
Optimal Minimal Margin Maximization with Boosting

Allan Grønlund∗† Kasper Green Larsen‡ Alexander Mathiasen§

Abstract
Boosting algorithms produce a classifier by iteratively combining base hypotheses. It has been observed

experimentally that the generalization error keeps improving even after achieving zero training error.
One popular explanation attributes this to improvements in margins. A common goal in a long line
of research, is to maximize the smallest margin using as few base hypotheses as possible, culminating
with the AdaBoostV algorithm by [Rätsch and Warmuth, 2005]. The AdaBoostV algorithm was later
conjectured to yield an optimal trade-off between number of hypotheses trained and the minimal margin
over all training points [Nie et al., 2013]. Our main contribution is a new algorithm refuting this conjecture.
Furthermore, we prove a lower bound which implies that our new algorithm is optimal.

1 Introduction
Boosting is one of the most famous and succesful ideas in learning. Boosting algorithms are meta algorithms
that produce highly accurate classifiers by combining already existing less accurate classifiers. Probably the
most famous boosting algorithm is AdaBoost by Freund and Schapire [Freund and Schapire, 1995], who won
the 2003 Gödel Prize for their work.

AdaBoost was designed for binary classification and works by combining base hypotheses learned by a
given base learning algorithm into a weighted sum that represents the final classifier. This weighed set of base
hypotheses is constructed iteratively in rounds, each round constructing a new base hypothesis that focuses
on the training data misclassified by the previous base hypotheses constructed. More precisely, AdaBoost
takes training data D = {(xi, yi) | xi ∈ Rd, yi ∈ {−1,+1}}ni=1 and constructs a linear combination classifier
sign(

∑T
t=1 αtht(x)), where ht is the base hypothesis learned in the t’th iteration and αt is the corresponding

weight.
It has been proven that AdaBoost decreases the training error exponentially fast if each base hypothesis is

slightly better than random guessing on the weighed data set it is trained on [Freund et al., 1999]. Concretely,
if εt is the error of ht on the weighed data set used to learn ht then the linear combination has training
error at most exp(−2

∑T
t=1 (1/2− εt)2). If each εt is at most a half minus a fixed constant, then the training

error is less than 1/n after O(lg n) rounds which means the all training points are classified correctly. Quite
surprisingly, experiments show that continuing the AdaBoost algorithm even after the training data is
perfectly classified, making the model more and more complex, continues to improve generalization [Schapire
et al., 1998]. The most prominent approach to explaining this generalization phenomenon considers margins
[Schapire et al., 1998]. The margin of a point xi is

margin(xi) =
yi
∑T
t=1 αtht(xi)∑T
t=1|αt|

.

For binary classification, if each ht(x) ∈ [−1,+1], then the margin of a point is a number between -1 and
+1. Notice that a point has positive margin if it is classified correctly and negative margin if it is classified
∗All authors contributed evenly.
†Aarhus University. Email: jallan@cs.au.dk.
‡Aarhus University. Email: larsen@cs.au.dk. Supported by a Villum Young Investigator Grant and an AUFF Starting

Grant.
§Aarhus University. Email: alexander.mathiasen@gmail.com. Supported by an AUFF Starting Grant.

1

incorrectly. It has been observed experimentally that the margins of the training points usually increase when
training, even after perfectly classifying the training data. This has inspired several bounds on generalization
error that depend on the distribution of margins [Schapire et al., 1998, Breiman, 1999, Koltchinskii et al.,
2001, Wang et al., 2008, Gao and Zhou, 2013]. The conceptually simplest of these bounds depend only on
the minimal margin, which is the margin of the point xi with minimal margin. The point xi with minimal
margin can be interpreted as the point the classifier struggles the most with. This has inspired a series of
algorithms with guarantees on the minimal margin [Breiman, 1999, Grove and Schuurmans, 1998, Bennett
et al., 2000, Rätsch and Warmuth, 2002, Rätsch and Warmuth, 2005].

These algorithms have the following goal: Let H be the (possibly infinite) set of all base hypotheses that
may be returned by the base learning algorithm. Suppose the best possible minimal margin on some training
data for any linear combination of h ∈ H is ρ∗, i.e.

ρ∗ = max
α6=0

(
min
i

∑
h∈H

yi
∑
h∈H αhh(xi)∑
h∈H |αh|

)
.

Given some precision parameter v, the goal is to construct a linear combination with minimal margin at
least ρ = ρ∗ − v using as few hypotheses as possible. In this case we say that the linear combination has a
gap of v. The current state of the art is AdaBoostV [Rätsch and Warmuth, 2005]. It guarantees a gap of v
using O(lg(n)/v2) hypotheses. It was later conjectured that there exists data sets D and a corresponding
set of base hypotheses H, such that any linear combination of base hypotheses from H must use at least
Ω(lg(n)/v2) hypotheses to achieve a gap of v for any

√
lg n/n ≤ v ≤ a1 for some constant a1 > 0. This would

imply optimality of AdaBoostV. This conjecture was published as an open problem in the Journal of Machine
Learning Research [Nie et al., 2013].

Our main contribution is a refutal of this conjecture. We refute the conjecture by introducing a new
algorithm called SparsiBoost, which guarantees a gap of v with just T = O(lg(nv2)/v2) hypotheses. When
v ≤ no(1)/

√
n, SparsiBoost has T = O(lg(no(1))/v2) = o(lg(n)/v2), which is asymptotically better than

AdaBoostV’s T = O(lg(n)/v2) guarantee. Moreover, it also refutes the conjectured lower bound. Our
algorithm involves a surprising excursion to the field of combinatorial discrepancy minimization. We also
show that our algorithm is the best possible. That is, there exists data sets D and corresponding set of base
hypotheses H, such that any linear combination of base hypotheses from H with a gap of v, must use at least
T = Ω(lg(nv2)/v2) hypotheses.

This work thus provides the final answer to over a decade’s research into understanding the trade-off
between minimal margin and the number of hypotheses: Given a gap v, the optimal number of hypotheses is
T = Θ(lg(nv2)/v2) for any

√
1/n ≤ v ≤ a1 where a1 > 0 is a constant. Notice that smaller values for v are

irrelevant since it is always possible to achieve a gap of zero using n+ 1 base hypotheses. This follows from
Carathéodory’s Theorem.

1.1 Previous Work on Minimal Margin
Upper Bounds. [Breiman, 1999] introduced Arc-GV, which was the first algorithm that guaranteed to find
a finite number of hypotheses T <∞ with gap zero (v = 0). As pointed out by [Rätsch and Warmuth, 2005],
one can think of Arc-GV as a subtle variant of AdaBoost where the weights αt of the hypotheses are slightly
changed. If AdaBoost has hypothesis weight αt, then Arc-GV chooses the hypothesis weight α′t = αt + x for
some x that depends on the minimal margin of h1, . . . , ht. A few years later, [Grove and Schuurmans, 1998]
and [Bennett et al., 2000] introduced DualLPBoost and LPBoost which both have similar guarantees.

[Rätsch and Warmuth, 2002] introduced AdaBoostρ, which was the first algorithm to give a guarantee
on the gap achieved in terms of the number of hypotheses used. Their algorithm takes a parameter ρ ≤ ρ∗
that serves as the target margin one would like to achieve. It then guarantees a minimal margin of ρ− µ
using T = O(lg(n)/µ2) hypotheses. One would thus like to choose ρ = ρ∗. If ρ∗ is unknown, it can be found
up to an additive approximation of v by binary searching using AdaBoostρ. This requires an additional
O(lg 1/v) calls to AdaBoostρ, resulting in O(lg(n)/v2) lg(1/v) iterations of training a base hypothesis to find
the desired linear combination of T = O(lg(n)/v2) base hypotheses. Similar to Arc-GV, AdaBoostρ differs

2

from AdaBoost only in choosing the weights αt. Instead of having the additional term depend on the minimal
margin of h1, . . . , ht, it depends only on the estimation parameter ρ.

A few years later, [Rätsch and Warmuth, 2005] introduced AdaBoostV. It is a clever extension of AdaBoostρ
that uses an adaptive estimate of ρ∗ to remove the need to binary search for it. It achieves a gap of v using
T = O(lg(n)/v2) base hypotheses and no extra iterations of training.

Lower Bounds. [Klein and Young, 1999] showed a lower bound for a seemingly unrelated game theoretic
problem. It was later pointed out by [Nie et al., 2013] that their result implies the following lower bound for
boosting: there exists a data set of n points and a corresponding set of base hypotheses H, such that any
linear combination of T ∈ [lg n;

√
n] base hypotheses must have a gap of v = Ω(

√
lg(n)/T). Rewriting in

terms of T we get T = Ω
(
lg(n)/v2

)
for
√

lg(n)/n1/4 ≤ v ≤ a1 for some constant a1 > 0.
[Nie et al., 2013] conjectured that Klein and Young’s lower bound of v = Ω(

√
lg(n)/T) holds for all

T ≤ a1 · n for some constant a1 > 0. Rewriting in terms of T , they conjecture that T = Ω(lg(n)/v2) holds for√
a2/n ≤ v ≤ a3 where a2, a3 > 0 are some constants.

1.2 Our Results On Minimal Margin
Our main result is a novel algorithm, called SparsiBoost, which refutes the conjectured lower bound in [Nie
et al., 2013]. Concretely, SparsiBoost guarantees a gap of v with just T = O(lg(nv2)/v2) hypotheses. At a
first glance it might seem SparsiBoost violates the lower bound of Klein and Young. Rewriting in terms of v,
our upper bound becomes v = O(

√
lg(n/T)/T) (see Appendix A for details). When T ≤

√
n (the range of

parameters where their lower bound applies), this becomes v = O(
√

lg(n)/T) which does not violate Klein
and Young’s lower bound. Moreover, our upper bound explains why both [Klein and Young, 1999] and [Nie
et al., 2013] were not able to generalize the lower bound to all T = O(n): When T = n1−o(1), our algorithm
achieves a gap of v = O(

√
lg(no(1))/T) = o(

√
lg(n)/T).

The high level idea of SparsiBoost is as follows: Given a desired gap v, we use AdaBoostV to find
m = O(lg(n)/v2) hypotheses h1, . . . , hm and weights w1, . . . , wm such that

∑
i wihi achieves a gap of v/2.

We then carefully “sparsify” the vector w = (w1, . . . , wm) to obtain another vector w′ that has at most
T = O(lg(nv2)/v2) non-zeroes. Our sparsification is done such that the margin of every single data point
changes by at most v/2 when replacing

∑
i wihi by

∑
i w
′
ihi. In particular, this implies that the minimum

margin, and hence gap, changes by at most v/2. We can now safely ignore all hypotheses hi where w′i = 0
and we have obtained the claimed gap of at most v/2 + v/2 = v using T = O(lg(nv2)/v2) hypotheses.

Our algorithm for sparsifying w gives a general method for sparsifying a vector while approximately
preserving a matrix-vector product. We believe this result may be of independent interest and describe it in
more detail here: The algorithm is given as input a matrix U ∈ [−1,+1]n×m and a vector w ∈ Rm where
‖w‖1 = 1. It then finds a vector w′ such that ‖Uw − Uw′‖∞ = O(lg(n/T)/T), ‖w′‖0 ≤ T and ‖w′‖1 = 1.
Here ‖x‖1 =

∑
i |xi|, ‖x‖∞ = maxi|xi| and ‖x‖0 denotes the number of non-zero entries of x. When we use

this result in SparsiBoost, we will define the matrix U as the “margin matrix” that has uij = yihj(xi). Then
(Uw)i = margin(xi) and the guarantee ‖Uw − Uw′‖∞ = O(lg(n/T)/T) will ensure that the margin of every
single point changes by at most O(lg(n/T)/T) if we replace the weights w by w′. Our algorithm for finding
w′ is based on a novel connection to the celebrated but seemingly unrelated “six standard devitations suffice”
result by [Spencer, 1985] from the field of combinatorial discrepancy minimization.

When used in SparsiBoost, the matrix U is defined from the output of AdaBoostV, but the vector
sparsification algorithm could just as well be applied to the hypotheses output by any boosting algorithm.
Thus our results give a general method for sparsifying a boosting classifier while approximately preserving
the margins of all points.

We complement our new upper bound with a matching lower bound. More concretely, we prove that there
exists data sets D of n points and a corresponding set of base hypotheses H, such that any linear combination
of T base hypotheses must have a gap of at least v = Ω(

√
lg(n/T)/T) for any lg n ≤ T ≤ a1n where a1 > 0

is a constant. Rewriting in terms of T , one must use T = Ω(lg(nv2)/v2) hypotheses from H to achieve a gap
of v. This holds for any v satisfying

√
a2/n < v ≤ a3 for constants a2, a3 > 0 (see Appendix A for details).

3

Interestingly, our lower bound proof also uses the discrepancy minimization upper bound by [Spencer, 1985]
in a highly non-trivial way. Our lower bound also shows that our vector sparsification algorithm is optimal
for any T ≤ n/C for some universal constant C > 0.

1.3 Doubts on Margin Theory and other Margin Bounds
The first margin bound on boosted classifiers was introduced by [Schapire et al., 1998]. Shortly after, [Breiman,
1999] introduced a sharper minimal margin bound alongside Arc-GV. Experimentally Breimann found that
Arc-GV produced better margins than AdaBoost on 98 percent of the training data, however, AdaBoost
still obtained a better test error. This seemed to contradict margin theory: according to margin theory,
better margins should imply better generalization. This caused Breimann to doubt margin theory. It was
later discovered by [Reyzin and Schapire, 2006] that the comparison was unfair due to a difference in the
complexity of the base hypotheses used by AdaBoost and Arc-GV. [Reyzin and Schapire, 2006] performed a
variant of Breimann’s experiments with decision stumps to control the hypotheses complexity. They found
that even though Arc-GV produced a better minimal margin, AdaBoost produced a larger margin on almost
all other points [Reyzin and Schapire, 2006] and that AdaBoost generalized better.

A few years later, [Wang et al., 2008] introduced a sharper margin bound than Breimann’s minimal
margin bound. The generalization bound depends on a term called the Equilibrium Margin, which itself
depends on the margin distribution in a highly non-trivial way. This was followed by the k-margin bound by
[Gao and Zhou, 2013] that provide generalization bounds based on the k’th smallest margin for any k. The
bound gets weaker with increasing k, but stronger with increasing margin. In essence, this means that we get
stronger generalization bounds if the margins are large for small values of k.

Recall from the discussion in Section 1.2 that our sparsification algorithm preserves all margins to within
O(
√

lg(n/T)/T) additive error. We combined this result with AdaBoostV to get our algorithm SparsiBoost
which obtained an optimal trade-off between minimal margin and number of hypotheses. While minimal
margin might be insufficient for predicting generalization performance, our sparsification algorithm actually
preserves the full distribution of margins. Thus according to margin theory, the sparsified classifier should
approximately preserve the generalization performance of the full unsparsified classifier. To demonstrate
this experimentally, we sparsified a classifier trained with LightGBM [Ke et al., 2017], a highly efficient
open-source implementation of Gradient Boosting [Mason et al., 2000, Friedman, 2001]. We compared the
margin distribution and the test error of the sparsified classifier against a LightGBM classifier trained directly
to have the same number of hypotheses. Our results (see Section 4) show that the sparsified classifier has a
better margin distribution and indeed generalize better than the standard LightGBM classifier.

2 SparsiBoost
In this section we introduce SparsiBoost. The algorithm takes the following inputs: training data D, a target
number of hypotheses T and a base learning algorithm A that returns hypotheses from a class H of possible
base hypotheses. SparsiBoost initially trains c · T hypotheses for some appropriate c, by running AdaBoostV
with the base learning algorithm A. It then removes the extra c · T − T hypotheses while attempting to
preserve the margins on all training examples.

In more detail, let h1, ..., hcT ∈ H be the hypotheses returned by AdaBoostV with weights w1, ..., wcT .
Construct a margin matrix U that contains the margin of every hypothesis hj on every point xi such that
uij = yihj(xi). Let w be the vector of hypothesis weights, meaning that the j’th coordinate of w has the
weight wj of hypothesis hj . Normalize w = w/‖w‖1 such that ‖w‖1 = 1. The product Uw is then a vector that
contains the margins of the final linear combination on all points: (Uw)i = yi

∑cT
j=1 wjhj(xi) = margin(xi).

Removing hypotheses while preserving the margins can be formulated as sparsifying w to w′ while minimizing
‖Uw − Uw′‖∞ subject to ‖w′‖0 ≤ T and ‖w′‖1 = 1.

See Algorithm 1 for pseudocode.
We still haven’t described how to find w′ with the guarantees shown in Algorithm 1 step 4., i.e. a w′ with
‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T)/T). It is not even clear that such w′ exists, much less so that it can be

4

Algorithm 1 SparsiBoost
Input: Training data D = {(xi, yi)}ni=1 where xi ∈ X for some input space X and yi ∈ {−1,+1}. Target
number of hypotheses T and base learning algorithm A.
Output: Hypotheses h1, . . . , hk and weights w1, . . . , wk with k ≤ T , such that

∑
i wihi has gap

O(
√

lg(2 + n/T)/T) on D.

1. Run AdaBoostV with base learning algorithm A on training data D to get cT hypotheses h1, . . . , hcT and
weights w1, . . . , wcT for the integer c = dlg(n)/ lg(2 + n/T)e.
2. Construct margin matrix U ∈ [−1,+1]n×cT where uij = yihj(xi).
3. Form the vector w with i’th coordinate wi and normalize w ← w/‖w‖1 so ‖w‖1 = 1.
4. Find w′ such that ‖w′‖0 ≤ T , ‖w′‖1 = 1 and ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T)/T).

5. Let π(j) denote the index of the j’th non-zero entry of w′.
6. Return hypotheses hπ(1), . . . , hπ(‖w′‖0) with weights w′π(1), . . . , w

′
π(‖w′‖0).

found efficiently. Before we dive into the details of how to find w′, we briefly demonstrate that indeed such a
w′ would be sufficient to establish our main theorem:

Theorem 2.1. SparsiBoost is guaranteed to find a linear combination w′ of at most T base hypotheses with
gap v = O(

√
lg(2 + n/T)/T).

Proof. We assume throughout the proof that a w′ with the guarantees claimed in Algorithm 1 can be found.
Suppose we run AdaBoostV to get cT base hypotheses h1, ..., hcT with weights w1, ..., wcT . Let ρcT be the
minimal margin of the linear combination

∑
i wihi on the training data D, and let ρ∗ be the optimal minimal

margin over all linear combinations of base hypotheses from H. As proved in [Rätsch and Warmuth, 2005],
AdaBoostV guarantees that the gap is bounded by ρ∗ − ρcT = O(

√
lg(n)/(cT)). Normalize w = w/‖w‖1 and

let U be the margin matrix uij = yihj(xi) as in Algorithm 1. Then ρcT = mini(Uw)i. From our assumption, we
can efficiently find w′ such that ‖w′‖1 = 1, ‖w′‖0 ≤ T and ‖Uw−Uw′‖∞ = O(

√
lg(2 + n/T)/T). Consider the

hypotheses that correspond to the non-zero entries of w′. There are at most T . Let ρT be their minimal margin
when using the corresponding weights from w′. Since w′ has unit `1-norm, it follows that ρT = mini(Uw

′)i
and thus |ρT − ρcT | ≤ maxi |(Uw)i − (Uw′)i|, i.e. |ρcT − ρT | ≤ ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T)/T). We

therefore have:

ρ∗ − ρT = (ρ∗ − ρcT) + (ρcT − ρT) ≤

O(
√

lg(n)/(cT)) +O(
√

lg(2 + n/T)/T).

By choosing c = lg(n)/ lg(2 + n/T) (as in Algorithm 1) we get that ρ∗ − ρT = O(
√

lg(2 + n/T)/T).

The core difficulty in our algorithm is thus finding an appropriate w′ (step 4 in Algorithm 1) and this is
the focus of the remainder of this section. Our algorithm for finding w′ gives a general method for sparsifying
a vector w while approximately preserving every coordinate of the matrix-vector product Uw for some input
matrix U . The guarantees we give are stated in the following theorem:

Theorem 2.2. (Sparsification Theorem) For all matrices U ∈ [−1,+1]n×m, all w ∈ Rm with ‖w‖1 = 1
and all T ≤ m, there exists a vector w′ where ‖w′‖1 = 1 and ‖w′‖0 ≤ T , such that ‖Uw − Uw′‖∞ =
O(
√

lg(2 + n/T)/T).

Theorem 2.2 is exactly what was needed in the proof of Theorem 2.1. Our proof of Theorem 2.2 will
be constructive in that it gives an algorithm for finding w′. To keep the proof simple, we will argue about
running time at the end of the section.

The first idea in our algorithm and proof of Theorem 2.2, is to reduce the problem to a simpler task,
where instead of reducing the number of hypotheses directly to T , we only halve the number of hypotheses:

5

Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and w ∈ Rm with ‖w‖1 = 1, there exists w′ where
‖w′‖0 ≤ ‖w‖0/2 and ‖w′‖1 = 1, such that ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/‖w‖0)/‖w‖0).

To prove Theorem 2.2 from Lemma 2.1, we can repeatedly apply Lemma 2.1 until we are left with a
vector with at most T non-zeroes. Since the loss O(

√
lg(2 + n/‖w‖0)/‖w‖0) has a

√
1/‖w‖0 factor, we can

use the triangle inequality to conclude that the total loss is a geometric sum that is asymptotically dominated
by the very last invocation of the halving procedure. Since the last invocation has ‖w‖0 > T (otherwise we
would have stopped earlier), we get a total loss of O(

√
lg(2 + n/T)/T) as desired. The formal proof can be

found in Section 2.1.
The key idea in implementing the halving procedure Lemma 2.1 is as follows: Let π(j) denote the index

of the j’th non-zero in w and let π−1(j) denote the index i such that wi is the j’th non-zero entry of w.
First we construct a matrix A where the j’th column of A is equal to the π(j)’th column of U scaled by
the weight wπ(j). The sum of the entries in the i’th row of A is then equal to the i’th entry of Uw (since∑
j aij =

∑
j wπ−1(j)uiπ−1(j) =

∑
j:wj 6=0 wjuij =

∑
j wjuij = (Uw)i). Minimizing ‖Uw − Uw′‖∞ can then

be done by finding a subset of columns of A that approximately preserves the row sums. This is formally
expressed in Lemma 2.2 below. For ease of notation we define a± [x] to be the interval [a− x, a+ x] an ±[x]
to be the interval [−x, x].

Lemma 2.2. For all matrices A ∈ [−1, 1]n×T there exists a submatrix Â ∈ [−1, 1]n×k consisting of k ≤ T/2
distinct columns from A, such that for all i, it holds that

∑k
j=1 âij ∈

1
2

∑T
j=1 aij ±

[
O(
√
T lg(2 + n/T))

]
.

Intuitively we can now use Lemma 2.2 to select a subset S of at most T/2 columns in A. We can then
replace the vector w with w′ such that w′i = 2wi if i = π−1(j) for some j ∈ S and w′i = 0 otherwise. In this
way, the i’th coordinate (Uw′)i equals the i’th row sum in Â, scaled by a factor two. By Lemma 2.2, this in
turn approximates the i’th row sum in A (and thus (Uw)i) up to additively O(

√
T lg(2 + n/T)).

Unfortunately our procedure is not quite that straightforward since O(
√
T lg(2 + n/T)) is way too large

compared to O(
√

lg(2 + n/‖w‖0)/‖w‖0) = O(
√

lg(2 + n/T)/T). Fortunately Lemma 2.2 only needs the
coordinates of A to be in [−1, 1]. We can thus scale A by 1/maxi |wi| and still satisfy the constraints. This
in turn means that the loss is scaled down by a factor maxi |wi|. However, maxi |wi| may be as large as 1
for highly unbalanced vectors. Therefore, we start by copying the largest T/3 entries of w to w′ and invoke
Lemma 2.2 twice on the remaining 2T/3 entries. This ensures that the O(

√
T lg(2 + n/T)) loss in Lemma 2.2

gets scaled by a factor at most 3/T (since ‖w‖1 = 1, all remaining coordinates are less than or equal to 3/T),
while leaving us with at most T/3 + (2T/3)/4 = T/3 + T/6 = T/2 non-zero entries as required. Since we
normalize by at most 3/T , the error becomes ‖Uw−Uw′‖∞ = O(

√
T lg(2 + n/T)/T) = O(

√
lg(2 + n/T)/T)

as desired. As a last technical detail, we also need to ensure that w′ satisfies ‖w′‖1 = 1. We do this by adding
an extra row to A such that a(n+1)j = wj . In this way, preserving the last row sum also (roughly) preserves
the `1-norm of w and we can safely normalize w′ as w′ ← w′/‖w‖1. The formal proof is given in Section 2.2.

The final step of our algorithm is thus to select a subset of at most half of the columns from a matrix
A ∈ [−1, 1]n×T , while approximately preserving all row sums. Our idea for doing so builds on the following
seminal result by Spencer:

Theorem 2.3. (Spencer’s Theorem [Spencer, 1985]) For all matrices A ∈ [−1,+1]n×T with T ≤ n, there
exists x ∈ {−1,+1}T such that ‖Ax‖∞ = O(

√
T ln(en/T)). For all matrices A ∈ [−1,+1]n×T with T > n,

there exists x ∈ {−1,+1}T such that ‖Ax‖∞ = O(
√
n).

We use Spencer’s Theorem as follows: We find a vector x ∈ {−1,+1}T with ‖Ax‖∞ = O(
√
T ln(en/T))

if T ≤ n and with ‖Ax‖∞ = O(
√
n) = O(

√
T) if T > n. Thus we always have ‖Ax‖∞ = O(

√
T lg(2 + n/T)).

Consider now the i’th row of A and notice that |
∑
j:xj=1 aij −

∑
j:xj=−1 aij | ≤ ‖Ax‖∞. That is, for every

single row, the sum of the entries corresponding to columns where x is 1, is almost equal (up to ±‖Ax‖∞) to
the sum over the columns where x is −1. Since the two together sum to the full row sum, it follows that the
subset of columns with xi = 1 and the subset of columns with xi = −1 both preserve the row sum as required
by Lemma 2.2. Since x has at most T/2 of either +1 or −1, it follows that we can find the desired subset of
columns. We give the formal proof of Lemma 2.2 using Spencer’s Theorem in Section 2.3

6

Algorithm 2 Sparsification
Input: Matrix U ∈ [−1, 1]n×m, vector w ∈ Rm with ‖w‖1 = 1 and target T ≤ m.
Output: A vector w′ ∈ Rm with ‖w′‖1 = 1, ‖w′‖0 ≤ T and ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T)/T).

1. Let w′ ← w.
2. While ‖w′‖0 > T :
3. Let R be the indices of the ‖w′‖0/3 entries in w′ with largest absolute value.
4. Let ω := maxi/∈R |wi| be the largest value of an entry outside R.
5. Do Twice:
6. Let π(1), π(2), . . . , ..., π(k) be the indices of the non-zero entries in w′ that are not in R.
7. Let A ∈ [−1, 1](n+1)×k have aij = uiπ(j)w

′
π(j)/ω for i ≤ n and a(n+1)j = |w′π(j)|/ω.

8. Invoke Spencer’s Theorem to find x ∈ {−1, 1}k such that ‖Ax‖∞ = O(
√
k lg(2 + n/k)).

9. Let σ ∈ {−1, 1} denote the sign such that xi = σ for at most k/2 indices i.
10. Update w′i as follows:
11. If there is a j such that i = π−1(j) and xj = σ: set w′i ← 2w′i.
12. If there is a j such that i = π−1(j) and xj 6= σ: set w′i ← 0.
13. Otherwise (i ∈ R or w′i = 0): set w′i ← w′i.
14. Update w′ ← w′/‖w′‖1.
15. Return w′.

We have summarized the entire sparsification algorithm in Algorithm 2.
We make a few remarks about our sparsification algorithm and SparsiBoost.

Running Time. While Spencer’s original result (Theorem 2.3) is purely existential, recent follow up work
[Lovett and Meka, 2015] show how to find the vector x ∈ {−1,+1}n in expected Õ((n+ T)3) time, where Õ
hides polylogarithmic factors. A small modification to the algorithm was suggested in [Larsen, 2017]. This
modification reduces the running time of Lovett and Meka’s algorithm to expected Õ(nT + T 3). This is far
more desirable as T tends to be much smaller than n in boosting. Moreover, the nT term is already paid by
simply running AdaBoostV. Using this in Step 7. of Algorithm 2, we get a total expected running time of
Õ(nT + T 3). We remark that these algorithms are randomized and lead to different vectors x on different
executions.

Non-Negativity. Examining Algorithm 2, we observe that the weights of the input vector are only ever
copied, set to zero, or scaled by a factor two. Hence if the input vector w has non-negative entries, then so
has the final output vector w′. This may be quite important if one interprets the linear combination over
hypotheses as a probability distribution.

Importance Sampling. Another natural approach one might attempt in order to prove our sparsification
result, Theorem 2.2, would be to apply importance sampling. Importance sampling samples T entries from
w with replacement, such that each entry i is sampled with probability |wi|. It then returns the vector
w′ where coordinate i is equal to sign(wi)ni/T where ni denotes the number of times i was sampled and
sign(wi) ∈ {−1, 1} gives the sign of wi. Analysing this method gives a w′ with ‖Uw−Uw′‖∞ = Θ(

√
lg(n)/T)

(with high probability), i.e. slightly worse than our approach based on discrepancy minimization. The loss in
the lg is enough that if we use importance sampling in SparsiBoost, then we get no improvement over simply
stopping AdaBoostV after T iterations.

7

2.1 Repeated Halving
As discussed earlier, our matrix-vector sparsification algorithm (Theorem 2.2 and Algorithm 2) was based
on repeatedly invoking Lemma 2.1, which halves the number of non-zero entries. In this section, we prove
formally that the errors resulting from these halving steps are dominated by the very last round of halving.
For convenience, we first restate the two results:

Restatement of Theorem 2.2. (Sparsification Theorem) For all matrices U ∈ [−1,+1]n×m, all w ∈ Rm
with ‖w‖1 = 1 and all T ≤ m, there exists a vector w′ where ‖w′‖1 = 1 and ‖w′‖0 ≤ T , such that
‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T)/T).

Restatement of Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and w ∈ Rm with ‖w‖1 = 1, there exists
w′ where ‖w′‖0 ≤ ‖w‖0/2 and ‖w′‖1 = 1, such that ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/‖w‖0)/‖w‖0).

We thus set out to prove Theorem 2.2 assuming Lemma 2.1.

Proof. Let us call the initial weight vector w(0) = w. We use Lemma 2.1 repeatedly and get w(1), w(2), ..., w(k) =
w′ such that ‖w′‖0 ≤ T as wanted and every w(i) has ‖w(i)‖1 = 1. Let Ti = ‖w(i)‖0 and notice this gives
a sequence of numbers T0, T1, ..., Tk where Ti ≤ Ti−1/2, Tk−1 > T and Tk ≤ T . In particular, it holds that
Tk−12k−i−1 ≤ Ti. The total difference ‖Uw(0) − Uw(k)‖∞ is then by the triangle inequality no more than∑k−1
i=0 ‖Uw(i) − Uw(i+1)‖∞. Each of these terms are bounded by Lemma 2.1 which gives us

O

(
k−1∑
i=0

√
lg(2 + n/Ti)/Ti

)
= O

(
k−1∑
i=0

√
lg(2 + n/Tk−1)/(Tk−12k−i−1)

)
=

O

(∞∑
i=0

√
lg(2 + n/Tk−1)/(Tk−12i)

)
= O

((√
lg(2 + n/Tk−1)/Tk−1

) ∞∑
i=0

1/
√

2i

)
=

O
(√

lg(2 + n/T)/T
)
.

The last step follows since Tk−1 > T . We have thus shown that the final vector w′ = w(k) has ‖w′‖0 ≤ T ,
‖w′‖1 = 1 and ‖Uw − Uw′‖∞ = ‖Uw(0) − Uw(k)‖∞ = O

(√
lg(2 + n/T)/T

)
. This completes the proof of

Theorem 2.2.

2.2 Halving via Row-Sum Preservation
In this section, we give the formal details of how to use our result on row-sum preservation to halve the
number of non-zeroes in a vector w. Let us recall the two results:

Restatement of Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and w ∈ Rm with ‖w‖1 = 1, there exists
w′ where ‖w′‖0 ≤ ‖w‖0/2 and ‖w′‖1 = 1, such that ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/‖w‖0)/‖w‖0).

Restatement of Lemma 2.2. For all matrices A ∈ [−1, 1]n×T there exists a submatrix Â ∈ [−1, 1]n×k

consisting of k ≤ T/2 distinct columns from A, such that for all i, it holds that
∑k
j=1 âij ∈

1
2

∑T
j=1 aij ±[

O(
√
T lg(2 + n/T))

]
.

We now use Lemma 2.2 to prove Lemma 2.1.

Proof. Our procedure corresponds to steps 2.-13. in Algorithm 2. To clarify the proof, we expand the steps a
bit and introduce some additional notation. Let w be the input vector and let R be the indices of the ‖w‖0/3
entries in w with largest absolute value. Define w̄ such that w̄i = wi if i ∈ R and w̄i = 0 otherwise, that is, w̄
contains the largest ‖w‖0/3 entries of w and is zero elsewhere. Similarly, define ŵ = w − w̄ as the vector
containing all but the largest ‖w‖0/3 entries of w.

8

We will use Lemma 2.2 twice in order to obtain a vector w′′ with ‖w′′‖0 ≤ ‖ŵ‖0/4, ‖w′′‖1 ∈ ‖ŵ‖1 ±
[O(
√

lg(2 + n/‖w‖0)/‖w‖0)] and ‖Uŵ − Uw′′‖∞ = O(
√

lg(2 + n/‖w‖0)/‖w‖0). Moreover, w′′ will only be
non-zero in entries where ŵ is also non-zero. We finally set w′ = (w̄+w′′)/‖w̄+w′′‖1 as our sparsified vector.

We first argue that if we can indeed produce the claimed w′′, then w′ satisfies the claims in Lemma 2.1:
Observe that ‖w′‖0 = ‖w̄‖0 + ‖w′′‖0 ≤ ‖w‖0/3 + (2‖w‖0/3)/4 ≤ ‖w‖0/2 as desired. Clearly we also have
‖w′‖1 = 1 because of the normalization. Now observe that:

‖Uw − Uw′‖∞ ≤ ‖Uw − U(w̄ + w′′)‖∞ + ‖U(w̄ + w′′)− Uw′‖∞
= ‖U(w̄ + ŵ)− U(w̄ + w′′)‖∞ + ‖U(w′‖w̄ + w′′‖1)− Uw′‖∞
= ‖Uŵ − Uw′′‖∞ + ‖Uw′(‖w̄ + w′′‖1 − 1)‖∞
= O(

√
lg(2 + n/‖w‖0)/‖w‖0) + ‖Uw′‖∞(‖w̄ + w′′‖1 − 1)

= O(
√

lg(2 + n/‖w‖0)/‖w‖0) + ‖Uw′‖∞(‖w̄‖1 + ‖w′′‖1 − 1).

In the last step, we used that w′′ has non-zeroes only where ŵ has non-zeroes (and thus the non-zeroes of w̄
and w′′ are disjoint). Since ‖w′‖1 = 1 and all entries of U are in [−1, 1], we get ‖Uw′‖∞ ≤ 1. We also see
that:

‖w̄‖1 + ‖w′′‖1 − 1 ∈ ‖w̄‖1 + ‖ŵ‖1 − 1± [O(
√

lg(2 + n/‖w‖0)/‖w‖0)]

= ‖w̄ + ŵ‖1 − 1± [O(
√

lg(2 + n/‖w‖0)/‖w‖0)]

= ‖w‖1 − 1± [O(
√

lg(2 + n/‖w‖0)/‖w‖0)]

= 0± [O(
√

lg(2 + n/‖w‖0)/‖w‖0)].

We have thus shown that
‖Uw − Uw′‖∞ = O(

√
lg(2 + n/‖w‖0)/‖w‖0)

as claimed. So what remains is to argue that we can find w′′ with the claimed properties. Finding w′′
corresponds to the Do Twice part of Algorithm 2 (steps 3.-12.). We first compute ω = maxi |ŵi| and let
w′′ = ŵ. We then execute the following twice:

1. Define π(1), . . . , π(`) as the list of all the indices i where w′′i 6= 0. Also define π−1(j) as the index i
such that i = π(j), i.e. π−1(j) is the index of the j’th non-zero coordinate of w′′.

2. Form the matrix A ∈ [−1, 1](n+1)×` where aij = uiπ(j)w
′′
π(j)/ω for i ≤ n and a(n+1)j = |w′′π(j)|/ω.

3. Invoke Lemma 2.2 to obtain a matrix Â consisting of no more than k ≤ `/2 distinct columns from A

where for all rows i, we have
∑k
j=1 âij ∈

1
2

∑`
j=1 aij ±

[
O(
√
T lg(2 + n/T))

]
.

4. Update w′′ as follows:

(a) We let w′′i ← 2w′′i if there is a j such that i = π−1(j) and j is a column in Â.

(b) Otherwise we let w′′i ← 0.

After the two executions, we get that the number of non-zeroes in w′′ is at most ‖ŵ‖0/4 as claimed. Step
4. above effectively scales every coordinate of w′′ that corresponds to a column that was included in
Â by a factor two. It sets coordinates not chosen by Â to 0. What remains is to argue that ‖Uŵ −
Uw′′‖∞ = O(

√
lg(2 + n/‖w‖0)/‖w‖0) and that ‖w′′‖1 ∈ ‖ŵ‖1 ± [O(

√
lg(2 + n/‖w‖0)/‖w‖0)]. For this, let

A ∈ [−1, 1](n+1)×T denote the matrix formed in step 2. during the first iteration. Then T = ‖ŵ‖0. Let
Ā ∈ [−1, 1](n+1)×k denote the matrix returned in step 3. of the first iteration. Similarly, let Â denote the

9

matrix formed in step 2. of the second iteration and let ˆ̂
A ∈ [−1, 1](n+1)×k′ denote the matrix returned in

step 3. of the second iteration. We see that Â = 2Ā. By Lemma 2.2, it holds for all rows i that:

2

k′∑
j=1

ˆ̂aij ∈
k∑
j=1

âij ±
[
O(
√
k lg(2 + n/k))

]

= 2

k∑
j=1

āij ±
[
O(
√
k lg(2 + n/k))

]

⊆

 T∑
j=1

aij ±
[
O(
√
k lg(2 + n/k))

]± [O(
√
T lg(2 + n/T))

]

⊆
T∑
j=1

aij ±
[
O(
√
T lg(2 + n/T))

]
.

But 2
∑k′

j=1
ˆ̂aij =

∑
j uijw

′′
j /ω = (Uw′′)i/ω and

∑T
j=1 aij =

∑
j uijŵj/ω = (Uŵ)i/ω. Hence:

(Uw′′)i/ω ∈ (Uŵ)i/ω ±
[
O(
√
T lg(2 + n/T))

]
⇒

(Uw′′)i ∈ (Uŵ)i ±
[
O(ω

√
T lg(2 + n/T))

]
which implies that ‖Uŵ − Uw′′‖∞ = O(ω

√
T lg(2 + n/T)). But T = ‖ŵ‖0 ≤ ‖w‖0 and ω = maxi |ŵ|i. Since

‖w‖1 = 1 and w̄ contained the largest ‖w‖0/3 entries, we must have ω ≤ 3/‖w‖0. Inserting this, we conclude
that

‖Uŵ − Uw′′‖∞ = O(
√
‖w‖0 lg(2 + n/‖w‖0)/‖w‖0) = O(

√
lg(2 + n/‖w‖0)/‖w‖0).

The last step is to prove that ‖w′′‖1 ∈ ‖ŵ‖1 ± [O(
√

lg(2 + n/‖w‖0)/‖w‖0)]. Here we focus on row (n+ 1) of
A and use that we showed above that 2

∑k′

j=1
ˆ̂a(n+1)j =

∑T
j=1 a(n+1)j ±

[
O(
√
T lg(2 + n/T))

]
. This time,

we have
∑T
j=1 a(n+1)j =

∑T
j=1 |ŵj |/ω = ‖ŵ‖1/ω and 2

∑k′

j=1
ˆ̂a(n+1)j =

∑
j |w′′j |/ω = ‖w′′‖1/ω. Therefore we

conclude that ‖w′′‖1 ∈ ‖ŵ‖1±
[
O(ω

√
T lg(2 + n/T))

]
⊆ ‖ŵ‖1± [O(

√
lg(2 + n/‖w‖0)/‖w‖0)] as claimed.

2.3 Finding a Column Subset
In this section we give the detailed proof of how to use Spencer’s theorem to select a subset of columns
in a matrix while approximately preserving its row sums. The two relevant lemmas are restated here for
convenience:

Restatement of Lemma 2.2. For all matrices A ∈ [−1, 1]n×T there exists a submatrix Â ∈ [−1, 1]n×k

consisting of k ≤ T/2 distinct columns from A, such that for all i, it holds that
∑k
j=1 âij ∈

1
2

∑T
j=1 aij ±[

O(
√
T lg(2 + n/T))

]
.

and

Restatement of Theorem 2.3. (Spencer’s Theorem [Spencer, 1985]) For all matrices A ∈ [−1,+1]n×T with
T ≤ n, there exists x ∈ {−1,+1}T such that ‖Ax‖∞ = O(

√
T ln(en/T)). For all matrices A ∈ [−1,+1]n×T

with T > n, there exists x ∈ {−1,+1}T such that ‖Ax‖∞ = O(
√
n).

We now prove Lemma 2.2 using Spencer’s Theorem:

10

Proof. Let A ∈ [−1, 1]n×T as in Lemma 2.2 and let ai denote the i’th row of A. By Spencer’s Theorem there
must exist x ∈ {−1,+1}T s.t. ‖Ax‖∞ = maxi |〈ai, x〉| = O(

√
T ln(en/T)) if T ≤ n and ‖Ax‖∞ = O(

√
n) =

O(
√
T) if T > n. This ensures that ‖Ax‖∞ = O(

√
T lg(2 + n/T)) Either the number of +1’s or −1’s in x

will be ≤ T
2 . Assume without loss of generality that the number of +1’s is k ≤ T

2 . Construct a matrix Â
with columns of A corresponding to the entries of x that are +1. Then Â ∈ [−1, 1]n×k for k ≤ T

2 as wanted.
It is then left to show that Â preserves the row sums. For all i, we have:

|〈ai, x〉| =

∣∣∣∣∣∣
T∑
j=1

aijxj

∣∣∣∣∣∣ = O(
√
T lg(2 + n/T)) ⇒

∑
j

aijxj ∈ ±
[
O(
√
T lg(2 + n/T))

]
⇒

∑
j:xj=+1

aij −
∑

j:xj=−1
aij ∈ ±

[
O(
√
T lg(n/T))

]
⇒

∑
j:xj=+1

aij ∈
∑

j:xj :−1
aij ±

[
O(
√
T lg(n/T))

]
.

Using this we can bound the i’th row sum of Â

k∑
j=1

âij =
∑

j:xj=+1

aij =
1

2

∑
j:xj=+1

aij +
1

2

∑
j:xj=+1

aij

∈ 1

2

∑
j:xj=+1

aij +
1

2

 ∑
j:xj=−1

aij ±
[
O(
√
T lg(2 + n/T))

]
=

1

2

∑
j

aij ±
[
O(
√
T lg(2 + n/T))

]
.

This concludes the proof.

3 Lower Bound
In this section, we prove our lower bound stating that there exist a data set and corresponding set of base
hypotheses H, such that if one uses only T of the base hypotheses in H, then one cannot obtain a gap
smaller than Ω(

√
lg(n/T)/T). Similarly to the approach taken in [Nie et al., 2013], we model a data set

D = {(xi, yi)}ni=1 of n data points and a corresponding set of k base hypotheses H = {h1, . . . , hk} as an n× k
matrix A. The entry ai,j is equal to yihj(xi). We prove our lower bound for binary classification where the
hypotheses take values only amongst {−1,+1}, meaning that A ∈ {−1,+1}n×k. Thus an entry ai,j is +1 if
hypothesis hj is correct on point xi and it is −1 otherwise. We remark that proving the lower bound under
the restriction that hj(xi) is among {−1,+1} instead of [−1,+1] only strengthens the lower bound.

Notice that if w ∈ Rk is a vector with ‖w‖1 = 1, then (Aw)i gives exactly the margin on data point
(xi, yi) when using the linear combination

∑
j wjhj of base hypotheses. The optimal minimum margin ρ∗ for

a matrix A is thus equal to ρ∗ := maxw∈Rk:‖w‖1=1 mini(Aw)i. We now seek a matrix A for which ρ∗ is at
least Ω(

√
lg(n/T)/T) larger than mini(Aw)i for all w with ‖w‖0 ≤ T and ‖w‖1 = 1. If we can find such a

matrix, it implies the existence of a data set (rows) and a set of base hypotheses (columns) for which any
linear combination of up to T base hypotheses has a gap of Ω(

√
lg(n/T)/T). The lower bound thus holds

regardless of how an algorithm would try to determine which linear combination to construct.
When showing the existence of a matrix A with a large gap, we will fix k = n, i.e. the set of base

hypotheses H has cardinality equal to the number of data points. The following theorem shows the existence
of the desired matrix A:

11

Theorem 3.1. There exists a universal constant C > 0 such that for all sufficiently large n and all T with
lnn ≤ T ≤ n/C, there exists a matrix A ∈ {−1,+1}n×n such that: 1) Let v ∈ Rn be the vector with all
coordinates equal to 1/n. Then all coordinates of Av are greater than or equal to −O(1/

√
n). 2) For every

vector w ∈ Rn with ‖w‖0 ≤ T and ‖w‖1 = 1, it holds that: mini(Aw)i ≤ −Ω
(√

lg(n/T)/T
)
.

Quite surprisingly, Theorem 3.1 shows that for any T with lnn ≤ T ≤ n/C, there is a matrix A ∈
{−1,+1}n×n for which the uniform combination of base hypotheses

∑n
j=1 hj/n has a minimum margin that

is much higher than anything that can be obtained using only T base hypotheses. More concretely, let A
be a matrix satisfying the properties of Theorem 3.1 and let v ∈ Rn be the vector with all coordinates 1/n.
Then ρ∗ := maxw∈Rk:‖w‖1=1 mini(Aw)i ≥ mini(Av)i = −O(1/

√
n). By the second property in Theorem 3.1,

it follows that any linear combination of at most T base hypotheses must have a gap of −O(1/
√
n) −(

−Ω
(√

lg(n/T)/T
))

= Ω
(√

lg(n/T)/T
)
. This is precisely the claimed lower bound and also shows that

our vector sparsification algorithm from Theorem 2.2 is optimal for any T ≤ n/C. To prove Theorem 3.1, we
first show the existence of a matrix B ∈ {−1,+1}n×n having the second property. We then apply Spencer’s
Theorem (Theorem 2.3) to “transform” B into a matrix A having both properties. We find it quite surprising
that Spencer’s discrepancy minimization result finds applications in both our upper and lower bound.

That a matrix satisfying the second property in Theorem 3.1 exists is expressed in the following lemma:

Lemma 3.1. There exists a universal constant C > 0 such that for all sufficiently large n and all T with
lnn ≤ T ≤ n/C, there exists a matrix A ∈ {−1,+1}n×n such that for every vector w ∈ Rn with ‖w‖0 ≤ T

and ‖w‖1 = 1 it holds that: mini(Aw)i ≤ −Ω
(√

ln(n/T)/T
)
.

We prove Lemma 3.1 in later subsection and move on to show how we use it in combination with Spencer’s
Theorem to prove Theorem 3.1:

Proof. Let B be a matrix satisfying the statement in Lemma 3.1. Using Spencer’s Theorem (Theorem 2.3),
we get that there exists a vector x ∈ {−1,+1}n such that ‖Bx‖∞ = O(

√
n ln(en/n)) = O(

√
n). Now

form the matrix A which is equal to B, except that the i’th column is scaled by xi. Then A1 = Bx
where 1 is the all-ones vectors. Normalizing the all-ones vector by a factor 1/n yields the vector v with all
coordinates equal to 1/n. Moreover, it holds that ‖Av‖∞ = ‖Bx‖∞/n = O(1/

√
n), which in turn implies

that mini(Av)i ≥ −O(1/
√
n).

Now consider any vector w ∈ Rn with ‖w‖0 ≤ T and ‖w‖1 = 1. Let w̃ be the vector obtained from w by
multiplying wi by xi. Then Aw = Bw̃. Furthermore ‖w̃‖1 = ‖w‖1 = 1 and ‖w̃‖0 = ‖w‖0 ≤ T . It follows
from Lemma 3.1 and our choice of B that mini(Aw)i = mini(Bw̃)i ≤ −Ω

(√
ln(n/T)/T

)
.

The proof of Lemma 3.1 is deferred to the following subsections, here we sketch the ideas. At a high level,
our proof goes as follows: First argue that for a fixed vector w ∈ Rn with ‖w‖0 ≤ T and ‖w‖1 = 1 and a
random matrix A ∈ {−1,+1}n×n with each coordinate chosen uniformly and independently, it holds with
very high probability that Aw has many coordinates that are less than −a1(

√
ln(n/T)/T) for a constant

a1. Now intuitively we would like to union bound over all possible vectors w and argue that with non-zero
probability, all of them satisfies this simulatenously. This is not directly possible as there are infinitely many
w. Instead, we create a net W consisting of a collection of carefully chosen vectors. The net will have the
property that any w with ‖w‖1 = 1 and ‖w‖0 ≤ T will be close to a vector w̃ ∈W . Since the net is not too
large, we can union bound over all vectors in W and find a matrix A with the above property for all vectors
in W simultaneously.

For an arbitrary vector w with ‖w‖1 = 1 and ‖w‖0 ≤ T , we can then write Aw = Aw̃ +A(w − w̃) where
w̃ ∈W is close to w. Since w̃ ∈W we get that Aw̃ has many coordinates that are less than −a1(

√
ln(n/T)/T).

The problem is that A(w − w̃) might cancel out these negative coordinates. However, w − w̃ is a very short
vector so this seems unlikely. To prove it formally, we further show that for every vector v ∈W , there are also
few coordinates in Av that are greater than a2(

√
ln(n/T)/T) in absolute value for some constant a2 > a1.

We can then round (w− w̃)/‖w− w̃‖1 to a vector in the net, apply this reasoning and recurse on the difference
between (w − w̃)/‖w − w̃‖1 and the net vector. We give the full details in the following subsections.

12

3.1 Preliminaries
In the following, we will introduce a few tail bounds that will be necessary in our proof of Lemma 3.1.

Definition 1. For a vector w ∈ Rn, define F (w, t) as follows: Let ij be the index such that wij is the j’th
largest coordinate of w in terms of absolute value. Then:

F (w, t) :=

bt2c∑
j=1

|wij |+ t

 n∑
j=bt2c+1

w2
ij

1/2
 .

We need the following tail upper and lower bounds for the distribution of 〈a, x〉 where a ∈ Rn and
x ∈ {−1,+1}n has uniform random and independent Rademacher coordinates:

Theorem 3.2 ([Montgomery-Smith, 1990]). There exists universal constants c1, c2, c3 > 0 such that the
following holds: For any vector w ∈ Rn, if x ∈ {−1,+1}n has uniform random and independent Rademacher
coordinates, then:

∀t > 0 : Pr [〈w, x〉 > c1F (w, t)] ≤ e−t
2/2

and
∀t > 0 : Pr [〈w, x〉 > c2F (w, t)] ≥ c−13 e−c3t

2

.

Lemma 3.2. For any vector w ∈ Rn, integer t > 0 and any a ≥ 1, it holds that:

F (w, at) ≤ a2F (w, t)

Proof. By definition, we see that:

F (w, at) =

ba2t2c∑
j=1

|wij |+ at

 n∑
j=ba2t2c+1

w2
ij

1/2

≤

a2 bt2c∑
j=1

|wij |+ a2t

 n∑
j=ba2t2c+1

w2
ij

1/2

≤

a2 bt2c∑
j=1

|wij |+ a2t

 n∑
j=bt2c+1

w2
ij

1/2

= a2F (w, t).

Corollary 3.1. There exists a universal constant c4 > 0 such that the following holds: Let A be a k × n
matrix with entries independent and uniform random amongst {−1,+1}. For any vector w ∈ Rn and any
integer t ≥ 4, we have:

Pr [‖Aw‖1 > c4kF (w, t)] ≤ e−t
2k/4.

Proof. Let t ≥ 4 be integer. For each way of choosing k non-negative integers z1, . . . , zk such that
∑
i zi = k,

define an event Ez1,...,zk that happens when:

∀h : |(Aw)h| ≥ c1zhF (w, t).

13

We wish to bound Pr[Ez1,...,zk]. Using Lemma 3.2 we get:

|(Aw)h| ≥ c1zhF (w, t) ⇒
|(Aw)h| ≥ c1F (w,

√
zht),

whenever zh ≥ 1. Using that the distribution of (Aw)h is symmetric around 0, we get from Theorem 3.2 that

Pr[Ez1,...,zk] ≤
k∏
h=1

2e−(
√
zht)

2/2 = 2ke−kt
2/2.

Let c4 = 2c1 where c1 is the constant from Theorem 3.2. If

‖Aw‖1 > c4kF (w, t)

then at least one of the events Ez1,...,zk must happen. Since there are
(
k+k−1
k

)
≤ 22k such events, we conclude

from a union bound that for integer t ≥ 4, we have

Pr [‖Aw‖1 > c4kF (w, t)] ≤ 23ke−kt
2/2 < e−k(t

2/2−3) ≤ e−k(t
2/2−t2/4) = e−kt

2/4.

We will also need the Chernoff bound:

Theorem 3.3 (Chernoff Bound). Let X1, . . . , Xn be independent {0, 1}-random variables and let X =
∑
iXi.

Then for any 0 < δ < 1:
Pr[X ≤ (1− δ)E[X]] ≤ e−δ

2E[X]/2

3.2 The Net Argument
We are ready to prove Lemma 3.1. As highlighted above, our proof will use a net argument. What we wanted
to construct, was a collection of vectors W , such that any vector w with ‖w‖0 ≤ T and ‖w‖1 = 1 was close to
some vector in W , and moreover, for a random matrix A ∈ {−1,+1}n×n, there is a non-zero probability that
every vector w ∈W satisfies that there are many coordinates in Aw that are less than −a1(

√
lg(n/T)/T),

but few that are greater than a2(
√

lg(n/T)/T) in absolute value for some constants a1 < a2. We formulate
this property in the following definition:

Definition 2. Let A ∈ Rn×n be an n× n real matrix and let w ∈ Rn. We say that A is (t, b, T)-typical for
w if the following two holds:

• |{i : (Aw)i < −c2F (w, t)}| ≥ ln
(
n
T

)
, where c2 is the constant from Theorem 3.2.

• For all sets of k = ln
(
n
T

)
rows of A, it holds that the corresponding k × n submatrix Ā satisfies

‖Āw‖1 < bkF (w, t).

Observe that the second property in the definition says that there cannot be too many very large
coordinates in Aw. The following lemma shows that for a fixed vector w ∈ Rn and a random matrix A, there
is a very high probability that A is typical for w:

Lemma 3.3. There exists universal constants b1, b2 > 0 such that the following holds for all n sufficiently
large: Let A be a random n × n matrix with each entry chosen independently and uniformly at random
amongst {−1,+1}. Define

τ(T) :=

√√√√c−13 ln

(
n

12c3 ln
(
n
T

))

14

where c3 is the constant from Theorem 3.2. Then the following holds for all T ≤ n/b1: If w ∈ Rn with
‖w‖0 ≤ T , then:

Pr [A is (τ(m), b2, T)-typical for w] ≥ 1−
(
n

T

)−3
.

Furthermore, it holds that τ(T) = Ω(
√

ln(n/T)).

Proof. Let ai be the i’th row of A. Using that the distribution of 〈a,w〉 is symmetric around 0, Theorem 3.2
gives us:

∀t > 0 : Pr [〈w, x〉 < −c2F (w, t)] ≥ c−13 e−c3t
2

Defining

τ(T) :=

√√√√c−13 ln

(
n

12c3 ln
(
n
T

))

gives

Pr [〈w, x〉 < −c2F (w, τ(T))] ≥ c−13 e−c3τ(T)2 ≥
12 ln

(
n
T

)
n

.

Now define Xi to take the value 1 if 〈w, x〉 < −c2F (w, τ(T)) and 0 otherwise. Let X =
∑
iXi. Then

E[X] ≥ 12 ln
(
n
T

)
. It follows from the Chernoff bound (Theorem 3.3) that

Pr

[
X ≤ ln

(
n

T

)]
≤ e−(11/12)

26 ln (n
T) =

(
n

T

)−112/24
<

(
n

T

)−5
<

(
n
T

)−3
2

.

Thus the first requirement for being (τ(T), b2, T)-typical is satisfied with probability at least

1−
(
n
T

)−3
2

.

Our next step is to show the same for the second property. To do this, we will be using Corollary 3.1, which
requires t ≥ 4. If we restrict T ≤ n/b1 for a big enough constant b1 > 0, this is indeed the case for our choice
of τ(T) (since we can make ln

(
n
T

)
≤ n/b′ for any desirable constant b′ > 0 by setting b1 to a large enough

constant). Thus from here on, we fix b1 to a constant large enough that τ(T) ≥ 4 whenever T ≤ n/b1.
Now fix a set of k = ln

(
n
T

)
rows of A and let Ā denote the corresponding k × n submatrix. Corollary 3.1

gives us that Pr[‖Āw‖1 > c4kF (w,ατ(T))] ≤ e−α2τ(T)2k/4 =
(
n
T

)−α2τ(T)2/4 for any constant α ≥ 1. If we set
α to a large enough constant, we get that α2τ(T)2/4 ≥ 5 ln(en/k). Thus Pr[‖Āw‖1 > c4kF (w,ατ(T))] ≤
e−5k ln(en/k). There are

(
n
k

)
≤ ek ln(en/k) sets of k rows in A, thus by a union bound, we get that with

probability at least 1 − e−4k ln(en/k) ≥ 1 −
(
n
T

)−3
/2, it simultanously holds that ‖Āw‖1 ≤ c4kF (w,ατ(T))

for all k × n submatrices Ā of A. From Lemma 3.2, this implies ‖Āw‖1 ≤ c4α2kF (w, τ(T)). Another union
bound shows that A is (τ(T), b2, T)-typical for w with probability at least 1−

(
n
T

)−3 if we set b2 = c4α
2.

What remains is to show that τ(T) = Ω(
√

ln(n/T)). We see that:
√√√√c−13 ln

(
n

12c3 ln
(
n
T

))
 ≥

⌊√
c−13 ln

(
n

12c3T ln(en/T)

)⌋

If b1 is a large enough constant (i.e. T small enough compared to n), then ln(en/T) ≤ 2 ln(n/T). Thus for
large enough b1:

τ(T) ≥
⌊√

c−13 (ln(n/T)− ln ln(n/T)− ln(24c3))

⌋
the terms ln(ln(n/T)) and ln(24c3) are at most small constant factors of ln(n/T) and the claim follows for b1
big enough.

15

We are ready to define the net W which we will union bound over and show that a random matrix
is typical for all vectors in W simultanously with non-zero probability. Let b1, b2 be the constants from
Lemma 3.3 and let T ≤ n/b1b23 with b3 > b2 a large constant. Construct a collection W of vectors in Rn as
follows: For every choice of m distinct coordinates i1, . . . , iT ∈ [n], and every choice of T integers z1, . . . , zT
with

∑
j |zj | ≤ (b3 + 1)T , add the vector w with coordinates wij = zj/(b3T) for j = 1, . . . , T and wh = 0 for

h /∈ {i1, . . . , iT } to W . We have

|W | ≤
(
n

T

)
2T

(b3+1)T∑
i=0

(
T + i− 1

T

)
.

To see this, observe that
(
n
T

)
counts the number of ways to choose i1, . . . , iT , 2T counts the number of ways

of choosing the signs of the zj ’s and
(
T+i−1
T

)
counts the number of ways to choose T non-negative integers

summing to i.
If b3 is large enough, then (b3 + 1)T ≤ (b3 + 1)n/(b1b

2
3) is much smaller than n and hence |W | <

(
n
T

)3.
Since T < n/b1, we can use Lemma 3.3 and a union bound over all w ∈W to conclude that there exists an
n× n matrix A with coordinates amongst {−1,+1}, such that A is (τ(T), b2, T)-typical for all w ∈W with
τ(T) = Ω(

√
ln(n/T)). We claim that this implies the following:

Lemma 3.4. Let A ∈ {−1,+1}n×n be (τ(T), b2, T)-typical for all w ∈W . If lnn ≤ T , then for any vector
x with ‖x‖0 ≤ T and ‖x‖1 = 1, there exists an index i such that

(Ax)i ≤ −Ω

(√
ln(n/T)

T

)
.

Proof. Let x be as in the lemma, i.e. ‖x‖0 ≤ T and ‖x‖1 = 1. To prove the lemma, we will “round” the
arbitrary vector x to a close-by vector in W , allowing us to use that A is typical for all vectors in W .

For a vector x with ‖x‖0 ≤ T and ‖x‖1 = 1, let f(x) ∈W be the vector in W obtained by rounding each
coordinate of x up (in absolute value) to the nearest multiple of 1/(b3T). The vector f(x) is in W since∑
i |f(x)i| · (b3T) ≤ (b3T)(1 + T/b3T) ≤ b3T + T = (b3 + 1)T and that each coordinate is an integer multiple

of 1/(b3T).
Notice that the vector x̃ = x− f(x) has at most T non-zero coordinates, all between 0 and 1/(b3T) in

absolute value. Now observe that:

Ax = A(f(x) + x̃)

= Af(x) +Ax̃.

Since f(x) ∈W , we have that A is (τ(T), b2, T)-typical for f(x). Hence there exists at least ln
(
n
T

)
coordinates

of Af(x) such that (Af(x))i < −c2F (f(x), τ(T)). If we let ij denote the index of the j’th largest coordinate
of f(x) in terms of absolute value, then we have:

F (f(x), τ(T)) =

bτ(T)2c∑
j=1

|f(x)ij |+ τ(T)

 n∑
j=bτ(T)2c+1

f(x)2ij

1/2
 .

By construction, we have that ‖f(x)‖1 ≥ ‖x‖1 = 1 (f rounds coordinates up in absolute value). This
means that either

∑bτ(T)2c
j=1 |f(x)ij | ≥ 1/2 or

∑n
j=bτ(T)2c+1 |f(x)ij | ≥ 1/2. In the first case, we have

F (f(x), τ(T)) ≥ 1/2. In the latter case, we use Cauchy-Schwartz to conclude that n∑
j=bτ(T)2c+1

f(x)2ij

1/2

≥ (1/2)/‖f(x)‖1/20 ≥ 1/(2
√
T).

16

To see how this follows from Cauchy-Schwartz, define f(x) as the vector having the same coordinates as f(x)
for indices ij with j ≥ bτ(T)2c+ 1 and 0 elsewhere. Define y as the vector with a 1 in all coordinates i where
f(x)i 6= 0 and 0 elsewhere. Then by Cauchy-Schwartz

1/2 ≤
∑
i

|yif(x)i| ≤
√
‖f(x)‖2‖y‖2 ≤

√
‖f(x)‖2‖f(x)‖0.

Hence we must have
F (f(x), τ(T)) ≥ min

{
1/2,

τ(T)√
T

}
.

Therefore, we have at least ln
(
n
T

)
coordinates i of Af(x) with

(Af(x))i ≤ −c2 min

{
1/2,

τ(T)√
T

}
,

where c2 is the constant from Theorem 3.2.
We let T denote an arbitrary subset of ln

(
n
T

)
such indices. What remains is to show that Ax̃ cannot

cancel out these very negative coordinates. To prove this, we will write x̃ as a sum ‖x̃‖1 ·
∑∞
j=0 αj x̃

(j) with
each x̃(j) ∈W . The idea is to repeatedly apply the function f to find a vector in W that is close to x̃. We
then append that to the sum and recurse on the “rounding error” x̃− f(x̃). To do this more formally, define

x̂(0) := x̃/‖x̃‖1
x̃(0) := f(x̂(0))

α0 := 1

and for j > 0, define

x̂(j) := x̂(j−1) − αj−1x̃(j−1)

x̃(j) := f(x̂(j)/‖x̂(j)‖1)

αj := ‖x̂(j)‖1.

We would like to show that x̃ = ‖x̃‖1 ·
∑∞
j=0 αj x̃

(j). The first step in proving this, is to bound αj and x̂(j) as
j tends to infinity. We see that: αj = ‖x̂(j)‖1. For j 6= 0, we therefore get:

αj = ‖x̂(j−1) − αj−1x̃(j−1)‖1
= ‖x̂(j−1) − αj−1f(x̂(j−1)/αj−1)‖1
= αj−1‖x̂(j−1)/αj−1 − f(x̂(j−1)/αj−1)‖1
≤ αj−1T (1/b3T)

= αj−1/b3.

This implies that limj→∞ αj = 0. Since αj = ‖x̂(j)‖1, this also implies that limj→∞ x̂(j) = 0. We can now

17

conclude that:

‖x̃‖1 ·
∞∑
j=0

αj x̃
(j) =

‖x̃‖1 ·

f(x̂(0)) +

∞∑
j=1

αj

(
x̂(j) − x̂(j+1)

αj

) =

‖x̃‖1 ·

f(x̂(0)) +

∞∑
j=1

x̂(j) − x̂(j+1)

 =

‖x̃‖1 ·
(
f(x̂(0)) +

(
x̂(1) − lim

j→∞
x̂(j)

))
=

‖x̃‖1 ·
(
f(x̂(0)) +

(
x̂(0) − x̃(0)

))
=

‖x̃‖1 ·
(
f(x̂(0)) +

(
x̂(0) − f(x̂(0))

))
=

x̃.

Thus we have that Ax̃ = A
(
‖x̃‖1

∑∞
j=0 αj x̃

(j)
)
. Now let Ā be the ln

(
n
T

)
×n submatrix of A corresponding to

the rows in the set T . We wish to bound ‖Āx̃‖1. Using the triangle inequality and that A is (τ(T), b2, T)-typical
for all vectors in W , we get:

‖Āx̃‖1 ≤ ‖x̃‖1
∞∑
j=0

αj‖Āx̃(j)‖1 ≤ ‖x̃‖1 ln

(
n

T

)
b2

∞∑
j=0

αjF (x̃(j), τ(T)).

We want to argue that F (x̃(j), τ(T)) is small. For this, we will bound the magnitude of coordinates in x̃(j).
We start with j 6= 0, in which case we have x̃(j) = f(x̂(j)/‖x̂(j)‖1). By definition of f , this means that
‖x̃(j)‖∞ ≤ ‖x̂(j)/‖x̂(j)‖1‖∞ + 1/b3T . Using that

x̂(j) = x̂(j−1) − αj−1x̃(j−1)

= x̂(j−1) − αj−1f(x̂(j−1)/‖x̂(j−1)‖1)

= x̂(j−1) − ‖x̂(j−1)‖1f(x̂(j−1)/‖x̂(j−1)‖1)

= ‖x̂(j−1)‖1
(
x̂(j−1)/‖x̂(j−1)‖1 − f(x̂(j−1)/‖x̂(j−1)‖1)

)
,

we get by definition of f that
(
x̂(j−1)/‖x̂(j−1)‖1 − f(x̂(j−1)/‖x̂(j−1)‖1)

)
has at most T non-zero coordinates,

all between 0 and 1/b3T in absolute value. We have thus shown that

‖x̃(j)‖∞ ≤ ‖x̂(j)/‖x̂(j)‖1‖∞ + 1/b3T ≤
(

1 +
‖x̂(j−1)‖1
‖x̂(j)‖1

)
· 1

b3T
=

(
1 +

αj−1
αj

)
· 1

b3T
.

We therefore have for j 6= 0 that:

F (x̃(j), τ(m)) ≤bτ(T)2c∑
j=1

(
1 +

αj−1
αj

)
· 1

b3T
+ τ(T)

 T∑
j=bτ(T)2c+1

((
1 +

αj−1
αj

)
· 1

b3T

)2
1/2

 ≤

τ(T)2
(

1 +
αj−1
αj

)
· 1

b3T
+ τ(T)

√
T

(
1 +

αj−1
αj

)
· 1

b3T
=

τ(T)2
(

1 +
αj−1
αj

)
· 1

b3T
+ τ(T)

(
1 +

αj−1
αj

)
· 1

b3
√
T
.

18

For j = 0, we see that

‖x̃(0)‖∞ = ‖f(x̂(0)‖∞ ≤ ‖x̃/‖x̃‖1‖∞ + 1/b3T = ‖x̃‖∞/‖x̃‖1 + 1/b3T.

But x̃ was the difference between x and f(x) and therefore ‖x̃‖∞ ≤ 1/b3T and we get:

‖x̃(0)‖∞ ≤
(

1 +
1

‖x̃‖1

)
/b3T.

We then have:

F (x̃(0), τ(T)) ≤ τ(T)2
(

1 +
1

‖x̃‖1

)
· 1

b3T
+ τ(T)

(
1 +

1

‖x̃‖1

)
· 1

b3
√
T
,

which allows us to conclude:

‖Āx̃‖1 ≤ ‖x̃‖1 ln

(
n

T

)
b2

∞∑
j=0

αjF (x̃(j), τ(T))

= ‖x̃‖1 ln

(
n

T

)
b2 ·

(
τ(T)2

b3T
+

τ(T)

b3
√
T

)
·

(1 +
1

‖x̃‖1

)
+
∞∑
j=1

(αj−1 + αj)

= ‖x̃‖1 ln

(
n

T

)
b2 ·

(
τ(T)2

b3T
+

τ(T)

b3
√
T

)
·

 1

‖x̃‖1
+ 2 ·

∞∑
j=0

αj

 .

Recalling that αj ≤ αj−1/b3, we can write:
∑∞
j=0 αj ≤

∑∞
j=0(1/b3)j ≤ 2 for b3 ≥ 2. Using that x̃ has at

most T non-zero coordinates, all of absolute value at most 1/b3T , we also have ‖x̃‖1 ≤ 1/b3. Therefore we
conclude:

‖Āx̃‖1 ≤ ln

(
n

T

)
b2

(
τ(T)2

b3T
+

τ(T)

b3
√
T

)
· (1 + 4/b3) .

Hence there must be one of the coordinates i where

|(Āx̃)i| ≤
b2
b3

(
τ(T)2

T
+
τ(T)√
T

)
· (1 + 4/b3) .

But all ln
(
n
T

)
coordinates of Āf(x) were less than

−c2 min

{
1/2,

τ(T)√
T

}
thus for b3 a large enough constant and τ(T) ≤

√
T , there must be a coordinate i where

(Ax)i ≤ −Ω

(
min

{
1,

√
ln(n/T)

T

})
.

Under the assumption that τ(T) ≤
√
T ⇔ ln(n/T) ≤ T ⇐ lnn ≤ T , this simplifies to:

(Ax)i ≤ −Ω

(√
ln(n/T)

T

)
.

We have argued that the random matrix A was typical for all vectors in W simultanously with non-zero
probability. Combining this with Lemma 3.4 finally concludes the proof of Lemma 3.1. g

19

0.04 0.02 0.00 0.02 0.04
Margin

0

50

100

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y
LightGBM T=500
LightGBM T'=80
Sparsified from 500 to 80

Figure 1: The plot depicts the cumulative margins of three classifiers: (1) a LightGBM classifier with
500 hypotheses (2) a classifier sparsified from 500 to 80 hypotheses and (3) a LightGBM classifier with 80
hypotheses.

4 Experiments
Gradient Boosting [Mason et al., 2000, Friedman, 2001] is probably the most popular boosting algorithm in
practice. It has several highly efficient open-source implementations [Chen and Guestrin, 2016, Ke et al.,
2017, Prokhorenkova et al., 2018] and obtain state-of-the-art performance in many machine learning tasks
[Ke et al., 2017]. In this section we demonstrate how our sparsification algorithm can be combined with
Gradient Boosting. For simplicity we consider a single dataset in this section, the Flight Delay dataset [air,],
see Appendix B for similar results on other dataset.

We train a classifier with T = 500 hypotheses using LightGBM [Ke et al., 2017] which we sparsify using
Theorem 2.2 to have T ′ = 80 hypotheses. The sparsified classifier is guaranteed to preserve all margins of
the original classifier to an additive O(

√
lg(n/T ′)/T ′). The cumulative margins of the sparsified classifier

and the original classifier are depicted in Figure 1. Furthermore, we also depict the cumulative margins of a
LightGBM classifier trained to have T ′ = 80 hypotheses. First observe the difference between the LightGBM
classifiers with T = 500 and T ′ = 80 hypotheses (blue and orange in Figure 1). The margins of the classifier
with T = 500 hypotheses vary less. It has fewer points with a large margin, but also fewer points with a small
margin. The margin distribution of the sparsified classifier with T ′ = 80 approximates the margin distribution
of the LightGBM classifier with T = 500 hypotheses. Inspired by margin theory one might suspect this
leads to better generalization. To investigate this, we performed additional experiments computing AUC and
classification accuracy of several sparsified classifiers and LightGBM classifiers on a test set (we show the
results for multiple sparsified classifiers due to the randomization in the discrepancy minimization algorithms).
The experiments indeed show that the sparsified classifiers outperform the LightGBM classifiers with the
same number of hypotheses. See Figure 2 for test AUC and test classification accuracy.

Further Experiments and Importance Sampling. Inspired by the experiments in [Wang et al., 2008, Ke
et al., 2017, Chen and Guestrin, 2016] we also performed the above experiments on the Higgs [Whiteson,
2014] and Letter [Dheeru and Karra Taniskidou, 2017] datasets. See Appendix B for (1) further experimental
details and (2) for cumulative margin, AUC and test accuracy plots on all dataset for different values of n
and T .

As mentioned in Section 2, one could use importance sampling for sparsification. It has a slightly worse
theoretical guarantee, but might work better in practice. Appendix B also contains test AUC and test
accuracy of the classifiers that result from using importance sampling instead of our algorithm based on
discrepancy minimization. Our algorithm and importance sampling are both random so the experiments
were repeated several times. On average over the experiments, our algorithm obtains a better test AUC and
classification accuracy than importance sampling.

20

12.5 25 50 100 200 400
Hypotheses

0.81

0.82

0.83

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

LightGBM
Sparsified

12.5 25 50 100 200 400
Hypotheses

0.70

0.75

AU
C

LightGBM
Sparsified

Figure 2: The plot depicts test AUC and test classification accuracy of a LightGBM classifier during training
as the number of hypotheses increase (in blue). Notice the x-axis is logarithmically scaled. The final classifier
with 500 hypotheses was sparsified with Theorem 2.2 multiple times to have between T/2 to T/16 hypotheses.
The green triangles show test AUC and test accuracy of the resulting sparsified classifiers. The red cross
represents the sparsified classifier used to plot the cumulative margins in Figure 1.

A Python/NumPy implementation of our sparsification algorithm (Theorem 2.2) can be found at:

https://github.com/AlgoAU/DiscMin

5 Conclusion
A long line of research into obtaining a large minimal margin using few hypotheses [Breiman, 1999, Grove and
Schuurmans, 1998, Bennett et al., 2000, Rätsch and Warmuth, 2002] culminated with the AdaBoostV [Rätsch
and Warmuth, 2005] algorithm. AdaBoostV was later conjectured by [Nie et al., 2013] to provide an optimal
trade-off between minimal margin and number of hypotheses. In this article, we introduced SparsiBoost
which refutes the conjecture of [Nie et al., 2013]. Furthermore, we show a matching lower bound, which
implies that SparsiBoost is optimal.

The key idea behind SparsiBoost, is a sparsification algorithm that reduces the number of hypotheses
while approximately preserving the entire margin distribution. Experimentally, we combine our sparsification
algorithm with LightGBM. We find that the sparsified classifiers obtains a better margin distribution, which
typically yields a better test AUC and test classification error when compared to a classifier trained directly
to the same number of hypotheses.

References
[air,] Flight delay data. https://github.com/szilard/benchm-ml#data.

[Bennett et al., 2000] Bennett, K. P., Demiriz, A., and Shawe-Taylor, J. (2000). A column generation
algorithm for boosting. In ICML, pages 65–72.

[Breiman, 1999] Breiman, L. (1999). Prediction games and arcing algorithms. Neural computation, 11(7):1493–
1517.

[Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785–794. ACM.

[Dheeru and Karra Taniskidou, 2017] Dheeru, D. and Karra Taniskidou, E. (2017). UCI machine learning
repository. http://archive.ics.uci.edu/ml.

[Freund et al., 1999] Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612.

21

https://github.com/AlgoAU/DiscMin
https://github.com/szilard/benchm-ml#data
http://archive.ics.uci.edu/ml

[Freund and Schapire, 1995] Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of
on-line learning and an application to boosting. In European conference on computational learning theory,
pages 23–37. Springer.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232.

[Gao and Zhou, 2013] Gao, W. and Zhou, Z.-H. (2013). On the doubt about margin explanation of boosting.
Artificial Intelligence, 203:1–18.

[Grove and Schuurmans, 1998] Grove, A. J. and Schuurmans, D. (1998). Boosting in the limit: Maximizing
the margin of learned ensembles. In AAAI/IAAI, pages 692–699.

[Ke et al., 2017] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing
Systems, pages 3146–3154.

[Klein and Young, 1999] Klein, P. and Young, N. (1999). On the number of iterations for dantzig-wolfe
optimization and packing-covering approximation algorithms. Lecture Notes in Computer Science, 1610:320–
327.

[Koltchinskii et al., 2001] Koltchinskii, V., Panchenko, D., and Lozano, F. (2001). Some new bounds on the
generalization error of combined classifiers. In Advances in neural information processing systems, pages
245–251.

[Larsen, 2017] Larsen, K. G. (2017). Constructive discrepancy minimization with hereditary L2 guarantees.
CoRR, abs/1711.02860.

[Lovett and Meka, 2015] Lovett, S. and Meka, R. (2015). Constructive discrepancy minimization by walking
on the edges. SIAM Journal on Computing, 44(5):1573–1582.

[Mason et al., 2000] Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). Boosting algorithms as
gradient descent. In Solla, S. A., Leen, T. K., and Müller, K., editors, Advances in Neural Information
Processing Systems 12, pages 512–518. MIT Press.

[McKinney et al., 2010] McKinney, W. et al. (2010). Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX.

[Montgomery-Smith, 1990] Montgomery-Smith, S. (1990). The distribution of Rademacher sums. Proc.
Amer. Math. Soc., 109:517–522.

[Nie et al., 2013] Nie, J., Warmuth, M., Vishwanathan, S., and Zhang, X. (2013). Open problem: Lower
bounds for boosting with hadamard matrices. Journal of Machine Learning Research, 30:1076–1079.

[Oliphant, 2006] Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

[Prokhorenkova et al., 2018] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.
(2018). Catboost: unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, pages 6637–6647.

[Rätsch and Warmuth, 2002] Rätsch, G. and Warmuth, M. K. (2002). Maximizing the margin with boosting.
In COLT, volume 2375, pages 334–350. Springer.

22

[Rätsch and Warmuth, 2005] Rätsch, G. and Warmuth, M. K. (2005). Efficient margin maximizing with
boosting. Journal of Machine Learning Research, 6(Dec):2131–2152.

[Reyzin and Schapire, 2006] Reyzin, L. and Schapire, R. E. (2006). How boosting the margin can also boost
classifier complexity. In Proceedings of the 23rd international conference on Machine learning, pages
753–760. ACM.

[Schapire et al., 1998] Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S., et al. (1998). Boosting the margin:
A new explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686.

[Spencer, 1985] Spencer, J. (1985). Six standard deviations suffice. Transactions of the American mathematical
society, 289(2):679–706.

[Wang et al., 2008] Wang, L., Sugiyama, M., Yang, C., Zhou, Z.-H., and Feng, J. (2008). On the margin
explanation of boosting algorithms. In COLT, pages 479–490. Citeseer.

[Whiteson, 2014] Whiteson, D. (2014). Higgs data set. https://archive.ics.uci.edu/ml/datasets/
HIGGS.

A Rewriting bounds
In the following, lg is the base 2 logarithm. Here we show that if T ≤ c1 lg(nv2)/v2 for a constant c1 > 0 and
T ≤ n/2, then v ≤ c2

√
lg(n/T)/T for a constant c2 > 0. We split the proof in two parts:

1. If v2 > 1/n: First note that T ≤ c1 lg(nv2)/v2 ⇒ v ≤
√
c1 lg(nv2)/T . We now claim that

lg(nv2) ≤ c3 lg(n/T) for a constant c3 > 0. Using our bound v ≤
√
c1 lg(nv2)/T we get lg(nv2) ≤

lg(nc1 lg(nv2)/T) = lg(n/T) + lg c1 + lg lg(nv2). We have lg lg(nv2) ≤ lg(nv2) ∗ 0.9 (since lg lg x <
(lg x) ∗ 0.9 for all x > 1). This implies lg(nv2)/10 ≤ lg(n/T) + lg c1. Since T ≤ n/2 we have lg(n/T) ≥ 1
and it follows that lg(nv2) ≤ (10 + max{0, 10 lg c1}) lg(n/T). Defining c3 = (10 + max{0, 10 lg c1}) we
thus conclude that v ≤

√
c1 lg(nv2)/T ⇒ v ≤

√
c1c3 lg(n/T)/T as claimed.

2. If v2 ≤ 1/n: Here we immediately have v ≤
√

lg(n/T)/T since T ≤ n/2.

Next we show that if v ≥ c1
√

lg(n/T)/T for a constant c1 > 0 and v satisfies v >
√

1/n, then
T ≥ c2 lg(nv2)/v2 for a constant c2 > 0. We split the proof in two parts:

1. If T ≤ lg(nv2)/v2: Observe that v ≥ c1
√

lg(n/T)/T ⇒ T ≥ c21 lg(n/T)/v2. Using the assumption
T ≤ lg(nv2)/v2 we get T ≥ c21 lg(nv2/ lg(nv2))/v2 = c21(lg(nv2) − lg lg(nv2))/v2. But lg lg(nv2) ≤
lg(nv2) ∗ 0.9 since nv2 > 1. Therefore we conclude T ≥ (c21/10) lg(nv2)/v2.

2. If T > lg(nv2)/v2: This case is trivial as we already satisfy the claim.

B Additional Experiments and Experimental Details
We train a LightGBM classifier and sparsify it in two ways: Theorem 2.2 and importance sampling. Both
sparsification algorithms are random so we repeated both sparsifications 10 times. The experiment was
performed on the following dataset:

• Inspired by the XGBoost article [Chen and Guestrin, 2016] we used the Higgs dataset [Whiteson, 2014].
We shuffled the 107 training examples and selected the first 106 examples for training and the following
106 points for examples.

23

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS

• Inspired by the LightGBM article [Ke et al., 2017] we used the Flight Delay dataset [air,]. The dataset
contain delay times and was turned into binary classification by predicting if the flight was delayed or
not. All features of the 107 training examples were one-hot encoded with the Pandas [McKinney et al.,
2010] function get_dummies() which yielded 660 features. We shuffled the 107 training examples and
selected the first 106 examples for training and the following 106 examples for testing.

• Inspired by the equivalence margin article [Wang et al., 2008] we used the Letter dataset [Dheeru and
Karra Taniskidou, 2017]. It was turned into a binary classification problem as done in [Wang et al.,
2008]. We shuffled the 20000 examples and used the first 10000 for training and the last 10000 for
testing.

The initial classifiers were trained with LightGBM using default parameters (except for the Letter dataset
where we used LightGBM decision stumps inspired by [Wang et al., 2008]). The rest of this article contain
figures that show different variants our experiments. Each figure concerns a single dataset for a choice of
number of hypotheses T and number of points n. For example Figure 3 contains results for our experiment on
the Flight Delay dataset with T = 100 hypotheses and n = 250000 training and test points. It contains a
margin plot similar to Figure 1 and test AUC/accuracy plot similar to Figure 2. See Table 1 for an overview
of all experiments.

Dataset n T
Letter 10000 100
Flight Delay 250000 100
Flight Delay 500000 250
Flight Delay 1000000 500
Higgs 250000 100
Higgs 500000 250
Higgs 1000000 500

Table 1: The different experimental settings.

Finally, we would like to acknowledge the NumPy, Pandas and Scikit-Learn libraries [Oliphant, 2006,
McKinney et al., 2010, Pedregosa et al., 2011].

B.1 Correcting Sparsified Predictions
In some cases the classification accuracy of a sparsified classifier is very poor even though the test AUC is
good (e.g. accuracy 60% but AUC 0.80). The AUC depends on the relative ordering of predictions while
classification accuracy depends on whether each prediction is above or below zero. This lead us to believe
that the poor test classification accuracy was caused by a bad offset. Maybe we should predict +1 if points
where above −0.01 instead of 0. In other words, it seemed that the sparsified classifiers skewed the bias term
of the original classifier. To fix this we computed the bias term that yielded the largest classification accuracy
on the training set. This can be done by sorting predictions and then trying every possible offset, one for each
point, taking just O(n lg(n)) time. For the airline dataset this typically improved the sparsified classifiers
accuracy from 60% to 80%.

In this way we "corrected" the bias of all sparsified predictions. All test classification accuracies reported
are corrected in this sense (including Figure 2).

24

6 12.5 25 50 100
Hypotheses

0.66

0.68

0.70

0.72

0.74

AU
C

Flight Delay T=100 n=250000

LightGBM
Sparsified
Sampling

6 12.5 25 50 100
Hypotheses

0.8075

0.8100

0.8125

0.8150

0.8175

0.8200

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Flight Delay T=100 n=250000

LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=47
LightGBM T=100
LightGBM T'=47
Sparsified to T'=47

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=22
LightGBM T=100
LightGBM T'=22
Sparsified to T'=22

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=15
LightGBM T=100
LightGBM T'=15
Sparsified to T'=15

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=7
LightGBM T=100
LightGBM T'=7
Sparsified to T'=7

Figure 3: Similar to Figure 2 and Figure 1, but for Flight Delay with T = 100 and 250000 training and test
points.

25

6 12.5 25 50 100
Hypotheses

0.72

0.74

0.76

0.78

0.80

AU
C

Higgs T=100 n=250000

LightGBM
Sparsified
Sampling

6 12.5 25 50 100
Hypotheses

0.66

0.68

0.70

0.72

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Higgs T=100 n=250000

LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=49
LightGBM T=100
LightGBM T'=49
Sparsified to T'=49

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=35
LightGBM T=100
LightGBM T'=35
Sparsified to T'=35

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=16
LightGBM T=100
LightGBM T'=16
Sparsified to T'=16

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=9
LightGBM T=100
LightGBM T'=9
Sparsified to T'=9

Figure 4: Similar to previous plot, but for Higgs with T = 100 hypotheses and 250000 training and test
points.

26

12.5 25 50 100 200
Hypotheses

0.68

0.70

0.72

0.74

0.76

AU
C

Flight Delay T=250 n=500000

LightGBM
Sparsified
Sampling

12.5 25 50 100 200
Hypotheses

0.810

0.815

0.820

0.825

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Flight Delay T=250 n=500000
LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=117
LightGBM T=250
LightGBM T'=117
Sparsified to T'=117

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=58
LightGBM T=250
LightGBM T'=58
Sparsified to T'=58

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=33
LightGBM T=250
LightGBM T'=33
Sparsified to T'=33

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=16
LightGBM T=250
LightGBM T'=16
Sparsified to T'=16

Figure 5: Similar to previous plot, but for Flight Delay with T = 250 hypotheses and 500000 training and
test points.

27

12.5 25 50 100 200
Hypotheses

0.65

0.70

0.75

0.80

AU
C

Higgs T=250 n=500000

LightGBM
Sparsified
Sampling

12.5 25 50 100 200
Hypotheses

0.62

0.64

0.66

0.68

0.70

0.72

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Higgs T=250 n=500000

LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=122
LightGBM T=250
LightGBM T'=122
Sparsified to T'=122

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=88
LightGBM T=250
LightGBM T'=88
Sparsified to T'=88

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=34
LightGBM T=250
LightGBM T'=34
Sparsified to T'=34

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=21
LightGBM T=250
LightGBM T'=21
Sparsified to T'=21

Figure 6: Similar to previous plot, but for Higgs with T = 250 hypotheses and 500000 training and test
points.

28

12.5 25 50 100 200 400
Hypotheses

0.650

0.675

0.700

0.725

0.750

0.775

AU
C

Flight Delay T=500 n=1000000

LightGBM
Sparsified
Sampling

12.5 25 50 100 200 400
Hypotheses

0.810

0.815

0.820

0.825

0.830

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Flight Delay T=500 n=1000000
LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=215
LightGBM T=500
LightGBM T'=215
Sparsified to T'=215

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=136
LightGBM T=500
LightGBM T'=136
Sparsified to T'=136

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=81
LightGBM T=500
LightGBM T'=81
Sparsified to T'=81

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Flight delay T'=48
LightGBM T=500
LightGBM T'=48
Sparsified to T'=48

Figure 7: Similar to previous plot, but for Flight Delay with T = 500 hypotheses and 1000000 training and
test points.

29

12.5 25 50 100 200 400
Hypotheses

0.65

0.70

0.75

0.80

AU
C

Higgs T=500 n=1000000

LightGBM
Sparsified
Sampling

12.5 25 50 100 200 400
Hypotheses

0.625

0.650

0.675

0.700

0.725

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Higgs T=500 n=1000000

LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=241
LightGBM T=500
LightGBM T'=241
Sparsified to T'=241

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=166
LightGBM T=500
LightGBM T'=166
Sparsified to T'=166

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=112
LightGBM T=500
LightGBM T'=112
Sparsified to T'=112

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Higgs T'=79
LightGBM T=500
LightGBM T'=79
Sparsified to T'=79

Figure 8: Similar to previous plot, but for Higgs with T = 500 hypotheses and 1000000 training and test
points.

30

6 12.5 25 50 100
Hypotheses

0.65

0.70

0.75

0.80

0.85

AU
C

Letter T=100 n=10000

LightGBM
Sparsified
Sampling

6 12.5 25 50 100
Hypotheses

0.60

0.65

0.70

0.75

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Letter T=100 n=10000

LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Letter T'=49
LightGBM T=100
LightGBM T'=49
Sparsified to T'=49

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00
Cu

m
ul

at
iv

e
Fr

eq
ue

nc
y

Letter T'=35
LightGBM T=100
LightGBM T'=35
Sparsified to T'=35

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Letter T'=26
LightGBM T=100
LightGBM T'=26
Sparsified to T'=26

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Letter T'=17
LightGBM T=100
LightGBM T'=17
Sparsified to T'=17

Figure 9: Similar to previous plot, but for Letter with T = 100 and n = 10000 training and test points. Further-
more, LightGBM used decision stumps (inspired by [Wang et al., 2008]), that is, we choose num_leaves = 2.
Quite surprisingly the sparsified classifiers obtain a better classification accuracy than the original classifier.
All sparsified classifiers predictions were corrected as described in Appendix B.1. Since the original classifier
has better AUC than the sparsified ones, we believe this is caused by a poor bias for the original classifier.

31

	Introduction
	Previous Work on Minimal Margin
	Our Results On Minimal Margin
	Doubts on Margin Theory and other Margin Bounds

	SparsiBoost
	Repeated Halving
	Halving via Row-Sum Preservation
	Finding a Column Subset

	Lower Bound
	Preliminaries
	The Net Argument

	Experiments
	Conclusion
	Rewriting bounds
	Additional Experiments and Experimental Details
	Correcting Sparsified Predictions

