(3), v(4)) , c′(v(4), vout)) := (2 , c(v) , c(v) , 1 , 2).

The main property of this construction is captured by the following claim. In the remainder of
the proof, for any c ∈ {1, 2} and v ∈ V we set:

col(c) := (2, c, c, 1, 2) and path(v) := (vin, v
(1), v(2), v(3), v(4), vout).

Claim 1. Let v ∈ V and c ∈ {1, 2}. There is a walk vin = z0, z1, . . . , z5 in G′ with edge color
sequence col(c) if and only if c = c(v) and (z0, z1, z2, z3, z4, z5) = path(v).

Proof. If c = c(u), then the walk path(v) clearly has edge color sequence (2, c, c, 1, 2). For the
converse, we show that if such a walk exist, we must have c(v) = c and z5 = vout (from which

20



the claim follows, since path(v) is the only walk from vin to vout using 5 edges). To do this,
we analyze all possible values of zi for a walk vin = z0, z1, . . . , zi with the corresponding color
sequence prefix of (2, c, c, 1, 2):

• z1 = v(1) always holds, as {vin, v
(1)} is the only edge adjacent to vin that has color 2,

because the edges {uout, vin} have color 1.

• Consider the case c = 1:

– If c(v) 6= c = 1, then there is no edge leaving z1 = v(1) with color c = 1. Thus we
may assume in the remainder of the case that c(v) = c = 1.

– It is straightforward to verify that in this case, z2 = v(2), z3 ∈ {v(1), v(3)} (since
both edges adjacent to z2 = v(2) have color c(v) = c = 1), and z4 ∈ {v(2), v(4)} (by
analogous reasoning for the edge color 1).

– Finally, as desired, z5 = vout must hold, since among {v(2), v(4)}, only v(4) has an
adjacent edge of color 2, which leads to vout. This yields the claim for c = 1.

• We analyze the remaining case c = 2:

– We have z2 = vin, or, only if c(v) = c = 2, possibly z2 = v(2).
– Likewise, since {vin, v

(1)} is the only edge adjacent to vin with color c = 2, we must
have z3 = v(1), or, only if c(v) = c = 2, possibly z3 = v(3).

– Note that v(1) only has an adjacent edge of color 1 if c(v) = 1 6= c. In contrast, if
c(v) = c = 2, v(3) has its only adjacent edge of color 1 to v(4). Thus, we have either
z4 = v(2), which can only happen if c(v) 6= c, or z4 = v(4), which can only happen if
c(v) = c.

– Finally, z5 = vout and c(v) = c must hold, since in the case c 6= c(v), v(2) has no
adjacent edges of color 2, while v(4) has an edge of color 2 to vout.

Given a Directed Node-2-CW instance G, s, t ∈ V and c1, . . . , c`, we construct, in linear
time in the output, an Undirected Edge-2-CW instance G′ with source sout, target tout and
color sequence 1, col(c1), 1, col(c2), . . . , 1, col(c`). For any walk s = v0, v1, . . . , v` = t with color
sequence c1, . . . , c` in G, the walk v0,path(v1),path(v2), . . . ,path(v`) in G′ has the desired color
sequence 1, col(c1), 1, col(c2), . . . , 1, col(c`) by the above claim. Conversely, we see that for each
color substring 1, col(ci) any walk inG′ that starts in some node uout is of the form (uout, path(v))
for some v ∈ V with (u, v) ∈ E and c(v) = ci, since the only 1-colored edges adjacent to uout

lead to some vin with (u, v) ∈ E and the above claim proves that the walk path(v) must follow,
which requires c(v) = ci. By repeated application of this fact, any walk in G′ with color sequence
1, col(c1), 1, col(c2), . . . , 1, col(c`) corresponds to a walk in G with color sequence c1, . . . , c`, as
desired. Note that all parameters have increased by at most a constant factor, which yields the
desired reduction.

For a reduction to Undirected Node-2-CW, we imitate the above reduction by defining a
suitable node color sequence for path nodes. The analysis is slightly simpler than for Edge-2-
CW.

Lemma 8. Directed Node-2-CW ≤{n,m,`} Undirected Node-2-CW

Proof. Given a directed graph G = (V,E), we construct the undirected version G′ using path
length P = 4 as described above. We define the coloring c′ : V ′ → {1, 2}, as follows: for all
v ∈ V , we set c′(vin) = c′(vout) = 1 and set

(c′(v(1)) , c′(v(2)) , c′(v(3)) , c′(v(4))) := (2 , c(v) , 2 , 2).

21



The main property of this construction is captured by the following claim. In the remainder of
the proof, for any c ∈ {1, 2} and v ∈ V we set:

col(c) := (2, c, 2, 2, 1) and path(v) := (vin, v
(1), v(2), v(3), v(4), vout).

Claim 2. Let v ∈ V and c ∈ {1, 2}. There is a walk vin = z0, z1, . . . , z5 with color sequence
col(c) in G′ if and only if c = c(v) and (z0, z1, z2, z3, z4, z5) = path(v).

Proof. If c = c(u), then the walk path(v) clearly has edge color sequence (2, c, 2, 2, 1). For the
converse, we show that if such a walk exist, we must have c(v) = c and z5 = vout (from which
the claim follows, since path(v) is the only walk from vin to vout using 5 edges). To do this,
we analyze all possible values of zi for a walk vin = z0, z1, . . . , zi with the corresponding color
sequence prefix of (2, c, 2, 2, 1):

• We have z1 = v(1), since v(1) is the only neighbor of vin with color 2.

• We have z2 = vin (which might happen if c = 1), or z2 = v(2) (which can happen if and
only if c = c(v)).

• Since the only neighbor of vin with color 2 is v(1), we have z3 = v(1) or z3 = v(3) (the latter
can happen if and only if c = c(v)).

• We have z4 = v(2) (which might happen if c(v) = 2), or z4 = v(4) (which can happen if
and only if c = c(v)).

• Since v(2) has no neighbor of color 1, we have z5 = v(5), which can happen if and only if
c = c(v), as desired.

The remainder of the reduction is analogous to the proof of Lemma 7: Given a Directed
Node-2-CW instance G, s, t ∈ V and color sequence c1, . . . , c`, we construct, in linear time in
the output, an Undirected Node-2-CW instance G′ with source sout, target tout and color se-
quence 1, col(c1), 1, col(c2), . . . , 1, col(c`). For any walk s = v0, v1, . . . , v` = t with color sequence
c1, . . . , c` in G, the walk v0,path(v1), path(v2), . . . ,path(v`) in G′ has the desired color sequence
1, col(c1), 1, col(c2), . . . , 1, col(c`) by the above claim. Conversely, we see that for each color sub-
string 1, col(ci) any walk in G′ that starts in some uout is of the form (uout, path(v)) for some
v ∈ V with (u, v) ∈ E and c(v) = ci, since the only 1-colored edges adjacent to uout lead to
some vin with (u, v) ∈ E and the above claim proves that the walk path(v) must follow, which
requires c(v) = ci. By repeated application of this fact, any walk in G′ with color sequence
1, col(c1), 1, col(c2), . . . , 1, col(c`) corresponds to a walk in G with color sequence c1, . . . , c`, as
desired. Note that all parameters have increased by at most a constant factor, which yields the
desired reduction.

Now we combine the above relations to a full equivalence.

Lemma 9. The following problems are equivalent under {n,m, `}-preserving reductions:

• NFA Acceptance with no(1) terminals,

• Directed Node-2-Colored Walk,

• Directed Node-n-Colored Walk,

• Directed Edge-2-Colored Walk,

22



• Directed Edge-no(1)-Colored Walk,

• Undirected Node-2-Colored Walk,

• Undirected Node-n-Colored Walk,

• Undirected Edge-2-Colored Walk,

• Undirected Edge-no(1)-Colored Walk.

Proof. The parameter-preserving equivalence of all directed variants for parameters P = {n,m, `}
follows from the following chain of reductions:

Directed Node-2-CW ≤P Directed Edge-2-CW (by Lemma 3)

≤P Directed Edge-no(1)-CW (trivially by definition)

≤P NFA Acceptance with no(1) terminals (by Lemma 4),

≤P Directed Node-no(1)-CW (by Lemma 5),
≤P Directed Node-n-CW (trivially by definition),
≤P Directed Node-2-CW (by Lemma 6).

Note that for any C, Undirected Node-C-CW ≤P Directed Node-C-CW and Undirected
Edge-C-CW ≤P Directed Edge-C-CW follows trivially by replacing each undirected edge by
directed edges in both directions, while reductions in the other direction are given by Lemmas 7
and 8. We use these to also conclude equivalence to the undirected variants by

Undirected Node-2-CW ≤P Undirected Node-n-CW (trivially by definition)
≤P Directed Node-n-CW (trivially, as argued above)
≤P Directed Node-2-CW (by already established equivalence),
≤P Undirected Node-2-CW (by Lemma 8),

and similarly,

Undirected Edge-2-CW ≤P Undirected Edge-no(1)-CW (trivially by definition)

≤P Directed Edge-no(1)-CW (trivially, as argued above)
≤P Directed Node-2-CW (by already established equivalence),
≤P Undirected Edge-2-CW (by Lemma 7).

Lemma 10. Let α ∈ [1, 2], β > 0 and c ≥ 1. Let X,Y be any problems listed in Lemma 9. If
problem X restricted to instances with m = O(nα) and ` = O(nβ) has no O(nc−ε)-time algorithm
for any ε > 0, then the same holds for problem Y .

Proof. Suppose for the sake of contradiction that problem Y restricted to instances with m =
O(nα) and ` = O(nβ) has an algorithm A running in time O(nc−ε) for some ε > 0. Then we can
solve problem X as follows. Given an instance I of problem X with parameters n,m, ` satisfying
m = O(nα), ` = O(nβ), run the {n,m, `}-preserving reduction to obtain an equivalent instance
I0 of Y with parameters n0,m0, `0. Recall that n0 ≤ n1+o(1),m0 ≤ m1+o(1), `0 ≤ `1+o(1). We set
n1 := max{n0,m

1/α
0 , `

1/β
0 }. We add n1− n0 isolated nodes/states to I0, resulting in an instance

I1 with parameters n1,m1 = m0, `1 = `0. Note that m1 ≤ nα1 and `1 ≤ nβ1 , so we can run

23



algorithm A on instance I1. Since I1 is equivalent to I0, and thus equivalent to I, this solves
the given instance I of problem X.

Tracing the above inequalities, we observe that n1 ≤ n1+o(1), so the running time of algo-
rithm A on instance I1 is O(nc−ε1 ) = O(nc−ε+o(1)). The reduction runs in almost-linear time in
the input size, i.e., in time (n + m + `)1+o(1) = nmax{α,β}+o(1). Hence, the total time to solve
instance I is O(nc−ε+o(1) +nmax{α,β}+o(1)). If c ≤ max{α, β} then the conclusion that Y has no
O(nc−ε)-time algorithm is trivial, so we can assume c > max{α, β}. After possibly replacing ε
by min{ε, c −max{α, β}}, we can further bound the running time by O(nc−ε+o(1)). Bounding
no(1) ≤ O(nε/2), the running time becomes O(nc−ε/2) = O(nc−ε

′
) for ε′ := ε/2. This contradicts

the assumption that problem X restricted to instances with m = O(nα), ` = O(nβ) has no
O(nc−ε

′′
)-time algorithm for any ε′′ > 0.

Finally we are ready to prove Lemma 2.

Proof of Lemma 2. Let X,Y be any problems listed in the lemma statement. If the lemma claim
corresponding to X holds, then in particular problem X restricted to instances with m = O(nα)
and ` = O(nβ) has no O(nα+β−ε)-time algorithm for any ε > 0. Using the {n,m, `}-preserving
reduction from X to Y guaranteed by Lemma 9, by Lemma 10 we obtain the same result for
Y , i.e., problem Y restricted to instances with m = O(nα) and ` = O(nβ) has no O(nα+β−ε)-
time algorithm for any ε > 0. To arrive at the lemma claim corresponding to Y , we need to
additionally ensure m = Ω(nα) (and for some Y also ` = Ω(nβ)), which we achieve by padding,
as follows.

To pad the parameter m, we add n dummy nodes (or states) and among them we add Θ(nα)
dummy edges (or transitions), to ensure m = Θ(nα). Since these new nodes and edges are
disconnected from the old graph, they do not change the result.

For the directed variants of Colored Walk we can also pad the length `: We add new nodes
s0, s1 and edges (s0, s1) and (s1, s0) of color 1 and an edge (s1, s) of color 2, and we change
the color sequence to 12dnβe 2 c1 . . . c`. Observe that there is a walk from s0 to t with the new
color sequence in the new graph if and only if there is a walk from s to t with the old color
sequence c1 . . . c` in the old graph. An analogous construction can be used to pad the number
of transitions in a given NFA. Therefore, we can assume ` = Θ(nβ) for the directed variants of
Colored Walk as well as for NFA Acceptance.

Since these constructions change n only by a constant factor, we still rule out a running time
of O(nα+β−ε). This finishes the proof.

Finally, we also show that Colored Walk is equivalent to a formulation without given source
and target nodes s, t ∈ V , specifically, the variant in which we are looking for any walk in G with
the prescribed color sequence c1, . . . , c`. We call these formulations Directed/Undirected
Σ-Edge-Colored/Σ-Node-Colored AnyWalk.

Below, we prove a {n,m, `}-preserving equivalence of Undirected Edge-Colored Walk and
Undirected Edge-Colored AnyWalk (up to an additive constant in the alphabet size); the proof
of equivalence for all directed and/or node-colored variants is analogous (and in fact simpler).

Lemma 11 (Equivalence of s-t-version and any-walk version).

1. Undirected Edge-2-Colored Walk ≤{n,m,`} Undirected Edge-4-Colored AnyWalk

2. Undirected Edge-σ-Colored AnyWalk ≤{n,m,`} Undirected Edge-(σ + 1)-Colored Walk

Proof. For 1, consider any Undirected Edge-2-Colored Walk instance G = (V,E), s, t ∈ V and
c1, . . . , c` ∈ {1, 2}. We construct a graph G′ from G by adding two nodes s′, t′, connecting s′

to s by an edge labeled 3 and connecting t to t′ by an edge labeled 4. Note that any walk in
G′ with color sequence 3, c1, . . . , c`, 4 must start in s′, transition to s, use a walk from s to t
in G with color sequence c1, . . . , c`, and finally transition to t′. Thus, G′ with color sequence

24



3, c1, . . . , c`, 4 yields an equivalent Undirected 4-Edge-Colored AnyWalk instance. The reduction
is clearly {n,m, `}-preserving.

For 2, consider any Undirected Edge-2-Colored AnyWalk instance G = (V,E), c1, . . . , c` ∈
[σ]. We construct G′ from G by adding two nodes s′, t′ ∈ V , connecting s′ to each node v ∈ V
by an edge labeled σ + 1, as well as connecting each node v ∈ V to t′ by an edge labeled
σ+ 1. Note that there is a walk from s′ to t′ in G with color sequence (σ+ 1), c1, . . . , c`, (σ+ 1)
if and only if there is any walk in G with color sequence c1, . . . , c`. Thus, we have obtained
an equivalent Undirected Edge-(σ + 1)-Colored Walk instance. Since we have added only two
nodes, O(n) = O(m) edges and two colors to the color sequence, the reduction is {n,m, `}-
preserving.

We obtain in particular that the NFA Acceptance hypothesis is equivalent to the (m`)1−o(1)

barrier for Directed/Undirected Edge-4-Colored/Node-4-Colored AnyWalk.

B Relation to Other Hypotheses

For the reader’s convenience, we restate the known connections between the NFA Acceptance
hypothesis and standard fine-grained hypotheses, as described in Section 1.

B.1 Tight lower bound for sparse NFAs under SETH

In the Orthogonal Vectors (OV) problem, we are given vector sets A,B ⊆ {0, 1}d, and the task
is to determine whether there is an orthogonal pair (a, b) ∈ A × B, i.e., for all 1 ≤ k ≤ d we
have a[k] = 0 or b[k] = 0.

Hypothesis 4 (OV Hypothesis). For no ε > 0 and β > 0, there is an algorithm solving OV
with sets of size n := |A| and ` := |B| = Θ(nβ) and d ≤ no(1) dimensions in time O((n`)1−ε) =
O(n(1+β)(1−ε)).

This hypothesis is usually stated with sets of the same size, but is equivalent to the above
version, see, e.g., [BK15, Lemma II.1]. The hypothesis is well known to be implied by the Strong
Exponential Time Hypothesis (SETH) [Wil05].

The following conditional lower bound can be found for different versions of the Colored Walk
problem throughout the algorithmic literature, including [BI16, BGL17, EGMT19, PS20, CS21]
– recall that these turn out to be fine-grained equivalent due to Lemma 2.

Proposition 1. If there are ε, β > 0 such that NFA Acceptance on an n-state NFA with O(n)
transitions and a string of length ` = Θ(nβ) over Σ = {0, 1, 2} can be solved in time O((`n)1−ε)),
then the OV Hypothesis fails.

Note that this establishes a tight conditional lower bound for NFAs that are sparse.

Proof. We give a {n, `}-preserving reduction from OV to NFA Acceptance. It is not difficult to
see that the claimed lower bound follows, analogously to Lemma 10.

Given an OV instance A,B ⊆ {0, 1}d with n = |A|, ` = |B|, d = no(1), we construct
an NFA M over Σ = {0, 1, 2} as follows: M has initial state s, accepting state t. We write
A = {a1, . . . , an} and introduce, for every 1 ≤ i ≤ n, the states q(i)

0 , . . . , q
(i)
d . For every 1 ≤ i ≤ n

and 1 ≤ k ≤ d, we add the transitions (q
(i)
k−1, 0, q

(i)
k ) and, if ai[k] = 0, the transition (q

(i)
k−1, 1, q

(i)
k ).

Concluding the construction of M , we add transitions (s, 2, q
(i)
0 ) and (q

(i)
d , 2, t) for all 1 ≤ i ≤ n

and the loop transitions (q, 0, q), (q, 1, q), (q, 2, q) for each q ∈ {s, t}.
To construct the string S, we write B = {b1, . . . , b`} and define S := 2 b1 2 . . . 2 b` 2, where

we interpret bi as a length-d string over {0, 1}.

25



We argue that M accepts S if and only if A,B contain an orthogonal pair: By the structure
ofM and S, the only accepting runs ofM have the following form. M reads a prefix 2b12 . . . bj−1

for some 1 ≤ j ≤ ` while staying in s, then uses the transition sequence

s
2→ q

(i)
0

bj [1]
→ q

(i)
1

bj [2]
→ · · ·

bj [d]
→ q

(i)
d

2→ t, (1)

for some 1 ≤ i ≤ n, and then stays in t while reading the suffix bj+12 . . . b`2. By observing that
the transition sequence (1) exists in M if and only if ai, bj are orthogonal, the claim follows.

Finally, we note that this indeed yields a {n, `}-preserving reduction: M has O(nd) = n1+o(1)

states, and S has length O(`d) = `1+o(1), and they can be computed in linear time in the
input.

B.2 Tight combinatorial lower bound from Triangle and k-Clique

In the k-Clique problem, we are given an undirected, simple graph G = (V,E), and the task is
to determine whether there is a set C ⊆ V of k nodes that are pairwise adjacent, i.e., {u, v} ∈ E
for all u, v ∈ C. The current state of the art for k-Clique detection is captured in the following
hypothesis, see [NP85, ABVW15].

Hypothesis 5 (k-Clique hypothesis [ABVW15]).

1. Combinatorial version: For no k ≥ 3 and ε > 0, there is a combinatorial algorithm solving
k-Clique in time O(nk(1−ε)).

2. Non-combinatorial version: For no k ≥ 3 and ε > 0, there is an algorithm solving k-Clique
in time O(nk(ω/3−ε)).

One can show the following k-Clique-based lower bounds, which in particular give a tight
combinatorial lower bound for dense NFAs. By Lemma 1, this yields a tight combinatorial lower
bound for all graph densities.

Proposition 2. NFA Acceptance has the following k-Clique-based lower bounds:

1. Combinatorial algorithms: Unless the combinatorial k-Clique hypothesis fails, there are no
ε, β > 0 such that there is an O((`n2)1−ε)-time combinatorial algorithm for NFA Accep-
tance on an n-state NFA with Θ(n2) transitions and a string of length ` = Θ(nβ) over
Σ = {0, 1, 2, 3}.

2. General algorithms: Unless the k-Clique hypothesis fails, there are no ε, β > 0 such that
there is an O((`n2)ω/3−ε)-time algorithm for NFA Acceptance on an n-state NFA with
Θ(n2) transitions and a string of length ` = Θ(nβ) over Σ = {0, 1, 2, 3}.

The above lower bound is implicit in the literature. Specifically, it can be obtained either by
adapting the reduction from weighted k-Clique in [BT17] to the unweighted case, or as a special
case of [ABBK17, Theorem I.5]10, or as an appropriate generalization of the reduction from
Triangle Detection to NFA Acceptance with ` ≈ n in [PS20], or as an appropriate generalization
of the reduction from Triangle Detection to regular path queries with queries of length ` ≈ n
in [CS21].

For the reader’s convenience, we present a simplified proof of this fact.

Proof of Proposition 2. We prove the conditional lower bound for combinatorial algorithms. The
claim for general algorithms follows from the same reduction.

10In the theorem, simply choose αN = αn = β.

26



Assume for the sake of contradiction that there are ε > 0 and β > 0 such that NFA Ac-
ceptance on a q-state NFA with Θ(q2) transitions and a string S of length ` = Θ(qβ) over
Σ = {0, 1, 2, 3} can be solved in time O((`q2)1−ε) = O(q(2+β)(1−ε)).

We reduce from (2k+k′)-clique where k > (5+2β)/ε and k′ = bβkc. We let V = {0, . . . , n−
1}, so that we can write v in binary as a dlog ne-length bit string, which we call the node ID of
v.

For any t, let C(t) denote the set of t-cliques in G. We construct the string S as follows:

S := 2 ◦©{v1,...,vk′}∈C(k′)
(
vk1 v

k
2 . . . vkk′ 3 vk1 v

k
2 . . . vkk′ 2

)
,

where ◦ denotes concatenation and vk for v ∈ V denotes the k-fold concatenation of v’s node
ID.

We turn to constructing the NFA M . First, for every {u1, . . . , uk} ∈ C(k), we construct
a clique gadget CG(u1, . . . , uk). This gadget will accept a string of the form vk1 vk2 . . . vkk′
for {v1, . . . , vk′} ∈ C(k′) if and only if {u1, . . . , uk, v1, . . . , vk′} form a (k + k′)-clique. We can
construct such an NFA with Õ(n) states and transitions as follows: For any node u ∈ V , it is
straightforward to construct an NFA N(u) of size Õ(n) accepting only the node IDs of vertices
v ∈ V with {u, v} ∈ E. We simply introduce a parallel path from starting to accepting state
for every neighbor v of u. Since every node has at most n neighbors and each ID is of length
O(log n), the size of N(u) is Õ(n). We can now construct CG(u1, . . . , uk) by connecting in series
the following sequence of NFAs:

(N(u1) . . . N(uk)) . . . (N(u1) . . . N(uk))︸ ︷︷ ︸
k′ times

.

Here, by connecting in series, we mean identifying the single accepting state of each NFA in the
sequence with the starting state of the subsequent NFA. Note that the constructed NFA accepts
vk1 v

k
2 . . . vkk′ if and only if {ui, vj} ∈ E for every 1 ≤ i ≤ k and 1 ≤ j ≤ k′, yielding the desired

property. Furthermore, it has (k + k′) · Õ(n) = Õ(n) states and transitions.
For each constructed clique gadget CG(u1, . . . , uk) with {u1, . . . , uk} ∈ C(k), we construct a

copy CG′(u1, . . . , uk). We add transitions from the starting state s of M to the starting state of
CG(u1, . . . , uk), labeled 2, and similarly transitions from each CG′(u1, . . . , uk) to the accepting
state t of M , labeled 2. We also add loop transitions (q, σ, q) for each q ∈ {s, t} and σ ∈
{0, 1, 2, 3}. Finally, for every {u1, . . . , uk}, {u′1, . . . , u′k} ∈ C(k) such that {u1, . . . , uk, u

′
1, . . . , u

′
k}

form a 2k-clique in G, we add a transition from the accepting state of CG(u1, . . . , uk) to the
starting state of CG′(u′1, . . . , u′k), labeled 3.

By the structure of M and S, the only accepting runs have the following form: M reads a
prefix of S, branches on start of some substring y = 2vk1 . . . , v

k
k′3v

k
1 . . . , v

k
k′2 with {v1, . . . , vk′} ∈

C(k′) to some CG(u1, . . . , uk) and some CG′(u′1, . . . , u′k), followed by reading the remaining
suffix of S in the accepting state t. This run exists if and only if

• {v1, . . . , vk′ , u1, . . . , uk} forms a (k + k′)-clique (so that the prefix of y can be traversed
with CG(u1, . . . , uk)),

• {u1, . . . , uk, u
′
1, . . . , u

′
k} forms a 2k-clique (so that there is a transition from CG(u1, . . . , uk)

to CG′(u′1, . . . , u′k)), and

• {v1, . . . , vk′ , u
′
1, . . . , u

′
k} forms a (k + k′)-clique (so that the suffix of y can be traversed

with CG′(u′1, . . . , u′k)).

This is equivalent to {v1, . . . , vk′ , u1, . . . , uk, u
′
1, . . . , u

′
k} forming a (2k + k′)-clique.

Thus, we have created an NFA Acceptance instance that is equivalent to the given (2k+k′)-
Clique instance. Note that the constructed string S has length Õ(nk

′
), that M has O(nk+2)

27



states, since it consists of O(nk) clique gadgets of size Õ(n) = O(n2), and that the instance can
be constructed in linear time in its size.

Note that by our choice of k′ = bβkc ≤ βk, we have |S| ≤ Õ(nk
′
) ≤ O((nk+2)β). Thus, by

appending additional 2’s to S and isolated states to M , we can ensure that |S| = Θ(qβ) where
q = Θ(nk+2) is the number of states of M . By adding transitions between the newly added
isolated states we can also ensure that the number of transitions is Θ(q2).

Thus, our O(q(2+β)(1−ε))-time combinatorial algorithm for NFA Acceptance on q-state NFAs
with Θ(q2) transitions and strings of length Θ(qβ) solves any given k-Clique instance in time
O(n(k+2)(2+β)(1−ε)). Note that

(k + 2)(2 + β)(1− ε) = (2k + βk) + (4 + 2β)− (k + 2)(2 + β)ε

≤ (2k + βk) + (4 + 2β)− kε
≤ (2k + k′) + (5 + 2β)− kε
< 2k + k′,

since k > (5+2β)/ε. Thus, there exists some ε′ > 0 such that we can solve (2k+k′)-Clique in time
O(n2k+k′−ε′) by a combinatorial algorithm, refuting the combinatorial k-Clique hypothesis.

B.3 Co-nondeterministic algorithm

We say that a problem PA has a t(n)-time verifier if PA can be solved in nondeterministic time
t(n) and also its complement problem PA can be solved in nondeterministic time t(n), i.e., PA
is in NTIME[t(n)] ∩ coNTIME[t(n)]. Under NSETH [CGI+16], there exists no deterministic
fine-grained reduction from Satisfiability to PA that would establish a SETH-based lower bound
of t(n)1+δ for any δ > 0.

For the reader’s convenience, we give a simple verifier for Colored Walk, and thus NFA
Acceptance. This verifier is faster than the one for the generalization to the Viterbi Path
problem designed in the arXiv version of [BI16], and simplifies and extends the verifier one
could obtain as a consequence of our reduction in Section 3 combined with [CMS22].

Proposition 3. Directed 2-Edge Colored Walk has a O(nω + `nω−1)-time verifier.

As a consequence, we obtain verifiers with the same running time (up to subpolynomial
factors) for all equivalent Colored Walk formulations and the NFA Acceptance problem over Σ
of size no(1).

Thus, assuming NSETH, there cannot be any deterministic reduction from Satisfiability (or
Orthogonal Vectors) that establishes a tight conditional lower bound for NFA Acceptance with
α ≥ ω − 1 and β ≥ 1. This gives a justification why until now, no tight SETH-based lower
bound for dense NFAs could be established.

Proof of Proposition 3. Consider a Directed 2-Edge Colored Walk instance G = (V,E) with
edge colors c : E → {1, 2}, distinguished nodes s, t ∈ V and color sequence c1, . . . , c`. Define Ac
as the n× n matrix with

Ac[u, v] =

{
1 if (u, v) ∈ E and c(u, v) = c

0 otherwise.

Furthermore, define x0 ∈ {0, 1}n as the indicator vector representing the starting state s, i.e.,
x0[v] = 1 if and only if v = s. For all 1 ≤ i ≤ `, we define

xi = ATci · xi−1, (2)

where AT denotes the transpose of A and AT · x denotes the Boolean matrix-vector product of
AT and x. Observe that xi is the indicator vector with xi[v] = 1 if and only if there exists a
walk with color sequence c1, . . . , ci from s to v.

28



To obtain nondeterministic algorithms for the problem and its complement problem, we
simply need to guess x1, . . . , x`, verify that they have been guessed correctly, and check whether
x`[t] = 1, or x`[t] = 0, respectively.

To verify that the xi’s have been guessed correctly, we batch the equalities (2) that we need
to check into two Boolean matrix products: Specifically, for each c ∈ {1, 2}, let Xc denote the
matrix containing all xi’s with ci = c as columns, and let X ′c denote the matrix containing all
xi−1’s with ci = c as columns, in the same order. For each c ∈ {1, 2}, we need to check that

Xc = ATX ′c.

Note that this can be done via two (integer) matrix multiplications of two matrices with dimen-
sions n × n and n × `. If ` ≤ n, this can be done with a single square matrix multiplication,
otherwise, we can do this with d `ne square matrix multiplications. This results in a total verifi-
cation time of O((1 + `

n)nω) = O(nω + `nω−1), as desired.

C Failed Algorithmic Approaches for NFA Acceptance

In this section we consider some natural algorithmic approaches to NFA Acceptance and discuss
why they do not falsify the NFA Acceptance hypothesis. Instead of directly working with the
NFA Acceptance problem, we consider Directed Edge-2-Colored Walk (or short: Colored Walk).
This is without loss of generality, as shown by the equivalence established in Lemma 2.

Algorithms using Fast Matrix Multiplication? Note that in the special case of only one
color, i.e, c1 = . . . = c`, Colored Walk can be solved by computing the `-th matrix power A` of
the adjacency matrix A, and then checking whether the (s, t)-entry is non-zero. This takes time
O(nω log `), which is much faster than O(m`) if ` is large.

If we could achieve the same running time O(nω log `) in the case of two colors, then we
would falsify the NFA Acceptance hypothesis (for any setting α ∈ [1, 2] and β > ω − α, by
Lemma 2). However, as we argue next, the natural generalization of the above algorithm to
two colors fails. Consider adjancency matrices A(1), A(2), where the (u, v)-entry of A(c) is 1 if
there is an edge of color c from u to v, and 0 otherwise. Then we would want to compute the
matrix A(c1)A(c2) · · ·A(c`) and check whether its (s, t)-entry is non-zero, to solve Directed Edge-
2-Colored Walk. However, in the worst case no two subsequences of c1, . . . , c` of length log(`)
are equal, and thus we cannot save more than log-factors by precomputing products of the form
A(ci) · · ·A(cj) – in contrast to the special case of only one color. Hence, we are essentially forced
to compute the product A(c1)A(c2) · · ·A(c`) one-by-one over ` steps, resulting in time O(nω`).
This is worse than the simple O(m`)-time algorithm. In other words, the natural generalization
of the matrix-multiplication-based algorithm for one color fails for two colors.

Parallel Algorithms for Colored Walk The matrix multiplication approach sketched above
is nevertheless useful to design parallel algorithms for Colored Walk. Indeed, matrix multipli-
cation can be easily parallelized, e.g., on the PRAM one can multiply two n× n matrices with
depth O(log n) and work O(n3). To compute the product A(c1)A(c2) · · ·A(c`) we can recursively
compute the product A(c1) · · ·A(cb`/2c) and recursively compute the product A(cb`/2c+1) · · ·A(c`)

and then multiply the results. If we perform both recursive calls in parallel, then we obtain a
PRAM algorithm with depth O(log(n) log(`)) and work O(n3`). From the final matrix product
A(c1) · · ·A(c`) we can then read off the answer as the (s, t)-entry. This shows that Colored Walk
(and in a similar way also NFA Acceptance) has an efficient parallel algorithm. Note that the
total work O(n3`) of this PRAM algorithm is much more than O(m`), and hence this parallel
algorithm does not violate the NFA Acceptance hypothesis.

29



Inherently Sequential? The above parallel algorithm has much higher work than the sequen-
tial time complexity O(m`). It thus seems plausible that any parallel algorithm for Colored Walk
with work Õ(m`) has depth at least `1−o(1). In other words, it is plausible that work-optimal
algorithms for Colored Walk are inherently sequential.

This intuition is consistent with our current knowledge of the problem. However, there are
no tools available to prove this intuition, even conditionally. The only tool that we have to
show that certain parallel algorithms are unlikely for a problem X is to show that X is P-
hard. However, since we have seen a PRAM algorithm with polylogarithmic depth for Colored
Walk, it is very unlikely that Colored Walk is P-hard, and thus this tool is not applicable for
this problem. Hence, currently there are no tools to provide evidence for the intuition that
work-optimal algorithms for Colored Walk are inherently sequential.

30


	Introduction
	The many guises of the NFA Acceptance problem
	Support for the hypothesis
	Evidence against the hypothesis
	Applications I: Non-combinatorial lower bounds
	Application II: A static reason for dynamic hardness

	Equivalent formulations: Colored Walk Framework
	Colored Walk Framework

	Hardness of CFL Reachability
	Hardness of Word Break
	Hardness of OMv
	Conclusion
	Equivalences of Colored Walk
	Relation to Other Hypotheses
	Tight lower bound for sparse NFAs under SETH
	Tight combinatorial lower bound from Triangle and k-Clique
	Co-nondeterministic algorithm

	Failed Algorithmic Approaches for NFA Acceptance

