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ABSTRACT
Clustering, i.e., finding groups in the data, is a problem that perme-

ates multiple fields of science and engineering. Recently, the prob-

lem of clustering with a noisy oracle has drawn attention due to

various applications including crowdsourced entity resolution [33],

and predicting signs of interactions in large-scale online social net-

works [20, 21]. Here, we consider the following fundamental model

for two clusters as proposed by Mitzenmacher and Tsourakakis

[28], and Mazumdar and Saha [25]; there exist n items, belonging

to two unknown groups. We are allowed to query any pair of nodes

whether they belong to the same cluster or not, but the answer

to the query is corrupted with some probability 0 < q < 1

2
. Let

1 > δ = 1 − 2q > 0 be the bias.

In this work, we provide a polynomial time algorithm that recov-

ers all signs correctly with high probability in the presence of noise

withO(
n logn
δ 2
+

log
2 n

δ 6
) queries. This is the best known result for this

problem for all but tiny δ , improving on the current state-of-the-art

due to Mazumdar and Saha [25].
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1 INTRODUCTION
Clustering is a central problem in data science with a rich history;

hundreds of algorithms have been published on the topic. Certain

popular algorithms that have inaugurated lines of research include

k-means and k-means++ (e.g., [3, 4, 19]), mixture models (e.g., [26]),

spectral clustering (e.g., [2, 31]), correlation clustering (e.g., [5]),

graph clustering methods (e.g., [7]). Despite the long research his-

tory, clustering remains an active area of research. Part of the reason

why this is true is that recent advances in technologies, data avail-

ability etc. motivate new variants of clustering problems. In this

work we focus on clustering with a faulty oracle. This particular
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clustering variant is motivated by various applications including

the humans-in-the-loop approach to the entity resolution problem,

and predicting signed edges in large-scale online social networks,

see [25]. Furthermore, this clustering variant has various interest-

ing connections with other lines of research on clustering including

the stochastic model, and correlation clustering that we discuss in

section 2. We define the model that we study in the following.

Model. LetV = [n] be the set of n items that belong to two clusters.

Set σ : V → {−1,+1}, and let R = {v ∈ V (G) : σ (v) = −1} and B =
{v ∈ V (G) : σ (v) = +1} be the sets/groups of red and blue nodes

respectively, where 0 ≤ |R | ≤ n. For any pair of nodes {u,v} define
τ (u,v) = σ (u)σ (v) ∈ {±1} (i.e., τ (u,v) = −1, if u is reported to be

in the different cluster thanv). The coloring function σ is unknown

and we wish to recover the two sets R,B by querying pairs of items.

(We need not recover the labels, just the clusters.) Let ηu,v ∈ {±1}

be iid noise in the edge observations, with E
[
ηu,v

]
= δ for all pairs

u,v ∈ V . The oracle returns

τ̃ (u,v) = σ (u)σ (v)ηu,v .

Equivalently, for each query we receive the correct answer with

probability 1−q = 1

2
+ δ

2
, where q > 0 is the corruption probability.

Our goal is answer the following question.

Problem 1.1. Can we recover the clusters efficiently with high

probability by performing a small number of queries?

The constraint of querying a pair of nodes only once in the pres-

ence of noise appears not only in settings where a repeated query is

constrained to give the same answer but naturally in more complex

settings. For example, the entity resolution problem is a classic prob-

lem in data management that aims to identify and group records

that refer to the same entity. Recently, crowdsourcing platforms

like Amazon Mechanical Turk are used to attack this problem by

presenting workers with questions of the form “do these two items

represent the same entity?”. The goal is to solve the entity resolution

problem while minimizing the monetary cost of the process. The

workers’ answers are not always reliable. This can be modeled us-

ing the noisy oracle model that we study. Once deciding on whether

a given pair of items refers to the same entity or not by looking

at the workers’ answers, no more queries are typically performed.

Interestingly, it has also been observed empirically that repeated

querying does not help much in reducing errors [24, 25, 33].

Main results. Our main theoretical result shows that we can re-

cover the two clusters (R,B) with high probability
1
in polynomial

time. Specifically, our proposed algorithm runs in time O(
n logn
δ 2
+

log
3 n

δ 8
). Our result is stated as the next theorem.

Theorem 1.2. There exists a polynomial algorithm with query

complexity O(n logn
δ 2
+

log
2 n

δ 6
) that returns both clusters of V whp.

1
An event An holds with high probability (whp) if lim

n→+∞
Pr [An ] = 1.
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Our algorithm improves the current state-of-the-art due toMazum-

dar and Saha [25]. Specifically, their information theoretical op-

timal algorithm that performs O(
n logn
δ 2
) queries requires quasi-

polynomial runtime and is unlikely to be improved assuming the

planted clique conjecture. On the other hand, their efficient poly-

time algorithms requireO(
n logn
δ 4
) queries. Our algorithm is optimal

for all but tiny δ , i.e., as long as the first term
n logn
δ 2

dominates

(asymptotically) the second term
log

2 n
δ 6

.

Roadmap. In Section 2 we briefly overview related work, and in

Section 3 we present and analyze Pythia2Truth, our proposed

algorithm. Its name is inspired by Greek mythology; Pythia was an

oracle known to give ambiguous answers to queries. We conclude

our short paper with an interesting open problem in Section 4.

2 RELATEDWORK

Clustering with Noisy Queries. Closest to our work lies the re-

cent work of Mazumdar and Saha [25]. Specifically, the authors

study Problem 1.1 in [25] as well, as well as the more general version

where the number of clusters is k ≥ 3. Each oracle query provides

a noisy answer on whether two nodes belong to the same cluster or

not. They provide an algorithm that performs O(
nk logn

δ 2
) queries,

recovers all clusters of size Ω(
logn
δ 2
) where k is the number of clus-

ters, but whose runtime is quasi-polynomial hence impractical, and

unlikely to be improved under the planted clique hardness assump-

tion. They also design a computationally efficient algorithm that

runs in O(n logn + k6) time and performs O(
nk2

logn
δ 4

) queries. Fi-

nally, fork = 2 they provide a non-adaptive algorithm that performs

O(
n logn
δ 4
) and runs in O(n logn) time. Previously, sub-optimal re-

sults had been obtained by Mitzenmacher and Tsourakakis [28].

It is worth outlining that recovering combinatorial structures us-

ing noisy queries is an important problem in theoretical computer

science [8, 11, 12, 16, 17, 29].

Correlation Clustering. Bansal et al. [5] studied Correlation Clus-
tering: given an undirected signed graph partition the nodes into

clusters so that the total number of disagreements is minimized.

This problem is NP-hard [5, 32]. Here, a disagreement can be ei-

ther a positive edge between vertices in two clusters or a nega-

tive edge between two vertices in the same cluster. Note that in

Correlation Clustering the number of clusters is not specified as

part of the input. 2-Correlation-Clustering refers to the case when

the number of clusters is constrained to be at most two.

We remark that the notion of imbalance studied by Harary is

the 2-Correlation-Clustering cost of the signed graph. Mathieu and

Schudy initiated the study of noisy correlation clustering [23]. They

develop various algorithms when the graph is complete, both for

the cases of a random and a semi-randommodel. Later, Makarychev,

Makarychev, and Vijayaraghavan proposed an algorithm for graphs

with O(npoly logn) edges under a semi-random model [22]. For

more information on Correlation Clustering see the recent survey

by Bonchi et al. [6].

Planted bisection model. The following well-studied bisection

model is closely connected to our model. Suppose that there are two

groups (clusters) of nodes. A graph is generated as follows: the edge

probabilities are p within each cluster, and q < p across the clusters.

The goal is to recover the two clusters given such a graph. If the

two clusters are balanced, i.e., each cluster has O(n) nodes, then
one can recover the clusters whp, see [1, 27, 34]. Hajek, Wu, and

Xu proved that when each cluster has n/2 nodes (perfect balance),

the average degree has to scale as
logn

(
√

1−q−
√
q)2 for exact recovery

[18]. Also, they showed that using semidefinite programming (SDP)

exact recovery is achievable at this threshold [18]. Notice that if

(i) we have two balanced clusters, and (ii) we remove all negative

edges from a signed graph generated according to our model, then

one can apply such techniques to recover the clusters. We observe

that when δ → 0 the lower bound of Hajek et al. scales as O(
logn
δ 2
).

Other Techniques. Chen et al. [13, 14] consider our model, and

provide a method that can reconstruct the clustering for random

binomial graphs with O(npoly logn) edges. Their method exploits

low rank properties of the cluster matrix, and requires certain

conditions, including conditions on the imbalance between clusters,

see [14, Theorem 1, Table 1]. Their method is based on a convex

relaxation of a low rank problem. Mazumdar and Saha similarly

study clustering with an oracle in the presence of side information,

such as a Jaccard similarity matrix [24]. Cesa-Bianchi et al. [10] take

a learning-theoretic perspective on the problem of predicting signs.

They use the correlation clustering objective as their learning bias,

and show that the risk of the empirical risk minimizer is controlled

by the correlation clustering objective. Chiang et al. point out that

the work of Candès and Tao [9] can be used to predict signs of edges,

and also provide various other methods, including singular value

decomposition based methods, for the sign prediction problem [15].

The incoherence is the key parameter that determines the number

of queries, and is equal to the group imbalance τ = max

cluster C
n
|C | . The

number of queries needed for exact recovery under our model is

O(τ 4n log
2 n), which is prohibitive when clusters are even slightly

imbalanced.

3 PROPOSED METHOD
Wedescribe our proposed algorithmPythia2Truth that achieves

the guarantees of Theorem 1.2. The algorithm arbitrarily chooses

two setsA,B ⊆ V such that |A| = O(
logn
δ 2
) and |B | = O(

logn
δ 4
). Then,

it performs all possible queries between A,B. The total number of

queries at this step is O(
log

2 n
δ 6
). The algorithm then uses the set of

labels {τ̃ (a,b), τ̃ (a′,b)}b ∈B to make a guess τ̄ (a,a′) for τ (a,a′) for
each pair a,a′ ∈ A. This works as follows: for any given pair {a,a′}
each b casts a vote vote(a,a′,b). Specifically, vote(a,a′,b) = +1 if

τ̃ (a,b) = τ̃ (a′,b), and vote(a,a′,b) = −1 if τ̃ (a,b) , τ̃ (a′,b). The
prediction τ̄ (a,a′) is +1 if the majority of votes {vote(a,a′,b)}b ∈B
is +1, and −1 otherwise.

The aforementioned steps ensure that τ̄ (a,a′) = τ (a,a′) for all

pairs a,a′ ∈ A whp. Clearly, there exist at least Ω( logn
δ 2
) nodes from

at least one of the two clusters. This set of nodes is found by finding

the largest connected component (that is actually a clique) of the

graph induced by the positive edges in A. This set C serves as a

seed set. For each node u < C we perform all queries (u, c) for each
c ∈ C . If the majority of the oracle answers is +1 then we add u in

C . The procedure outputsC and its complement as the true clusters.
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Algorithm 1 Pythia2Truth(V )

Choose arbitrarily A,B ⊆ V two disjoint sets of nodes, such that |A| =
48 logn
δ 2

, and |B | =
24 logn
δ 4

.

Perform all Θ(
log

2 n
δ 6
) queries among A,B.

for each pair a,a′ ∈ A do
countera,a′ ← 0

for each b ∈ B do
if τ̃ (a,b) = τ̃ (a′,b) then

countera,a′ ← countera,a′ + 1

end if
end for
if countera,a′ ≥

|B |
2

then
τ̄ (a,a′) = +1

else
τ̄ (a,a′) = −1

end if
end for
Remove the negative edges from A, and let C be the largest clique

for each u ∈ V \C do
Perform all queries (u, c) for c ∈ C
if the majority of answers is + then
C ← C ∪ {u}

end if
end for
return (C,V \C)

Now we prove the correctness of our proposed algorithm. First, we

prove the following lemma.

Lemma 3.1. Let S ⊆ V such that |S | = 24 logn
δ 4

. Consider any pair
of nodes u,v ∈ V \S , and let τ̄ (u,v) = majority({τ̃ (u, s) · τ̃ (v, s)}s ∈S ).
Then, τ̄ (u,v) = τ (u,v) with probability at least 1 − 1

n3
.

Proof. Consider any pair of nodes u,v ∈ V \S , and let Xs (u,v)
be an indicator random variable for s ∈ S that is equal to 1 if the

product τ̃ (u, s) · τ̃ (v, s) of the two noisy labels τ̃ (u, s), τ̃ (v, s) is the

true label τ (u,v). Then, Pr [Xs = 1] = (1 − q)2 + q2 = 1+δ 2

2
. For

notation simplicity let p = Pr [Xs = 1]. Also, we define X (u,v) =∑
s ∈S Xs (u,v). Notice that τ̄ (u,v) = τ (u,v) iff X (u,v) ≥ |S |

2
. Using

Chernoff bounds [30], we obtain that the probability of misclassifi-

cation is bounded by

Pr
[
X (u,v) <

|S |

2

]
= Pr

[
X (u,v) <

p |S |

2p

]
= Pr

[
X (u,v) <

(
1 − (1 −

1

2p
)

)
p |S |

]
≤ exp

(
−
(2p − 1)2

8p2

24 logn

δ4
p
)

= exp

(
−

δ4

4(1 + δ2)

24 logn

δ4

)
<

1

n3
.

□

A straight-forward corollary of lemma 3.1 derived by taking a

union bound over all pairs of nodes in V \S is that our algorithm

predicts the labels of all such interactions correctly whp. Using

lemma 3.1 we are also able to prove the correctness of our Algo-

rithm.

Proof of Theorem 1.2. Using lemma 3.1 by setting S = B we

obtain that all pairwise interactions within the set A are correctly

labeled with high probability. By the pigeonhole principle, since

|A| =
48 logn
δ 2

, one of the two clusters has at least
24 logn
δ 2

nodes in

A. This set can easily be found: since within A all labels τ̄ (a,a′)
are equal to τ (a,a′), for a,a′ ∈ A, disregarding the negative labels
τ̄ (a,a′) will result in at most two connected cliques. We can find

the largest such clique in O(|A|) time (since one step of BFS finds

all other nodes). Let C be the corresponding set of nodes.

Let u ∈ V \C . We perform all possible |C | queries between u and

C , and we decide that u belongs to C if the majority of the oracle

answers is +1. Define Xc (u) to be an indicator random variable

that is equal to 1 if the oracle answer for the pair {u, c} is correct,
and 0 otherwise. Let X (u) =

∑
c ∈C Xc (u) be the random variable

distributed according to Bin(|C |, 1 − q). The probability of failure is

bounded by

Pr
[
X (u) <

|C |

2

]
= Pr

[
X (u) <

(
1 − (1 −

1

2(1 − q)
)

)
(1 − q)|C |

]
≤ exp

(
−

δ2

2(1 + δ )2
24 logn

δ2

1 + δ

2

)
<

1

n3
.

By combining the above results, and a union bound our proposed

algorithm succeeds whp to recover both clusters. □
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The total running time of our method is O

( ( 48 logn
δ 2

2

)
24 logn

δ4︸                ︷︷                ︸
classify all pairs in A

+
48 logn

δ2︸   ︷︷   ︸
find largest clique

+
n logn

δ2︸  ︷︷  ︸
decide for the rest

)
that simplifies to the total

running time of O(
n logn
δ 2
+

log
3 n

δ 8
).

4 CONCLUSION
An interesting open problem is to achieve optimal query complexity

O(
n logn
δ 2
) in time linear in the number of queries. In other words,

can we remove the
log

2(n)
δ 6

term from our query complexity?

Another open problem relates to the extension of our result to k
clusters. Specifically, our clustering model naturally extends to the

case where there are more than two clusters [25]. In this case the

set V of n items belong to k clusters. When we query the pair of

nodes {u,v}we obtain a noisy answer on whetheru,v belong to the

same cluster or not. Can we design a query-optimal, time-efficient

algorithm that performs O(
kn logn

δ 2
) queries for all 0 < δ < 1?
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