
AdaBoost is not an Optimal Weak to Strong Learner

Mikael Møller Høgsgaard, Kasper Green Larsen, Martin Ritzert
hogsgaard@cs.au.dk, larsen@cs.au.dk, ritzert@informatik.uni-goettingen.de

Abstract

AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a
weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training
data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong
learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS’22) recently presented the
first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and
it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes
optimal use of training samples. In this work, we answer this question in the negative. Concretely, we
show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by
at least one logarithmic factor in the desired accuracy of the strong learner.

1 Introduction

The algorithm AdaBoost [2] is the textbook example of a boosting algorithm. Boosting algorithms in
general make use of a weak learner, i.e. a learning algorithm that produces classifiers with accuracy
slightly better than chance, and produces from it a so-called strong learner, achieving arbitrarily high
accuracy when given enough training samples. The question whether one can always produce a strong
learner from a weak learner was initially asked by Kearns and Valiant [7, 8] and initiated the field of
boosting.

Given a weak learnerW , AdaBoost usesW to train multiple inaccurate classifiers/hypotheses that focus
on different parts of the training data and combines them using a weighted majority vote. In more detail,
it runs for some T iterations, each time invoking W to produce a hypothesis ht. It then computes weights
w and outputs the final voting classifier f(x) = sign(

∑
twtht(x)). For the calls of W , AdaBoost maintains

a distribution Dt over the training samples that puts a large weight on training samples misclassified
by most of h1, . . . , ht−1 and a smaller weight on samples classified correctly. Using this distribution, in
iteration t AdaBoost invokes the weak learner to produce a hypothesis ht performing better than chance
under Dt. This way, ht focuses on training examples which are hard for the voting classifier so far.

In this paper, we study the sample complexity of AdaBoost, answering the question whether AdaBoost
is able to make optimal use of its training data. To formally answer this question, we need to introduce a
few parameters. A γ-weak learner is a learning algorithm that, given some constant number of training
samples from an unknown data distribution D, produces a hypothesis h that correctly predicts the label
of a new sample from D with probability at least 1/2 + γ. We let H denote the set of possible hypotheses
that the weak learner may output. A strong learner, on the other hand, is a learning algorithm that
for any 0 < ε, δ < 1, with probability at least 1 − δ over a set of m(ε, δ) training samples from an
unknown distribution D, outputs a hypothesis that correctly predicts the label of a new sample from D
with probability at least 1− ε. The function m(ε, δ) is referred to as the sample complexity. A strong
learner can thus obtain arbitrarily high accuracy 1− ε when given enough training samples m(ε, δ). See
Section 1.1 for a formal definition of weak and strong learning.

1

hogsgaard@cs.au.dk
larsen@cs.au.dk
ritzert@informatik.uni-goettingen.de

Recently, Larsen & Ritzert [10] showed that the optimal sample complexity of weak-to-strong learning
is given by

m(ε, δ) = Θ

(
d

γ2ε
+

ln(1/δ)

ε

)
, (1)

where d is the VC-dimension of the hypothesis set H of the weak learner. The paper provides both a
learning algorithm achieving this sample complexity as well as an asymptotically matching lower bound.
Their algorithm is based on a majority vote among hypotheses produced by a version of AdaBoost. It is
thus a majority of majorities. Is this necessary for optimal weak-to-strong learning? Or does it suffice
to use a classic algorithm like AdaBoost? The current best upper bound on the sample complexity of
AdaBoost (for constant δ) is [14]:

mAda(ε) = O

(
d ln 1

εγ ln d
εγ

γ2ε

)
(2)

However, this is just an upper bound, and until now, it remained completely plausible that a better
analysis could remove the two logarithmic factors.

The main contribution of this work is to show that AdaBoost is not always optimal. Concretely, we show
that there exists a weak learner W, such that if AdaBoost is run with W as its weak learner, its sample
complexity is sub-optimal by at least one logarithmic factor. This is stated in the following theorem:

Theorem 1.1. For any 0 < γ < C for C > 0 sufficiently small, any d = Ω(ln(1/γ)), and any
exp(− exp(Ω(d))) ≤ ε ≤ C, there exists a γ-weak learner W using a hypothesis set H of VC-dimension d
and a distribution D, such that AdaBoost run with W is sub-optimal and needs

mAda(ε) = Ω

(
d ln(1/ε)

γ2ε

)
samples from D to output with constant probability, a hypothesis with error at most ε under D.

This lower bound does not only apply to AdaBoost but extends to many of its variants such as
AdaBoostν [12], AdaBoost∗ν [13], and DualLPboost [4]. The key property those algorithms share and that
we manage to exploit is that they run the weak learner W on the full training data set. This allows W to
adversarially return hypotheses that accumulate mistakes outside of the training data, leading to poor
generalization performance.
The rest of the paper is structured as follows. In the remainder of this section, we describe some

preliminaries and give an overview of the related work. In Section 2, we present the high-level ideas of
our proof and in Section 3 we sketch the formal details of the proof. The proofs of the main lemmas and
parts of the formal proof of Theorem 1.1 are deferred to the appendix.

1.1 Preliminaries and Notation

We now formally define our setup. Weak and strong learning are studied in the general framework of
probably approximately correct (PAC) learning, see e.g. [14] for an introduction. In the PAC learning
framework, one assumes that training samples are chosen i.i.d. from an underlying distribution D over
elements of some universe X . Furthermore, we assume an underlying but unknown ‘correct’ labeling
function c : X → {−1, 1} called the concept, which assigns every element from the universe X its ‘true’
label. The concept is assumed to belong to a concept class C ⊆ X → {−1, 1}.

A learning algorithm A is a γ-weak learner for C, if for every distribution D over X and every concept
c ∈ C, there is a constant number of samples m0 and a constant δ0 < 1, such that with probability at
least 1− δ0 over m0 i.i.d. samples x1, . . . , xm0 from D and their corresponding labels c(x1), . . . , c(xm0), A
outputs a hypothesis h with error

LD(h) = Pr
x∼D

[h(x) ̸= c(x)] ≤ 1/2− γ.

2

Algorithm 1: AdaBoost

Input: training set S = {(x1, c(x1)), . . . , (xm, c(xm))},
number of rounds T

Result: A majority hypothesis hout
1 D(1) ←

(
1
m , . . . 1

m

)
// uniform init of D

2 for t = 1, . . . , T do

3 ht ←W(D(t), S) // invoke weak learner W
4 γt ←

∑m
i=1D(t) sign(c(xi)ht(xi)) // error

5 wt =
1
2 ln

(
1−γt
γt

)
// weight for ht

6 for i ∈ {1, . . . ,m} do
/* update D based on success of ht */

7 D(t+1)
i ← D(t)

i exp
(
−wtc(xi)ht(xi)

)
∑m

j=1 D
(t)
j exp

(
−wtc(xj)ht(xj)

)
8 return hout(x) = sign

(∑T
t=1wtht(x)

)

We refer to γ as the advantage of the weak learner. We let H denote the hypothesis set used by the weak
learner, i.e. we assume that h ∈ H and that H has a finite VC-dimension d.

A learning algorithm A is a strong learner for C, if for every 0 < ε, δ < 1, there exists some number of
samples m(ε, δ), such that with probability at least 1 − δ over m(ε, δ) i.i.d. samples from D and their
corresponding labels, A outputs a hypothesis with error LD(h) ≤ ε.
AdaBoost is the classic algorithm for constructing a strong learner from a γ-weak learner. For

completeness, we have included the full algorithm as Algorithm 1.

Related Work

In terms of sample complexity, most previous works prove generalization bounds for voting classifiers
in general. A voting classifier over a hypothesis set H, is a majority vote f(x) = sign

(∑
h∈H αhh(x)

)
for coefficients αh > 0 such that

∑
h αh = 1. AdaBoost can be seen to output a voting classifier by

appropriate normalization of the coefficients wt chosen in Algorithm 1. The generalization bounds for
voting classifiers are typically data-dependent in the sense that they depend on the so-called margin of the
voting classifier. For a voting classifier f(x) = sign

(∑
h∈H αhh(x)

)
and a sample (x, c(x)), the margin

of f on (x, c(x)) is defined as c(x)
∑

h∈H αhh(x). The margin is thus a number between −1 and 1 and
is positive if and only if f(x) = c(x). Intuitively, large margins correspond to high certainty/agreement
among the hypotheses. In terms of upper bounds, Breiman [1] showed that with probability 1− δ over a
training set S of m samples, all voting classifiers f with margin at least γ on all samples in S have

LD(f) = O

(
d ln(m/d) lnm

γ2m

)
. (3)

A small tweak to AdaBoost, known as AdaBoost∗ν [13], guarantees that the output hypothesis f has
margins Ω(γ) on all samples when AdaBoost∗ν is run with a γ-weak learner. Solving for ε = LD(f) in
Equation (3) matches the sample complexity bound for AdaBoost from Equation (2).
In terms of sample complexity lower bounds for boosting, or for AdaBoost in particular, there are

some relevant works. First, as mentioned earlier and stated in (1), it is known that any weak-to-strong
learner must have a sample complexity of Ω

(
d/(γ2ε) + ln(1/δ)/ε

)
[10]. While not directly comparable,

work by [3] showed that there are data distributions, such that with constant probability over a set of
m = (d/γ2)1+Ω(1) samples, there exists a voting classifier f with margin at least γ on all samples, yet
its generalization error is at least Ω

(
d ln(m)/(γ2m)

)
. This lower bound is in some sense similar to our

work, as it manages to squeeze out a logarithmic factor. However, the voting classifier f is only shown to
exist and as such might not correspond to the output of any reasonable learning algorithm, certainly not
AdaBoost.

3

At this point, we would like to compare AdaBoost to the optimal weak-to-strong learning algorithm
given by Larsen & Ritzert [10]. First, their learning algorithm is more complicated. It runs AdaBoost∗ν on
various sub-samples of the training data to obtain voting classifiers f1, . . . , fT which it then combines in a
majority vote g(x) = sign(

∑
i fi(x)). It thus outputs a majority of majorities. Moreover, the number of

sub-samples is a rather large T = mlg4 3 ≈ m0.79 and their size is linear in the overall number of training
samples m, thus resulting in somewhat slow training time. The sub-samples are constructed with a very
careful overlap as pioneered by Hanneke [5] in his optimal algorithm for PAC learning in the realizable
setting. A recent manuscript [9] shows that one may replace the T sub-samples by just O(lg(m/δ))
bootstrap samples (sub-samples each consisting of m samples with replacement from the training data) in
the algorithm from Larsen & Ritzert [10]. While reducing the number of sub-samples, it still remains a
majority of majorities. It would thus have been desirable if one could show that AdaBoost also had an
optimal sample complexity. Sadly, as already stated in Theorem 1.1, this is not true.

2 Proof Overview

In this section, we give an overview of the main ideas in our proof that AdaBoost is not always an optimal
weak-to-strong learner. Concretely, for any γ, m, and d = Ω(ln(1/γ)) we show that there exists an input
domain X , a distribution D over X , a concept c : X → {−1, 1}, a hypothesis set H of VC-dimension at
most d, and a γ-weak learnerW for c that outputs hypotheses from H, such that with constant probability
over a set of m samples S ∼ Dm and their corresponding labels c(S), AdaBoost run with the weak learner
W produces a voting classifier f with LD(f) = Ω

(
d ln(γ2m/d)/(γ2m)

)
. Solving for ε = LD(f) gives

m = Ω
(
(d ln(1/ε))/(γ2ε)

)
as claimed in Theorem 1.1.

When proving the lower bound for AdaBoost, we consider just one fixed concept c, namely the concept
that assigns the label 1 to all elements of X . AdaBoost of course does not know this but executes precisely
as in Algorithm 1. As distribution D we consider the uniform distribution U over the input domain X .
Thus, if f is the output of AdaBoost and X = [u], then LU (f) is precisely equal to the fraction of elements
i ∈ [u] for which f(i) = −1. Our goal is thus to show that AdaBoost will produce a voting classifier f
with a negative prediction on many i ∈ [u].

To prove the above, we need to construct a weak learner W that somehow returns hypotheses that
result in AdaBoost making many negative predictions. Although the formal definition of a γ-weak learner
given in Section 1.1 allows W to sometimes (with probability δ0) return a hypothesis with advantage
less than γ, we will not do so in our construction. Thus, our adversarial weak learner always returns
hypotheses with advantage at least γ which only makes our lower bound stronger.
To define our adversarial weak learner W, we carefully examine the “interface” it must support.

Concretely, the way AdaBoost accesses a weak learner is to feed it the training data S = {(xi, c(xi))}mi=1

and a distribution Dt over S. From this, AdaBoost expects thatW returns a hypothesis ht with advantage
at least γ under the distribution Dt which is supported only on S. Our adversarial weak learner W will
support this interface. In fact, it will completely ignore the set S and return a hypothesis that is solely a
function of Dt. Our weak learner thus needs to be a function, that for any probability distribution D over
X returns a hypothesis h with advantage at least γ under D (for the all-1 concept c).

Our main challenge is now to design a weak learner that always has advantage γ under the distributions
fed to it by AdaBoost, yet under the uniform distribution U over X = [u], the voting classifier produced by
AdaBoost must often make negative predictions. Here, our first observation is that if the universe size u is
cm/ ln(γ2m/d) for a sufficiently small constant c > 0, then by a coupon collector argument, with constant
probability there are Ω(d/γ2) elements i ∈ [u] that are not sampled into the training set S. Our basic idea
is to force that the final voting classifier f produced by AdaBoost makes negative predictions on a constant
fraction of these non-sampled elements. This would imply LU (f) = Ω

(
(d/γ2)/u

)
= Ω

(
d ln(γ2m/d)/(γ2m)

)
as claimed.

Our next key observation is that all distributions Dt fed to W by AdaBoost put a non-zero probability
on every element in the training data set. Crucially, this implies that the weak learner knows the complete
training set and can thus compute the Ω(d/γ2) points S̄ that were not sampled. Our adversarial weak

4

1, 2, 3, 4, 5, . . . , u− 2, u− 1, uXuniverse

c 1 1 1 · · · 1 1 1concept

h0 1 1 1 · · · 1 1 1 -1 -1 -1

h1
...
hk

1-1-1-11 1
-1-1 1 11-1
fully random hypotheses

H

Figure 1: Illustration of our hypothesis set H

learner does precisely this and chooses an arbitrary subset S̄′ ⊆ S̄ of size O(d/γ2) (the same deterministic
choice for a given S̄). It then returns a hypothesis h that has advantage γ under Dt but at the same time
under the uniform distribution over S̄′ is wrong with probability 1/2 + γ. Notice that it is wrong on S̄′

with probability more than half which we call a negative advantage of −γ. Intuitively, since this holds for
every h returned by W on an execution of AdaBoost (for the same S̄′), the output f of AdaBoost will be
mistaken on about half the points in S̄′ which is sufficient for the lower bound.
To carry out the above argument, we need to construct a hypothesis set H that contains hypotheses

with advantage γ on S under Dt and negative advantage over S̄′. Then the weak learner can essentially
just return such a hypothesis. For this construction, we use a probabilistic argument and show that by
sampling a random hypothesis set H in an appropriate manner and defining an associated weak learner
WH, there is a constant probability that the weak learner satisfies all of the above. Hence, a weak learner
must exist. The point of considering a random H is that it allows us to give simple probabilistic arguments
that show that all the hypotheses that WH needs to return on an execution of AdaBoost indeed exist in
H. We illustrate H in Figure 1.

For the random construction of H, we sample at most 2d−1 hypotheses h : X → {−1, 1} independently
and uniformly at random. This clearly implies that the VC-dimension of H is less than d. We now have to
argue that we can use H to design a γ-weak learner for the all-1 concept. Here, we distinguish two cases.
First, consider any distribution D over [u] where most of the probability mass is concentrated on some r
entries. Anti-concentration results imply that a random hypothesis has an advantage of Ω(

√
ln(1/δ)/r)

with probability at least δ. We need the advantage to be at least γ and we have exp(Ω(d)) hypotheses
to choose from. Thus, if we plug in δ = exp(−Ω(d)), we see that for r = O(d/γ2) we expect that the
random H contains a hypothesis with advantage γ under D. Thus, for distributions with small support,
we can get a high advantage. A similar argument shows that we can at the same time get a negative
advantage of −γ on S̄′ as required earlier. However, AdaBoost might feed W a distribution Dt that is not
concentrated on some O(d/γ2) entries. In this second case, we would intuitively like to add the all-ones
hypothesis h⋆0 to H to achieve an advantage on such Dt. Then WH can always return h⋆0 when being fed a
distribution that is far from concentrated on a few entries. This is problematic for our lower bound since
now AdaBoost could put a large weight on h⋆0 which would cancel out any mistakes/negative advantage
we accumulated in S̄′.

To remedy this, we introduce the hypothesis h0 which resembles h⋆0 on most elements (returning 1 there)
but returns −1 on cd/γ2 elements of X for some constant c > 0. Then, similar to h⋆0, the hypothesis
h0 has a γ advantage under all D that are “spread out”, i.e. do not have most of its mass on O(d/γ2)
entries. Thus, we can let WH return h0 for such D. If on the other hand D is concentrated on few entries,
we can find one of the random h that has advantage at least γ under D and at most −γ for a uniform
element in S̄′. But S̄′ might be (mostly) among the coordinates where h0 returns 1. Thus, if AdaBoost
puts too large a weight on h0, then the negative advantage we accumulated on S̄′ is still canceled out
by h0. This is where we use that h0 has many −1’s. Concretely, we show that if h0 receives a weight
of more than some O(γ), then there is no way to cancel out the −1’s that h0 produces. In summary, if
AdaBoost assigns a large weight to h0 in its output classifier f , then f makes negative predictions where
h0 is negative. If AdaBoost assigns a small weight to h0, then f makes negative predictions in S̄′. In both

5

cases, we have Ω(d/γ2) negative predictions. We illustrate this in Figure 2.

Case 1: High weight on h0

S̄ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦◦

h0 1 1 1 · · · 1 1 1 -1 -1 -1

Ω(d/γ2) mistakes

fully random hypotheses
(dominated by h0)

err E E E E E

Case 2: Low weight on h0

S̄ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

h0 1 1 1 · · · 1 1 1 -1 -1 -1

Ω(d/γ2) mistakes
adversarially accumulated

E E E E E E

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

fully random hypotheses
(adversarially weighted)

Chosen by W

err

Figure 2: Illustration of where errors will occur

Finally, let us summarize precisely what properties of AdaBoost we exploited above. As mentioned
earlier, the key point is that the adversarial weak learner can determine the elements S̄ of X that are
not part of the training set S. It can thus return hypotheses that have a negative advantage of −γ on
some Ω(d/γ2) elements of S̄. This negative advantage is enough that it is not canceled out by any weight
that AdaBoost assigns to a nearly all-1 hypothesis h0. Note though that it is crucial that the negative
advantage achieved by W is −γ and not just negative as AdaBoost may use h0 “a little bit”, i.e. with
a weight of up to some small constant times γ. If AdaBoost would put more weight on h0, this would
induce negative predictions where h0 is negative.

Let us also remark that it is vital for our argument that every distribution Dt fed to W by AdaBoost is
non-zero on all of the training data. Assume for instance that Dt was only non-zero on a random constant
fraction of S. Then the weak learner could only identify some random superset of S̄ having linear size in
u. But the weak learner needs to force a negative advantage of −γ on some Ω(d/γ2) points to cancel out
the positive contributions by h0. Concentration results show that this can only be done on O(d/γ2) points
and thus the adversarial weak learner would have to pick O(d/γ2) points among the random Ω(u) with
zero mass under Dt. If these are in the training data S, which is the most likely case as S̄ has cardinality
only Θ(d/γ2), then these O(d/γ2) points will have non-zero mass in most other Dt′ , allowing a boosting
algorithm to correct the negative predictions.
The above proof outline can be seen to work for any boosting algorithm producing voting classifiers

and that always invokes the weak learner with a probability distribution that is strictly positive on all of
the training data. For this reason, our lower bound argument also applies to many other classic boosting
algorithms as mentioned in Section 1. In addition to showing that these algorithms are sub-optimal, we
believe our lower bound may help inspire new boosting algorithms. Concretely, as just sketched above, if
the weak learner was invoked with probability distributions that have mass on only a constant fraction of
the training data, our argument breaks down. In fact, the optimal weak-to-strong learner by Larsen &
Ritzert [10] precisely samples subsets of the training data and runs AdaBoost∗ν on such subsets. Perhaps a
similar sub-sampling could be used without the two-level majority. We leave this as an exciting direction
for future research.

3 AdaBoost is not Optimal

In this section, we prove our main result that AdaBoost is not an optimal weak-to-strong learner.
In the following, we let X = [u] = {1, . . . , u} be the universe where u is the universe size. Further we

6

let ∆X be the set of probability distributions over X . In our construction, we use the all ones hypothesis,
i.e. h⋆0(x) = 1 for all x ∈ X , as the underlying concept that is to be learned. Since we do not consider any
other concept, the error of a hypothesis f under a distribution D ∈ ∆X is given as

LD(f) = Px∼D [f(x) ̸= 1] .

This is equivalent to LD(f) =
∑u

i=1D(i)(1− f(i))/2 such that we can write the error requirement of a
γ-weak learner as

u∑
i=1

D(i)f(i) ≥ 2γ

which we will use in the analysis.
In our construction, we will need the hypothesis h0, which is “close” to the all ones hypothesis h⋆0. Let

h0 be the hypothesis from X into {−1, 1} such that h0(i) = 1 for i = 1, . . . , u − r1 and h0(i) = −1 for
i = u− r1+1, . . . , u, for r1 to be defined later (think of r1 as small compared to u). Let A be any learning
algorithm which takes as input a sample S and a weak learner W, and satisfies the following:

Properties 1.

1. A outputs a weighted majority classifier, i.e. a classifier of the form sign(
∑

iwihi) where wi are
non-negative weights with

∑
iwi = 1 and hi are hypotheses obtained from the weak learner W . The

weights wi only depend on the performance of the hi’s on S (i.e. wi may depend on hj(S) for j ̸= i
but not on any hj(x) for x /∈ S).

2. In every query to the weak learner W, the algorithm A provides a distribution D ∈ ∆X with
supp(D) = S (Di > 0 for i ∈ S and 0 otherwise).

3. The learning algorithm A provides the true labels to the items in the sample in its query to W.

The conditions above are necessary and sufficient for our construction of the adversarial weak learner. 1)
ensures that the learning algorithm actually uses the weak learner to compute the majority classifier with
weights based only on the samples in S (and not S̄). 2) gives away the sample to the adversarial weak
learner such that it can accumulate errors outside the sample i.e. on points in S̄ = X\S. And 3) ensures
that the weak learner is always asked to learn the all ones hypothesis, so we only need to guarantee an
advantage of γ on that. Under those conditions, D already encodes S such that we view the weak learner
as a function of a distribution D ∈ ∆X , instead of a function of D and the sample S. Furthermore, we
write WH to make the hypothesis set H that is used by a weak learner explicit.

The following lower bound is a more general version of Theorem 1.1. Since AdaBoost satisfies the above
properties, the lower bound applies to AdaBoost as well.

Theorem 3.1. There exist a universal constant c ≤ 1 such that for γ ≤ c, d ≥ ln(1/γ), and dγ−2/16 ≤
m ≤ exp(exp(d)) there exist a universe X , a distribution D ∈ ∆X , a hypothesis set H of VC-dimension
O(d), and a weak learner WH on H for the all one hypothesis i.e.

∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ,

such that for any learning algorithm A satisfying Properties 1, we have with constant probability over
S ∼ Dm:

LD(A(S,WH)) = Ω

(
d ln

(
mγ2/d)

)
mγ2

)
Formally, Theorem 1.1 follows from Theorem 3.1 by invoking it with d′ = O(d) (implying m =

exp(exp(O(d))) and solving the loss LD(AdaBoost(S,WH)) = ε = C
d ln(mγ2/d)

mγ2 for m.
To prove Theorem 3.1 we use the following three lemmas whose proofs are deferred to Section 4.

The first lemma is a concentration inequality for linear combinations of independent, negatively biased
{−1, 1}-variables. Notationwise, we denote a fixed hypothesis set by H and a random one by H. Similarly,
a concrete hypothesis (which can be encoded by a vector) is denoted by h and a random hypothesis by h.

7

Lemma 3.2. Let w ∈ Rd such that ∥w∥1 = 1 and let α̃ ≥ 1. Let further h be a random vector in {−1, 1}d
with i.i.d. entries such that P [h(i) = 1] = 1/2− α̃β and P [h(i) = −1] = 1/2 + α̃β where β < 1/(2α̃). We
then have for α′ < α̃ that

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ min

(
1

4
,
1

2
− 4α̃α′

(2α̃− α′)2

)
.

The lemma will be used to get the −γ advantages outside the sample S as described in the proof
overview. The second lemma is of a coupon collector style.

Lemma 3.3. Let ζm/ ln (m/r) be the number of coupons where m ≥ 4r, r ≥ 1, and ζ ≥ 8. Let X denote
the number of samples with replacement from the coupons before seeing ζm/ ln (m/r)− 2r distinct coupons,
then P [X ≤ m] ≤ 1

2

In the proof we virtually split the universe into a main part and the last r1 points and are interested in
the probability of sampling a training set S ∈ Spart1 := {S : |S̄ ∩ [u− r1]| ≥ r} (for some r and r ≤ r1)
capturing the case that there are “enough” unsampled points in the main part of the universe. We will
use Lemma 3.3 and carefully chosen constants to show that this probability is at least constant.

The third lemma describes properties of two functions which we combine to get the random adversarial
weak learner WH.

Lemma 3.4. Let c0, c1 ≤ 1, and c2 ≥ 1 denote universal constants. For a universe X of size u, integers
r, r1 with r1 = α2r for α ≥ 1, and γ ≤ c0/(2α) there exist two independent random hypothesis sets H1

and H2 such that

• For H := H1 ∪H2 and k = ln (u) γ−2,

|H| ≤ 4c−2
1 k ln (k/δ) exp(8c2γ

2r1) + 1 (4)

• There exists a mapping gH1 : ∆X → H1 such that for r1 ≥ 40 lg(|H1|) and S ∈ Spart1 := {S :
|S̄ ∩ [u− r1]| ≥ r}, the mapping gH1 and the hypothesis set H1 satisfy the following four properties
with probability at least 1− δ − 2−0.01r1 (over the outcome of H1):

1. For any distribution D ∈ DS := {D : D(i) > 0 for i ∈ S else D(i) = 0, ∥D∥1 = 1} supported on
S,
∑

i∈S D(i)gH1(D)(i) ≥ γ/4.

2. Let Fr,S denote the first r points from S̄ ∩ [u− r1] and recall that supp(D) = S. If for D ∈ DS,
gH1(D) ̸= h0, then the hypothesis gH1(D) has (1/2 + αγ/2)r minus signs in Fr,S. Further, the
outcome of gH1(D) on Fr,S is uniformly distributed among all vectors in {−1, 1}r which have
at least (1/2 + αγ/2)r minus signs.

3. The randomness over Fr,S in Item 2 is independent for all hypotheses in {gH1(D) for D ∈ ∆X }.
Further, the outcome of gH1 on Fr,S is independent of gH1 on Fr,S.

4. For any weight vector w ∈ ∆H1\h0
:= {w ∈ R|H1| : 0 ≤ wi, w0 = 0,

∑
i∈|H1|wi = 1} weigh-

ing the hypotheses in H1, we have for at least r1/10 of the i’s in {u − r1 + 1, . . . , u}, that∑
j∈|H1|wjhj(i) ≤ 14

√
lg (|H1|) /r1.

• There exists a mapping tH2 : D → H2 such that with probability at least 1− δ over H2, it holds for
all D ∈ ∆X that

∑
i∈[u]D(i)tH2(D)(i) ≥ γ/4.

Let us carefully go over the statements in Lemma 3.4. The first bullet bounds the size of the hypothesis
set H, ensuring that its VC-dimension is at most O(d). The second and third bullet consider the functions
gH1 and tH2 from which we construct the weak learner WH. These functions, as well as WH, take as
input a distribution and output a hypothesis from H. The key idea is that whenever gH1 outputs a
hypothesis with sufficient advantage on D, WH will use that hypothesis (and therefore gH1 to compute it),
and otherwise WH will use the hypothesis computed by tH2 . We thus think of tH2 as a safety mechanism

8

that ensures that we can always get the required advantage Ω(γ) which is guaranteed by the last bullet of
Lemma 3.4. We will call the lemma with 8γ instead of γ to achieve an advantage of 2γ.

With this in mind, consider the second bullet of Lemma 3.4 and consider some S ∈ Spart1. Let us denote
by ES the event that the four properties in the bullet hold for S and H1. Now assume a weak-to-strong
learning algorithm A that satisfies 1), 2), and 3) from Properties 1 and that receives an S ∈ Spart1, i.e. at
least r of the unsampled points receive a positive label under the hypothesis h0. Assume further that ES

occurs. Then our weak learner WH has the following interesting properties.
First, in this case, the weak learner WH always returns a hypothesis produced by gH1 . This holds as

Item 1 of the second bullet guarantees a sufficient advantage regardless of what distribution A queries the
weak learner with.

From the second bullet’s Item 2 and Item 3, we get that A can not put too much mass on the hypotheses
provided by gH1 (those different from h0), without making at least Ω(r) mistakes on the r unsampled
points Fr,S . These mistakes would imply an error of at least Ω

(
(d ln(mγ2/d))/(mγ2)

)
.

Finally, Item 4 gives us that A can neither put too much mass on h0, without making Ω(r) mistakes on
the last r1 points of X . Combining this with the previous point gives the desired lower bound. We now
give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let γ, d, and m be as in Theorem 3.1. Let the concept that A is trying to
learn be the all ones hypothesis h⋆0. We now show the existence of a universe X , a hypothesis set H
of VC-dimension at most d, and a γ-weak learner WH : ∆X → H for h⋆0 (mapping distributions over
X to hypotheses from H), such that when A uses hypotheses from WH and receives samples from the
uniform distribution U on X , then with constant probability over the sample S ∼ Um, it has an error of
LU (A(S,WH)) = Ω

(
(d ln

(
mγ2/d)

)
)/(mγ2)

)
.

To show the existence of such a hypothesis set and weak learner, we show for a random hypothesis set
H (with VC-dimension O(d)) that we have

EH

[
PS

[
LU (A(S,WH)) ≥ C

d ln
(
mγ2/d)

)
mγ2

, ∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]

= ES

[
PH

[
LU (A(S,WH)) ≥ C

d ln
(
mγ2/d)

)
mγ2

, ∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]
≥ 1

64
(5)

for some universal constant C. Here, the first part states that A has a large error while the second part
ensures thatWH is indeed a weak learner. As the event ofWH being a weak learner is independent of S, the
expectation implies that there exists a concrete hypothesis set H such that WH is a weak learner and with
constant probability over the sample S, the algorithm A has error probability Ω

(
d ln

(
mγ2/d)

)
)/(mγ2)

)
when using WH as its weak learner. The equality uses that a probability can be written as the expectation
of an indicator variable.

Establishing Equation (5). Our adversarial weak learner accumulates errors on r elements in S̄, such
that the overall error is connected to the fraction r/u. Next, we show that we can invoke Lemma 3.4 with
parameters such that r/u ≥ C(d ln

(
mγ2/d)

)
)/(mγ2) for some universal constant C, and where tH2 is a

weak learner with probability at least 1− δ for δ = 1/4. Using this, we can phrase Equation (5) as

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
, ∀D∈∆X :

∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]
>

1

64
. (6)

We now show that such a choice of parameters is indeed possible.

Preliminary Setting of Parameters. Let m ≥ 8 be the sample size and γ′ = 8γ where γ is the (sufficiently
small) advantage needed for the weak learner. This choice implies that the weak learner constructed in
Lemma 3.4 has a 2γ advantage.

9

Now, let u = 8α2m/ ln (m/r) be the universe size where r := dγ′−2 and where the value of α will
be chosen larger than 1. From the assumption m ≥ dγ−2/16 in the theorem we get that m/r ≥ 4
and thus ln(m/r) is non-negative. We now choose r1 = α2r = α2dγ′−2. In the definition of h0 the
last r1 positions return −1, thereby splitting the universe in a “first” and “second” part. Note that
u ≥ 8α2m/ ln(m/r) ≥ 8α2r ≥ 8r1 (using that x/ lnx > 1 for x > 1 in the second inequality), thus we may
assume that the set of samples Spart1 := {S : |S̄ ∩ [u− r1]| ≥ r} is not ∅.
We wish to invoke Lemma 3.4 with u, γ = γ′, r, α, and δ = 1/4 as above. First, Equation (4)

guarantees that the size of H in Lemma 3.4 is upper bounded by 4c−2
0 k ln (k/δ) exp(8c2γ

′2r1) + 1 ≤
5c−2

0 k ln (k/δ) exp(8c2γ
′2r1). Lemma 3.4 only holds when γ′ ≤ c0/(2α). We guarantee this with the

constraint in Theorem 3.1 saying that γ ≤ c, where c is less than c0/(16α).
We now decide on the choice of α. Later in the proof, we will need that ln(|H|)/r1 ≤ c3γ

2 where c3
is a universal constant that will determine the concrete value of α. To upper bound ln(|H|)/r1, we first
notice that since m ≤ exp(exp(d)) we get that ln(ln(u)) ≤ ln(ln(8α2m)) ≤ ln(ln(8α2)) + d. Further, since
d ≥ ln(1/γ) (one of the conditions in Theorem 3.1) we get that ln(k) = ln(ln (u) γ′−2) ≤ ln(ln(8α2)) + 3d.
By these two inequalities as well as δ = 1/4 and r1 = α2dγ′−2 we get that

ln(|H|) ≤ 8c2γ
′2r1 + ln(5c−2

0) + ln(k) + ln(ln (k/δ)) ≤ ln(5c−2
0) + 5(ln(ln(8α2)) + (8c2α

2 + 3)d. (7)

implying that for any α, d ≥ 1 if we choose c3 =
(
ln(5c−2

0) + 5 ln(ln(8)) + (8c2 + 3)
)
82

ln(|H|)
r1

≤
(
ln(5c−2

0) +
5 ln(ln(8α2))

α2d
+ 8c2+

3

α2

)
82γ2 ≤ c3γ

2 (8)

since the middle expression in Equation (8) is decreasing in α, d ≥ 1. This allows us to fix α = 5 · 28√c3.
Further notice that Equation (8), the before mentioned constraint γ ≤ c0/(16α), c0 ≤ 1 implied by

Lemma 3.4, and the now fixed α = 5 · 28√c3, c3 ≥ 1 implies that r1 ≥ ln(|H|)/(c3γ2) ≥ 40 lg(|H1|). This
a condition for the second bullet of Lemma 3.4 to hold. We thus have that we can invoke Lemma 3.4 as
claimed.

Bounded VC-Dimension. Using the parameters we have chosen above, we can now bound the VC-
dimension of H. Here we use that the VC-dimension of H is trivially bounded by ln |H|/ ln(2). Together
with the size bound on H from Equation (7) we get that the VC-dimension of H is O(d) as claimed.

We now construct our weak learner W in the following way using gH1 and tH2 from Lemma 3.4.

WH(D) = 1∑u
i=1 D(i)gH1 (D)(i)≥2γ gH1

+ 1∑u
i=1 D(i)gH1 (D)(i)<2γ tH2(D) ∀D ∈ ∆X ,

Said in words, WH is gH1 when gH1 achieves an advantage of 2γ and it defaults back to tH2 otherwise.
First, we notice that if tH2 is a weak learner, then WH is also a weak learner. Thus we can replace the

weak learning requirement on WH by a similar requirement on tH2 , implying

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
, ∀D ∈ ∆X :

∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]

≥ ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
, ∀D ∈ ∆X :

∑
i∈[u]

D(i) tH2(D)(i) ≥ 2γ

]]
.

Further notice that if we have a sample S, then A would by Item 2) in Properties 1 only give inputs D in
DS := {D : D(i) > 0 for i ∈ S else D(i) = 0, ∥D∥1 = 1, } to the weak learner WH. Thus, we have for a
fixed sample S and the definition of WH that{

H = (H1 ∪H2) : LU (A(S, gH1)) ≥
r

10u
, ∀D ∈ DS

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ
}

⊆
{
H : LU (A(S,WH)) ≥

r

10u

}

10

where we use that WH becomes gH1 when gH1 produces large margins. Thus, we conclude that

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
, ∀D ∈ ∆X :

∑
i∈[u]

D(i) tH2(D)(i) ≥ 2γ

]]

≥ ES

[
PH

[
LU (A(S, gH1)) ≥

r

10u
, ∀D ∈ DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ,

∀D ∈ ∆X :
∑
i∈[u]

D(i) tH2(D)(i) ≥ 2γ

]]

≥ ES

[
PH

[
LU (A(S, gH1)) ≥

r

10u
, ∀D ∈ DS

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]]
(1− δ) (9)

where the last inequality follows from the last point of Lemma 3.4, which says that tH2 is a weak learner
with probability at least 1− δ and tH2 is independent of gH1 .

We will now show that

PS[S ∈ Spart1] ≥ 1/4, (10)

and for any sample S in the set Spart1 := {S : S̄ ∩ [u− r1]| ≥ r} (from Lemma 3.4) we have that

PH

[
LU (A(S, gH1)) ≥

r

10u
, ∀D∈DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ 1

12
. (11)

Now combining Equation (9), Equation (10), Equation (11), and δ = 1/4 we get

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
, ∀D∈∆X :

∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]
≥ 1

64

as desired. Thus, if we can show Equation (10) and Equation (11) we are done. Essentially, Equation (10)
makes sure that we (often enough) have space in S̄ to accumulate errors using gH1 . Equation (11) gives
us that if there is space to accumulate errors, many of the random hypothesis sets H1 allow us to actually
do so. Equation (9) accounts for the behavior of the weak learner, i.e. its decision rule between the
adversarial function gH1 and the ‘normal’ weak learner tH2 .

Establishing Equation (10): Recall that we chose the universe size to be u = 8α2m/ ln(m/r) and the
sample distribution to be uniform on X = [u] (corresponding to drawing with replacement from X).
Further we had r = dγ′−2 which by the assumption m ≥ dγ−2/16, implied that m/r ≥ 4. Using this, we
get from Lemma 3.3 with ζ = 8α2 ≥ 8 that with probability at least 1/2 there are 2r points in u that
are not sampled into S. Further, by the choice of r1 = α2r we noticed that u = 8α2m/ ln(m/r) ≥ 8r1
thus the universe has at least 8 times the size of r1. Using this together with r ≤ r1 (since α ≥ 1)
and the sampling distribution being uniform/with replacement, we conclude that at least half of the
samples where 2r points were not sampled in X have r entries outside of {u − r1 + 1, . . . , u} implying
r ≤ |S̄ ∩ [u − r1]|, i.e. S ∈ Spart1. Thus, we conclude that PS [S ∈ Spart1] ≥ PS [|S| ≤ u− 2r] /2 ≥ 1/4
which shows Equation (10).

Establishing Equation (11): For Equation (11) let S be in Spart1 and notice that by Lemma 3.4 we
have with probability at least 1− δ − 2−0.01r1 over H that all the 4 items regarding gH1 in Lemma 3.4
hold. Let ES denote the corresponding event that those 4 properties regarding gH1 in Lemma 3.4 hold.
In particular, Item 1 says that gH1 is indeed a weak learner on DS . Using this event ES we get that

PH

[
LU (A(S, gH1)) ≥

r

10u
, ∀D∈DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ PH

[
LU (A(S, gH1)) ≥

r

10u

∣∣∣ES

]
(1− δ − 2−0.01r1). (12)

11

We now show that conditioned on ES , with probability at least 1/6 the algorithm A has an out-of-sample
error of at least r/(10u) when using gH1 as the weak learner, formally PH

[
LU (A(S, gH1)) ≥ r

10u |ES

]
≥ 1/6.

We further show that 1− δ − 2−0.01r1 ≥ 1/2 which combined with Equation (12) implies Equation (11).
By the definition of the event ES we know we know that in the event ES the random hypothesis set H

satisfies the 4 items of the second bullet of Lemma 3.4 (the ones about gH1). Thus, gH1 is a weak learner
on S by Item 1 and A terminates using only hypotheses given by gH1 , which satisfy the conditions given
in the 4 items. Let wA = (wA

0 , . . . , w
A
|H1|) be the weights that A calculates, where wA

0 is the weight put on
h0. Notice that the weights are random as they depend on the outputs of gH1 which themselves depend
on the random hypothesis set H. From the first item of the second bullet in Lemma 3.4 we know that the
weights wA depend only on gH1(·)(i) for i ∈ S. Thus, we get by Item 2 and Item 3 in Lemma 3.4 that the
minus signs of gH1 in the first r points of S̄ ∩ [u− r1], which we denoted as Fr,S , are independent of the
weights wA. We will use this property below in the second case. In the following let {hi}i=1,...,|H1| be the
hypotheses in H1. Note that whenever a hypothesis hi has a positive weight wi > 0, there must be a
distribution D ∈ ∆X such that gH1(D) = hi. We now consider two cases for the weight wA

0 of the all-one
hypothesis h0. For this let Esmall be the event that wA

0 < 14
√
c3γ2/(1 + 14

√
c3γ2).

Case 1: wA
0 ≥ 14

√
c3γ2/(1 + 14

√
c3γ2) (Esmall). Consider the r1 last points in the universe X = [u],

i.e. the points where h0 is −1. Thus, for i ∈ {u − r1 + 1, . . . , u} we have that the prediction of A is

wA
0 h0(i)+

∑|H1|
j=1 wA

j hj(i) = −wA
0 +(1−wA

0)
∑|H1|

j=1 wA
j /(1−wA

0)hj(i), where we have used that h0(i) = −1
for i ∈ {u − r1 + 1, . . . , u}. Now, conditioned on ES we know by Item 4 in Lemma 3.4 that for any
weighted combination of (hj)1,...,|H1| there are at least r1/10, i’s in {u− r1 + 1, . . . , u} where the linear

combination is at most 14
√
lg(|H1|)/r1 i.e. for such i’s we have

∑H1

j=1wjhj(i) ≤ 14
√
lg(|H1|)/r1. By

Equation (8) and |H1| < |H| we know that 14
√
lg(|H1|)/r1 is strictly less than 14

√
c3γ2. Thus, we get

for such elements i that −wA
0 + (1 − wA

0)
∑|H|

j=1w
A
j /(1 − wA

0)hj(i) < −wA
0 + (1 − wA

0)14
√

c3γ2, which

for wA
0 ≥ 14

√
c3γ2/(1 + 14

√
c3γ2) is less than zero. Thus, conditioned on ES , if A puts more than

14
√
c3γ2/(1 + 14

√
c3γ2) mass on wA

0 , then A gets at least r1/10 ≥ r/10 points misclassified, resulting in
an out of sample error of at least r/(10u). Thus, we conclude that

PH

[
LU (A(S, gH1))≥

r

10u
,Esmall

∣∣∣ES

]
= PH

[
Esmall

∣∣ ES

]
. (13)

Case 2: wA
0 < 14

√
c3γ2/(1 + 14

√
c3γ2) (Esmall). Let R be the set of all indices of hypotheses with

nonzero weights in wA except the index of h0. Notice that R depends on the vector if weights wA which
depends on the random hypothesis set H, making R random too. Further, by the comments before Case 1,
i ∈ R implies that ∃D ∈ ∆X such that gH1(D) = hi. Thus, we have by Item 2 of Lemma 3.4 that for every
j ∈ R the vector (hj(i))i∈Fr,S

corresponds to a random vector of length r with at least (1/2 + 8αγ/2)r
minus signs and the vector is uniformly distributed between all permutations of {−1, 1}r with at least
(1/2 + 8αγ/2)r minus signs (where we used γ′ = 8γ). Further, Item 3 of Lemma 3.4 states that these
vectors (one for each hypothesis j ∈ R) are independent of each other and of (hj(i))j∈R,i∈Fr,S

, which the

weights wi are a function of. Therefore, the vectors (hj(i))i∈Fr,S
for j ∈ R are also independent of the

weights. If we now let w̃A
j := wA

j /(1− wA
0) for j ∈ R and use that for every i ∈ Fr,S we know h0(i) = 1,

we get for i ∈ Fr,S that

PH

[
wA
0 h0(i) +

|H1|∑
j=1

wA
j hj(i) < 0, Esmall

∣∣∣∣ ES

]

=PH

[∑
j∈R

w̃A
j hj(i) < −wA

0 /(1− wA
0), Esmall

∣∣∣∣ ES

]

12

Since −x/(1− x) is decreasing for 0 ≤ x ≤ 1 and we have wA
0 < 14

√
c3γ2/(1 + 14

√
c3γ2), which implies

−wA
0 /(1− wA

0) > −14
√
c3γ2 and we get that

≥PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ,Esmall

∣∣∣∣ ES

]
Now using the law of total probability gives us

=

∫
PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ,Esmall

∣∣∣∣ ES , w̃
A = z

]
dPH

[
w̃A = z | ES

]
=

∫
Esmall

PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ

∣∣∣∣ ES , w̃
A = z

]
dPH

[
w̃A = z | ES

]
(14)

We will now work towards lower bounding PH

[∑
j∈R w̃A

j hj(i) ≤ −14
√
c3γ

∣∣∣ ES , w̃
A = z

]
by 1/4 for any

z ∈ Esmall. As noted above, we have for i ∈ Fr,S that (hj(i))j∈R are −1 with probability at least 1/2+4αγ,
independent of each other and independent of the weights wA. Thus, using that we chose α = 5 · 28√c3
and by invoking Lemma 3.2 with α̃ = 4α = 4 · 5 · 28√c3 and α′ = 14

√
c3, we get that

4α̃α′

(2α̃− α′)2
=

4(4 · 5 · 28√c3) · (14
√
c3)(

2 · 4 · 5 · 28√c3 − 14
√
c3
)2 =

42 · 5 · 2
(2 · 4 · 5 · 2− 1)2

≤ 1

4
.

Thus, min
(
1
4 ,

4α̃α′

(2α̃−α′)2

)
in Lemma 3.2 is realized by 1

4 and we get

PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ

∣∣∣∣ ES , w̃
A = z

]
≥ 1

4
. (15)

Notice that the condition γ ≤ 1/(2α̃) = 1/(8α) of Lemma 3.2 is already satisfied since we already imposed
the condition γ ≤ c0/(16α) with c0 ≤ 1 in the main theorem in order to apply Lemma 3.4.

We now consider the error of the points in Fr,S , or more specifically, the part of the total error that is
induced by points from Fr,S . We get the following upper bound by observing that there are r points in
Fr,S :

EFr,S
= (1/u)

∑
i∈Fr,S

1
sign

(∑|H1|
j=0 wA

j hj(i)
)
̸=1

= (1/u)
∑

i∈Fr,S

1∑|H1|
j=0 wA

j hj(i)<0

≤ r/u.

By Equation (15) we get that EH

[
EFr,S

| ES , w̃
A = z

]
≥ r/(4u). This allows us to use a reverse Chernoff

bound from which we get that

PH

[
EFr,S

≥ r/(10u)
∣∣ ES , w̃

A = z
]
≥ r/(4u)− r/(10u)

r/u− r/(10u)
=

1/4− 1/10

1− 1/10
= 1/6. (16)

13

Using that LU ≥ EFr,S
, Equation (16), and following calculations as in Equation (14) we conclude that

PH

[
LU (A(S, gH1)) ≥

r

10u
,Esmall

∣∣∣ ES

]
≥ PH

[
EFr,S

≥ r

10u
,Esmall

∣∣∣ ES

]
=

∫
Esmall

PH

[
EFr,S

≥ r/(10u)
∣∣ ES , w̃

A = z
]

dPH

[
w̃A = z | ES

]
≥ PH [Esmall | ES] /6 (17)

Combining the two cases: Now using Equation (13) and Equation (17) we get that

PH

[
LU (A(S, gH1)) ≥

r

10u

∣∣∣ ES

]
≥ 1/6. (18)

Combining this with Equation (12) we conclude that

PH

[
LU (A(S, gH1)) ≥

r

10u
,∀D ∈ DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ 1

6
(1− δ − 2−0.01r1), (19)

that is, for any S ∈ Spart1, the function gH1 is a weak learner on DS and A using gH1 makes at least
r/(10u) errors with probability at least (1− δ− 2−0.01r1)/6 over the random hypothesis set H. Now, since
γ ≤ 1/(16α), c3 ≥ 1, and α = 5 · 28√c3 we get that r1 = α ln(m)/(8γ)2 ≥ 4α3 ln (m) ≥ 4(̇5 · 28)3 ln (m).
Using m ≥ 2 we get that 2−0.01r1 ≤ 1/4 and since we chose δ = 1/4 we get that

PH

[
LU (A(S, gH1)) ≥

r

10u
,∀D ∈ DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ 1

12
,

which shows Equation (11) and concludes the proof.

4 Proof of Lemmas

In this section, we restate the lemmas from Section 3 and give their proofs. A main part of the proof
in Section 3 makes use of the functions gH1 and tH2 which on the random hypothesis set H have “nice”
properties (Lemma 3.4). As gH1 and tH2 played the main role in Section 3 we start off by proving
Lemma 3.4. To prove the lemma, we need the following algorithm which we use to show the existence of
a the hypotheses gH1 and tH2 will output.

14

Algorithm 2: Majority Voter

Input: (H1, . . . ,Hk), S ⊂ X
Output: f adversarial weak learner on S

1 η ← ln ((1 + 2γ) / (1− 2γ)) /2
2 f0(i)← 0 for all i ∈ u
3 D1(i)← 1

S for all i ∈ S
4 for j ∈ {1, . . . , k} do
5 if

∑u−r1
i=1,i∈S Dj(i) > 1/2 + γ then

6 set hj = h0 (notice that if this is the case then
∑

i∈S Dj(i)hj(i) ≥ 2γ)
7 else if there is a hypothesis hj ∈ Hj such that

∑
i∈S Dj(i)hj(i) ≥ 2γ and hj has (1/2 + αγ/2)r

minus signs on the first r elements in S̄ ∩ [u− r1] then
8 choose this hypothesis
9 else

10 return Fail
11 fj ← fj−1 + hj
12 Zj ←

∑
i∈S Dj(i) exp (−ηhj(i))

13 for i ∈ S do
14 Dj+1(i)← Dj(i) exp (−ηhj(i)) /Zj

15 return f = fk/k

In the following proof of Lemma 3.4 we will run the above algorithm on a sequence of random hypothesis
sets whose union will be H. Running the above algorithm will then create a voting classifier with a γ
advantage which implies that one of the hypotheses also has this advantage. Thus, H contains a hypothesis
with a γ advantage that gH1 or tH2 can output. In the case of gH1 we will also make these hypotheses
adversarial by using the minus signs in Line 8. For the above argument to go through we need that the
random hypothesis set H contains at least one hypothesis that has a γ advantage given a distribution
D over the universe X (for all distributions D that the algorithm computes). This is captured in the
following lemma, which we will prove later in this section.

Lemma 4.1. Let c0, c1 ≤ 1, and c2 ≥ 1 denote some universal constants. Let X be a universe of size u
and D ∈ ∆X a distribution over X . Further let r and r1 be non-negative numbers such that r1 = α2r for
α ≥ 1 and r1 ≤ u. Let 0 < δ ≤ 1, γ ≤ c0/(2α), and k = ln (u) γ−2. Let Hi be a random hypothesis set
consisting of h0 and independent random vectors in {−1, 1}u with i.i.d. uniform random entries. Further
let the size of Hi be N/k without counting h0, where N = 2c−2

1 k ln (k/δ) exp(8c2γ
2r1). With the above,

we have with probability at least 1− δ/k over Hi that:

1. There exists a hypothesis h ∈ Hi such that∑
i∈supp(D)

Dih(i) ≥ 2γ

where h = h0 if
∑u−r1

i=1,i∈supp(D)Di > 1/2 + γ else h is random.

Further, if
∑u−r1

i=1,i∈supp(D)Di ≤ 1/2 + γ and r ≤ |supp(D) ∩ [u− r1]|

2. h in Item 1 is such that the first r entries of {h(i)}
i∈supp(D)∩[u−r1]

has at least (1/2+αγ/2)r minus
signs.

Recall that supp(D) in AdaBoost is just the training set S (without the labels which are all 1 in our
setting). Intuitively, the first item states that there is a hypothesis with a sufficient advantage on the
training set. In the case that there is not much weight on the first part (where h0 is positive, i.e. D focuses
on the second part) and there are at least r points in the first part that are not part of the training set,
then Item 2 states that we can even find a hypothesis with many minus signs in this first part (outside of

15

the training data). Since we are trying to learn the all ones hypothesis, those minus signs will induce a
large error later on.

Further, we need the following lemma in the proof of Lemma 3.4, to say that for any linear combination
over hypotheses in H1 can not achieve a large advantage on too many points within the last r1 points of
X . Thus, it is impossible to achieve a large advantage where h0 is −1.

Lemma 4.2. Let A be uniform random in {−1, 1}r×n and assume that r ≥ 40 lg(n). With probability
at least 1 − 2−0.01r, it holds for all w ∈ Rn with ∥w∥1 = 1 that Aw has at least r/10 entries i with
(Aw)i < 14

√
lg(n)/r.

We will prove Lemma 4.2 later in this section. We now restate Lemma 3.4 and give the proof under the
assumption that Lemma 4.1 and Lemma 4.2 hold.

Lemma 3.4. Let c0, c1 ≤ 1, and c2 ≥ 1 denote universal constants. For a universe X of size u, integers
r, r1 with r1 = α2r for α ≥ 1, and γ ≤ c0/(2α) there exist two independent random hypothesis sets H1

and H2 such that

• For H := H1 ∪H2 and k = ln (u) γ−2,

|H| ≤ 4c−2
1 k ln (k/δ) exp(8c2γ

2r1) + 1 (4)

• There exists a mapping gH1 : ∆X → H1 such that for r1 ≥ 40 lg(|H1|) and S ∈ Spart1 := {S :
|S̄ ∩ [u− r1]| ≥ r}, the mapping gH1 and the hypothesis set H1 satisfy the following four properties
with probability at least 1− δ − 2−0.01r1 (over the outcome of H1):

1. For any distribution D ∈ DS := {D : D(i) > 0 for i ∈ S else D(i) = 0, ∥D∥1 = 1} supported on
S,
∑

i∈S D(i)gH1(D)(i) ≥ γ/4.

2. Let Fr,S denote the first r points from S̄ ∩ [u− r1] and recall that supp(D) = S. If for D ∈ DS,
gH1(D) ̸= h0, then the hypothesis gH1(D) has (1/2 + αγ/2)r minus signs in Fr,S. Further, the
outcome of gH1(D) on Fr,S is uniformly distributed among all vectors in {−1, 1}r which have
at least (1/2 + αγ/2)r minus signs.

3. The randomness over Fr,S in Item 2 is independent for all hypotheses in {gH1(D) for D ∈ ∆X }.
Further, the outcome of gH1 on Fr,S is independent of gH1 on Fr,S.

4. For any weight vector w ∈ ∆H1\h0
:= {w ∈ R|H1| : 0 ≤ wi, w0 = 0,

∑
i∈|H1|wi = 1} weigh-

ing the hypotheses in H1, we have for at least r1/10 of the i’s in {u − r1 + 1, . . . , u}, that∑
j∈|H1|wjhj(i) ≤ 14

√
lg (|H1|) /r1.

• There exists a mapping tH2 : D → H2 such that with probability at least 1− δ over H2, it holds for
all D ∈ ∆X that

∑
i∈[u]D(i)tH2(D)(i) ≥ γ/4.

Proof. Let H1 = ∪ki=1Hi and H2 = ∪2ki=k+1Hi for independent outcomes of Hi from Lemma 4.1. In the
proof, we consider the three bullets of the lemma separately.
The first bullet, i.e. the bound on the size of H follows immediately from Lemma 4.1 and the bound on
|Hi| of N/k, and the fact that we use 2k hypothesis sets Hi in H. We thus end up with at most

2N = 4c−2
0 k ln (k/δ) exp(8c2γ

2r1)

random hypothesis in H adding h0 gives the desired bound on H’s size. Thus, what remains to be shown
is the second and third bullet of Lemma 4.1.

16

Second bullet / Properties of the event ES: We now show the second bullet, which intuitively states
that gH1 outputs hypothesès with a γ/4 advantage on S, many minus signs in Fr,S , and linear combinations
of them on the last r1 points can not all have large margins (the part where h0 is −1).

Let the function gH1 that searches for the first hypothesis in H1, . . . ,Hk which has a γ/4 advantage (i.e.
fulfils Item 1 in Lemma 3.4) for a given distribution D ∈ ∆X and additionally has at least (1/2 + αγ/2)r
minus signs in the first r points of supp(D) ∩ [u− r1] = S̄ ∩ [u− r1], matching Algorithm 2. If there is
no such hypothesis, gH1 chooses the hypothesis h0. Let further S ∈ Spart1 and define E1

S to be the event
(over the outcome H of H) that

E1
S :=

{
H : ∀D ∈ DS ∃h ∈ H such that:

∑
i∈S
D(i)h(i) ≥ γ/4 and h(Fr,S) has (1/2 + αγ/2)r minus signs

or h0 ∈ H and
∑
i∈S
D(i)h0(i) ≥ γ/4

}
. (20)

E1
S will be one part of ES (ES will be a union of two events) and used in arguing for Item 1, Item 2,

and Item 3. We now argue that E1
S happens with probability at least 1 − δ over H1. For this we run

Algorithm 2 on input S ∈ Spart1 and H1, . . . ,Hk. Using Lemma 3.4, we show that a run of Algorithm 2
finishes on input S and H1, . . . ,Hk with probability at least 1− δ and that this implies that H1 is in the
event E1

S . To see this we show that whenever Algorithm 2 finishes, it produces an f such that f(i) ≥ γ/4
for any i ∈ S (large margin on S) and that the hypotheses that f is made of (when they are not h0) have
at least (1/2 + αγ/2)r minus signs in the first r points of S̄ ∩ [u− r1]. We then notice that f(i) ≥ γ/4 for
any i ∈ S implies that for any D ∈ DS one of the hypotheses f is made of must have a γ/4 advantage
on the all-ones label. This follows from supp(D) = S for D ∈ DS , D being a probability distribution,
f = (1/k)

∑k
j=1 hj , and

γ/4 ≤
∑
i∈S

DS(i)f(i) =

k∑
j=1

1/k
∑
i∈S

DS(i)hj(i). (21)

We therefore conclude that the event that Algorithm 2 finishes is contained in E1
S . Thus if we can show

that Algorithm 2 with input S ∈ Spart1 and H1, . . . ,Hk finish with probability at least 1− δ, then H1 is
in E1

S with probability at least 1− δ over H1. We show that Algorithm 2 finishes with probability 1− δ
in the end of this section and has the promised guarantees.
To handle Item 4, we define the event E2 as

E2 :=

H : ∀w ∈ ∆H\h0
at least r1/10 i’s in {u− r1 + 1, . . . , u} satisfies:

∑
j∈|H|

wjhj(i) ≤ 14
√

lg (|H|) /r1

 .

(22)

We show that H1 is in E2 with probability at least 1−2−0.01r1 over H1. To see this, we form a matrix of all
hypotheses created by H1, . . . ,Hk excluding h0 (the hypotheses as columns). Now using r1 ≥ 40 lg(|H1|)
by the assumption in the bullet of the lemma, Lemma 4.2 invoked on the lower r1 × |H1| part of this
matrix, gives us that H1 is in E2 with probability at least 1− 2−0.01r1 . Now setting ES = E1

S ∩ E2 and
using a union bound we get that that H1 is in ES with probability at least 1− δ − 2−0.01r1 .
First notice that conditioned on ES , we get by the E2 part of ES that Item 4 of the second bullet

follows. From the definition of gH1 choosing a hypothesis with γ/4 advantage with at least (1/2 + αγ/2)r
minus signs in Fr,S or else h0 it follows from the E1

S part of ES that Item 1 holds and the guarantee
about at least (1/2 + αγ/2)r minus signs in Fr,S of Item 2. Further, the part of Item 2 claiming that
the minus signs in Fr,S of gH1 are uniformly distributed between any permutation in {−1, 1}r with at
least (1/2 + αγ/2)r minus signs follows from the hypothesis in H1\h0 being random vectors in {−1, 1}u
with i.i.d. uniform entries, i.e. all outcomes of {−1, 1}r with at least (1/2 + αγ/2)r minus signs are
equally likely. That the entries of H1\h0 are i.i.d. and the constrains different from, gH1 having at least

17

(1/2 + αγ/2)r minus signs in Fr,S , imposed in E1
S and E2 only depend on points in Fr,S gives the claims

of independence in Item 3 for gH1 on Fr,S .
What is left to show is that Algorithm 2 with input H1, . . . ,Hk and S finishes with probability at least

1− δ and that on the event that Algorithm 2 finishes it produces an f such that f(i) ≥ γ/4 for any i ∈ S
and that the hypotheses that f is made of (when they are not h0) have at least (1/2 + αγ/2)r minus
signs in the first r points of Fr,S = S̄ ∩ [u − r1]. By Lemma 4.1, Algorithm 2 with S and H1, . . . ,Hk

as input finishes with probability at least (1− δ/k)k ≥ 1− δ, where we have used the independence of
the hypothesis sets H1, . . . ,Hk. The claim that the f produced when Algorithm 2 finishes consists of
hypotheses (when they are not h0) with at least (1/2 + αγ/2)r minus signs in Fr,S follows from Line 6,
Line 8, and Line 10 of Algorithm 2.
Thus, we still need to show that f(i) ≥ γ/4 for all i ∈ S when Algorithm 2 finishes. In this case, we

know that the hypotheses h1, . . . , hk chosen by Algorithm 2 fulfill Line 6 and Line 8 in Algorithm 2 which
ensures that hypothesis chosen in the i’th round hi for the distribution in the i’th round Di has a 2γ
advantage. Let η = 1

2 ln
1+2γ
1−2γ and fk = k · f =

∑k
i=1 hi. We now follow a standard AdaBoost argument to

show that exp (−ηfk(i)) ≤ exp
(
ln (|S|)− 2kγ2

)
, for any i ∈ S when Algorithm 2 finishes.

Showing exp (−ηfk(i)) ≤ exp
(
ln (|S|)− 2kγ2

)
, for any i ∈ S implies that f(i) ≥

(
2kγ2 − ln (|S|)

)
/(kη)

and since for γ < 1/4, it holds that

η =
1

2
ln

(
1 +

4γ

1− 2γ

)
≤ 2γ

1− 2γ
≤ 4γ

we get

f(i) ≥ 2kγ2 − ln (|S|)
4kγ

≥ γ

2
− ln(|S|)

4kγ

and using that k = ln(u)γ−2 and S ⊆ [u] it follows that f(i) ≥ γ/4. Thus, if we show exp (−ηfk(i)) ≤
exp

(
ln (|S|)− 2kγ2

)
for all i ∈ S we are done. Let Zl be the normalization factor for the multiplicative

weight update step in Algorithm 2. We now argue that exp (−ηfj(i)) = |S|Dj+1(i)
∏

l∈[j] Zl for all j ∈ [k]

and i ∈ [u] and that
∏

l∈[k] Zl ≤ (1− 2γ2)k. Showing these two relations implies that

exp (−ηfk(i)) ≤ |S|
∏
l∈[k]

Zl ≤ |S|(1− 2γ2)k ≤ exp
(
ln (|S|)− 2kγ2

)
(23)

where the first inequality uses Dk+1 ≤ 1 and the last inequality follows from lg(1 + x) ≤ x for x > −1.
We show that exp (−ηfj(i)) = |S|Dj+1(i)

∏
l∈[j] Zl for all j ∈ [k] and i ∈ [u] by induction. For the

induction base j = 1 we have exp (−ηf1(i)) = exp (−ηh1(i)) and |S|D2(i)Z1 = |S|D1(i) exp (−ηh1) =
exp (−ηh1), where we have used that D2(i) = D1(i) exp (−ηh1(i)) /Z1 and D1(i) = 1/|S|. For the
induction step we have

exp (−ηfj+1(i)) = exp (−η (fj(i) + hj+1(i))) = |S|Dj+1(i)
∏
l∈[j]

Zl exp (−ηhj+1(i)) = |S|Dj+2(i)
∏

l∈[j+1]

Zl

where the second equality follows from the induction hypothesis for j and the last by Dj+2(i) =
Dj+1(i) exp(ηhj+1(i))/Zj+1 (see Algorithm 2).

To show
∏

l∈[k] Zl ≤ (1− 2γ2)k, i.e. the second inequality in Equation (23), we show Zl ≤ (1− 2γ2) for

18

l = 1, . . . , k. Using that exp(η) =
(
1+2γ
1−2γ

)1/2
we notice that

Zl =
∑
i∈S

Dl(i) exp
(
−ηhl (i)

)
=

∑
i∈S:

hl(i)=1

Dl(i) exp (−η) +
∑
i∈S:

hl(i)=−1

Dl(i) exp (η)

=
∑
i∈S:

hl(i)=1

Dl(i)

√
1− 2γ

1 + 2γ
+

1−
∑
i∈S:

hl(i)=1

Dl(i)

√1 + 2γ

1− 2γ

=

 ∑
i∈S:

hl(i)=1

Dl(i)
1

1 + 2γ
+

1−
∑
i∈S:

hl(i)=1

Dl(i)

 1

1− 2γ

√(1 + 2γ) (1− 2γ). (24)

Using that we noticed that Line 6, Line 8, and Line 10 in Algorithm 2 together with Algorithm 2 finishing
implied

∑
i∈S Dj(i)hj(i) ≥ 2γ for any j ∈ k we get that

∑
i∈S

hl(i)=1

Dl(i) =
∑
i∈S

Dl(i)
1 + hl(i)

2
≥ 1/2 + γ,

and using this together with x
1+2γ + 1−x

1−2γ being decreasing we get ∑
i∈S

hl(i)=1

Dl(i)
1

1 + 2γ
+

1−
∑
i∈S

hl(i)=1

Dl(i)

 1

1− 2γ

 ≤ 1.

Further using that (1−2x)(1+2x) = 1−4x2 ≤ (1−2x2)2 we conclude by Equation (24) that Zl ≤ (1−2γ2)
as claimed.

Third bullet / Properties of tH2 : Let tH2 be such that given a D ∈ ∆X it returns the first hypothesis in
H2 that has a γ/4 advantage on D otherwise report fail. Note that tH2 does not include any adversarial
behavior, it is a simple and straightforward γ-weak learner. We now show with probability at least 1− δ
over H2 that tH2 succeeds simultaneously for all D ∈ ∆X . Here, we use a slightly different argument
compared to the case for gH1 above and run Algorithm 2 in a slightly modified version. The slight
modification is that in Line 8 we have no constraints on the number of minus signs in the first r positions
of S̄∩ [u− r1] and that we run the algorithm with the input X and Hk+1, . . . ,H2k (instead of H1, . . . ,Hk).
We then show that this variant of Algorithm 2 succeeds with probability at least 1 − δ and that the
produced f satisfies f(i) ≥ γ/4 for all i ∈ [u]. By the same argument as above for Equation (21), it
follows that f(i) ≥ γ/4 for all i ∈ u implies that for any D there exist an h ∈ Hk+1, . . . ,H2k with a γ/4
advantage on D. Thus, the event that this slightly modified version of Algorithm 2 succeeds on X and
Hk+1, . . . ,H2k is contained in the eventH : ∀D ∈ ∆X ∃h ∈ H such that:

∑
i∈[u]

D(i)h(i) ≥ γ/4

 .

Hence, with probability at least 1− δ for any D ∈ ∆X , tH2 finds a hypothesis in H2 with γ/4 advantage
(choosing the first it finds) and outputs this as the weak learner for the distribution D.

19

The claim that Algorithm 2 with X and Hk+1, . . . ,H2k succeeds with probability at least 1− δ over
H2 follows as in the gH1-case from Lemma 4.1 and Hk+1, . . . ,H2k being independent.
We now notice that when we argued that the non-modified version of Algorithm 2 finishing would

produce an f such that f(i) ≥ γ/4 for i ∈ S, we never used the constraint on the minus signs, and only
that |S| ≤ u. Thus, reusing the above arguments but now for the modified version of Algorithm 2 finishing,
with S = X , again yields that the produced f satisfies f(i) ≥ γ/4 for i ∈ X , which concludes the proof of
Lemma 3.4.

Having established the proof of Lemma 3.4 using Lemma 4.2 and Lemma 4.1 we now move on to the
proof of those. We start by restating and giving the proof of Lemma 4.2.

Lemma 4.2. Let A be uniform random in {−1, 1}r×n and assume that r ≥ 40 lg(n). With probability
at least 1 − 2−0.01r, it holds for all w ∈ Rn with ∥w∥1 = 1 that Aw has at least r/10 entries i with
(Aw)i < 14

√
lg(n)/r.

Proof. The following proof proceeds by bounding the probability of the complementary event of the above,
i.e. we will show that the probability of there existing a w ∈ Rn, ∥w∥ = 1 such that Aw has strictly less
than r/10 entries such that (Aw)i < 14

√
lg(n)/r happens with probability at most 2−0.01r. For this we

first discretize the set of all unit vectors, call this set W. We then show that if there exists a unit vector
with the above property, then there exists a vector w̃ in W such that Aw̃ has at least (13/20)r strictly
positive entries. Now using that A has i.i.d. uniform {−1, 1}-random variables as entries, (Aw̃)i is strictly
positive with a probability at most 1/2, i.e. in expectation we see at most (1/2)r strictly positive entries.
The result then follows by applying Hoeffding’s inequality and union bounding over W.

Consider the set W containing all w whose coordinates wi are of the form ji40 lg(n)/r for integers
ji ∈ {−r/(40 lg n), . . . , r/(40 lg n)} and ∥w∥1 = 1. We now want to bound |W|. For this, consider throwing
r/(40 lg(n)) balls with a sign and absolute value 40 lg(n)/r into n buckets. There are (2n)r/(40 lgn) ≤ 2r/20

outcomes of this experiment. We now map each w ∈ W to an outcome of the above experiment. For this,
notice that

∑n
i=1 ji = r/(40 lg(n)) since w ∈ W has unit length. Now for a w ∈ W consider any outcome

of the experiment where for i = 1, . . . , n: ji balls fell into the i’th bucket, and all the balls signs coincide
with sign(wi). In this case the value of the i’th bucket is the same value as wi. Thus, we conclude that
|W| ≤ 2r/20.
Now consider an outcome A of the random matrix A and assume there exists w ∈ Rn with ∥w∥1 = 1

such that Aw has strictly less than r/10 entries i with (Aw)i < 14
√
lg(n)/r. We now show that this

implies that there exists a vector w̃ ∈ W such that Aw̃ has at least (13/20)r strictly positive entries. For
t = 1, . . . , r/(40 lg n) sample independently an index j(t) from w such that the i’th index is sampled with
probability |wi|/∥w∥1. Let w̃ be the vector whose i’th coordinate is ji sign(wi)40 lg(n)/r. Here ji denotes
the number of times index i was sampled.

Consider any coordinate (Aw̃)i. Using i.i.d. random variablesXt taking the value ai,j(t) sign(wj(t))40 lg(n)/r,

we can write (Aw̃)i as
∑r/(40 lgn)

t=1 Xt. Note that E[Xt] =
∑n

i=1 ai,jwi40 lg(n)/r = (Aw)i40 lg(n)/r. Thus,
we see that E[(Aw̃)i] = (r/(40 lg n))E[X1] = (Aw)i. Notice that sinceXt takes values in {−40 lg(n)/r, 40 lg(n)/r},
its variance is at most (40 lg(n)/r)2. Further, by the independence of the Xt’s, we have that (Aw̃)i
has variance at most (r/(40 lg n))(40 lg(n)/r)2 = 40 lg(n)/r. Thus, Chebyshev’s inequality implies that
Pr[|(Aw̃)i − (Aw)i| > 2

√
40 lg(n)/r] ≤ 1/4. Now noticing that w̃ ∈ W and using the linearity of

expectation, we conclude that there must be some vector w̃ ∈ W for which there are less than r/4 entries i
such that |(Aw̃)i − (Aw)i| > 2

√
40 lg(n)/r. This, combined with the assumption of (Aw)i < 14

√
lg(n)/r

for strictly less than r/10 entries, implies that Aw̃ has at least r − r/10− r/4 = (13/20)r entries i such
that (Aw)i ≥ 14

√
lg(n)/r and |(Aw̃)i− (Aw)i| > 2

√
40 lg(n)/r. Thus, we conclude that at least (13/20)r

entries i satisfy (Aw̃i) ≥ 14
√
lg(n)/r − 2

√
40 lg(n)/r > 0, i.e. if there exists w ∈ Rn with ∥w∥1 = 1 such

that Aw has strictly less than r/10 entries i then there also exists w̃ ∈ W such that Aw̃ has at least
(13/20)r entries that are strictly positive.

Thus, what remains is to argue that W with small probability over A contains a vector w with at
least (13/20)r entries i such that (Aw)i > 0. For this, consider any fixed w ∈ W. The probability that

20

(Aw)i > 0 is at most 1/2 for all i. Now Hoeffding’s inequality implies that the probability that there are
(13/20)r entries i with (Aw)i > 0 is no more than exp(−2((3/10)r)2/(4r)) = exp(−(9/200)r). A union
bound over all of W (recall |W| ≤ 2r/20) shows that the probability that there exists a vector w ∈ W
which has at least (13/20)r strictly positive entries is at most e−(9/200)r2r/20 < 2−0.01r over A. Thus, we
conclude that the probability of existence of a w ∈ Rn with ∥w∥1 = 1 such that Aw has strictly less than
r/10 entries i with (Aw)i < 14

√
lg(n)/r is at most 2−0.01r which concludes the proof.

To show Lemma 4.1 we need the following corollary which follows from a use of the Montgomery-Smith
inequality [11]. The corollary says that a linear combination of i.i.d. uniform {−1, 1}-variables where the
coefficient’s absolute values sums to at least 1/2− β/2 with some probability are greater than β. This
will be used in Lemma 4.1 to say that Hi for a given D ∈ ∆X contains a hypothesis h with an advantage
of 2γ.

Corollary 4.3. There exist universal constants c̃1, c̃2 ≤ 1, and c̃3 ≥ 1 such that for β ≤ c̃1/6, x ∈ Rn,
xi ≥ 0 ∀i ∈ [n], and

∑n
i=1 xi ≥ (1− β)/2, we have for a random h ∈ {−1, 1}n with i.i.d. uniform entries

that

P

[
n∑

i=1

h(i)xi ≥ β

]
≥ c̃2 exp

(
−c̃3

16β2n

c̃21

)
We will show Corollary 4.3 after the proof of Lemma 4.1. We now restate and give the proof of

Lemma 4.1

Lemma 4.1. Let c0, c1 ≤ 1, and c2 ≥ 1 denote some universal constants. Let X be a universe of size u
and D ∈ ∆X a distribution over X . Further let r and r1 be non-negative numbers such that r1 = α2r for
α ≥ 1 and r1 ≤ u. Let 0 < δ ≤ 1, γ ≤ c0/(2α), and k = ln (u) γ−2. Let Hi be a random hypothesis set
consisting of h0 and independent random vectors in {−1, 1}u with i.i.d. uniform random entries. Further
let the size of Hi be N/k without counting h0, where N = 2c−2

1 k ln (k/δ) exp(8c2γ
2r1). With the above,

we have with probability at least 1− δ/k over Hi that:

1. There exists a hypothesis h ∈ Hi such that∑
i∈supp(D)

Dih(i) ≥ 2γ

where h = h0 if
∑u−r1

i=1,i∈supp(D)Di > 1/2 + γ else h is random.

Further, if
∑u−r1

i=1,i∈supp(D)Di ≤ 1/2 + γ and r ≤ |supp(D) ∩ [u− r1]|

2. h in Item 1 is such that the first r entries of {h(i)}
i∈supp(D)∩[u−r1]

has at least (1/2+αγ/2)r minus
signs.

Proof. If the distribution D has more than 1/2+γ mass on the points 1, . . . , u−r1, i.e.
∑u−r1

i=1,i∈supp(D)Di >

1/2 + γ, we have
∑u

i=u−r1+1,i∈supp(D)Di < 1/2− γ. Thus, we notice that h0 satisfies

∑
i∈supp(D)

Dih0(i) =

u−r1∑
i=1

i∈supp(D)

Di −
u∑

i=u−r1+1
i∈supp(D)

Di ≥ 2γ,

i.e. h0 fulfills Item 1.
Now assume that

∑u−r1
i=1,i∈supp(D)Di ≤ 1/2 + γ. Then we have 1/2 − γ mass on the points {u − r1 +

1, u} ∩ supp(D), i.e.
∑u

i=u−r1+1,i∈supp(D)Di ≥ 1/2 − γ. Since we know that the entries of any h in Hi

for h ̸= h0 are i.i.d. uniform {−1, 1}-variables, we get that
∑u−r1

i=1,i∈supp(D) h(i)Di ≥ 0 with probability

1/2. Thus, we give a lower bound on the probability of
∑u

i=u−r1+1,i∈supp(D) h(i)Di ≥ 2γ. Using that

21

∑u
i=u−r1+1,i∈supp(D)Di ≥ 1/2− γ (by the assumption in this paragraph), Corollary 4.3 implies that for

2γ ≤ c0

P

 u∑
i=u−r1+1,i∈supp(D)

Dih(i) ≥ 2γ

 ≥ c1 exp(−4c2γ2r1)

so we conclude by the independence of the entries in h(i) that

P

 ∑
i∈supp(D)

Dih(i) ≥ 2γ

 ≥ P

 u−r1∑
i=1

i∈supp(D)

Dih(i) ≥ 0,

u∑
i=u−r1+1
i∈supp(D)

Dih(i) ≥ 2γ

 ≥ c1 exp(−4c2γ2r1)/2, (25)

where c0, c1, and c2 are universal constants (some of them are the product of universal constants in
Corollary 4.3). Thus, Item 1 holds for every h in Hi\h0 with at least the above probability. Now if
r ≤ |supp(D) ∩ [u− r1]| let Fr be the first r indices of supp(D) ∩ {1, . . . , u− r1}. Note that Fr has the
same role as Fr,S in other parts of the paper, but in this lemma we make no assumptions about the
support of D. Then by Corollary 4.3, we get that for αγ ≤ c0

P

[∑
i∈Fr

h(i)/r ≤ −αγ

]
= P

[∑
i∈Fr

h(i)/r ≥ αγ

]
≥ c1 exp(−c2(αγ)2r) ≥ c1 exp(−4c2γ2r1), (26)

where the equality is due to the h(i) being i.d.d. uniform {−1, 1}-variables and the last inequality follows
from r ≤ r1. If we have

∑
i∈Fr

h(i)/r ≤ −αγ then {h(i)}i∈Fr must contain at least (1/2 + αγ/2)r minus
ones. Thus, we conclude by Equation (25) and Equation (26), and the independence of the entries of h
that

P

 ∑
i∈supp(D)

h(i)Di ≥ 2γ, |{i ∈ Fr | h(i) = −1}| ≥ (1/2 + αγ/2)r

 ≥ c21 exp(−8c2γ2r1)/2.

By the definition of N = 2c−2
1 k ln (k/δ) exp(8c2γ

2r1) we get that we have that

c21 exp(−8c2γ2r1)/2 =
k ln(k/δ)

N
.

Now define f(h) = 1{
∑

i∈supp(D) h(i)Di≥2γ,|{i∈Fr|h(i)=−1}|≥(1/2+αγ/2)r}. Using f , independence of the h’s in

Hi, and that the size of Hi is N/k we get that

Pr [∃h ∈ Hi s.t. f(h) = 1] = 1− Pr [∀h ∈ Hi we have f(h) = 0]

= 1− Pr [f(h) = 0]N/k

= 1− (1− Pr [f(h) = 1])N/k

≥ 1−
(
1− k ln(k/δ)

N

)N/k

≥ 1− exp(− ln (k/δ))

= 1− δ/k

where the last inequality follows from (1 + x/n)n = exp (n ln(1 + x/n)) ≤ exp (x) for n ≥ 1 and x ≥ −1,
since ln(1 + x) ≤ x for x ≥ −1. This shows Item 1 in the case

∑u−r1
i=1,i∈supp(D)Di ≤ 1/2 + γ and Item 2 if

r ≤ |supp(D) ∩ [u− r1]| which finishes the proof of Lemma 4.1.

We now prove and restate Corollary 4.3.

22

Corollary 4.3. There exist universal constants c̃1, c̃2 ≤ 1, and c̃3 ≥ 1 such that for β ≤ c̃1/6, x ∈ Rn,
xi ≥ 0 ∀i ∈ [n], and

∑n
i=1 xi ≥ (1− β)/2, we have for a random h ∈ {−1, 1}n with i.i.d. uniform entries

that

P

[
n∑

i=1

h(i)xi ≥ β

]
≥ c̃2 exp

(
−c̃3

16β2n

c̃21

)
Proof. In the following we will assume that the xi’s are ordered by their absolute value, which we can
assume without loss of generality since the h(i)’s are i.d.d. uniform {−1, 1}-variables. By [11] there exist
universal constants c̃1, c̃2, and c̃3 such that

f(x, t) :=

min(⌈t2⌉,n)∑
i=1

xi + t

√√√√ n∑
i=⌈t2⌉+1

x2i , (27)

and

P

[
n∑

i=1

h(i)xi ≥ c̃1f(x, t)

]
≥ c̃2 exp(−c̃3t2). (28)

Notice that we may assume that c̃1 < 1. If c̃1 was greater than 1, we could lower it to 1 and the claim
in Equation (28) would still hold. Similarly, we also assume c̃2 ≤ 1 and c̃3 ≥ 1.

Now consider t = 4β
√
n

c̃1
which implies that t2 ≤ n/2 since β ≤ c̃1/6. Thus the first sum of Equation (27)

goes up to ⌈t2⌉. Formally, if c̃1f(x, t) ≥ c̃1
∑⌈t2⌉

i=1 xi ≥ β we get by Equation (27) and Equation (28) that

P

[
n∑
i

h(i)xi ≥ β

]
≥ P

[
n∑

i=1

h(i)xi ≥ c̃1f(x, t)

]
≥ c̃2 exp(−c̃3t2) = c̃2 exp

(
−c̃3

16β2n

c̃21

)
.

For the other case, assume that c̃1
∑⌈t2⌉

i=1 xi ≤ β, which combined with
∑n

i=1 xi ≥ 1/2− β/2 implies
that

c̃1

n∑
i=⌈t2⌉+1

xi = c̃1

 n∑
i=1

xi −
⌈t2⌉∑
i=1

xi

 ≥ c̃1(1− β − 2β/c̃1)/2.

By Cauchy-Schwarz (in the second inequality below) and ⌈t2⌉ ≤ n we get that

c̃1(1− β − 2β/c̃1)/2 ≤ c̃1

n∑
i=⌈t2⌉+1

1 · xi ≤ c̃1

√√√√ |n− ⌈t2⌉ | n∑
i=⌈t2⌉+1

x2i ≤ c̃1

√√√√n
n∑

i=⌈t2⌉+1

x2i .

⇒ (1− β − 2β/c̃1)/2 ≤

√√√√n
n∑

i=⌈t2⌉+1

x2i . (29)

We notice that β ≤ c̃1/6 implies (1− β − 2β/c̃1) ≥ 1/2. From Equation (27) we get with Equation (29),

t = 4β
√
n

c̃1
, and (1− β − 2β/c̃1) ≥ 1/2 that

c̃1f(x, t) ≥ c̃1t

√√√√ n∑
i=⌈t2⌉+1

x2i = 4β

√√√√n
n∑

i=⌈t2⌉+1

x2i ≥ 4β
(1− β − 2β/c̃1)

2
≥ β

Now using this and Equation (28) we get that

P

[
n∑
i

h(i)xi ≥ β

]
≥ P

[
n∑

i=1

h(i)xi ≥ c̃1f(x, t)

]
≥ c̃2 exp

(
−c̃3t2

)
= c̃2 exp

(
−c̃3

16β2n

c̃21

)
as in the other case which finishes the proof.

23

We now have shown Lemma 3.4 and the two lemmas Lemma 4.2 and Lemma 4.1 that are used in the
lemma. This leaves us to prove Lemma 3.2 and Lemma 3.3 which both appear in the proof of the main
theorem. We start by restating Lemma 3.2.

Lemma 3.2. Let w ∈ Rd such that ∥w∥1 = 1 and let α̃ ≥ 1. Let further h be a random vector in {−1, 1}d
with i.i.d. entries such that P [h(i) = 1] = 1/2− α̃β and P [h(i) = −1] = 1/2 + α̃β where β < 1/(2α̃). We
then have for α′ < α̃ that

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ min

(
1

4
,
1

2
− 4α̃α′

(2α̃− α′)2

)
.

Proof. First, if there is j ∈ {1, . . . , d} such that wj ≥ α′β (i.e. there is a hypothesis hj with a large weight
in the output of Algorithm 2) we get that

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ P

 d∑
i=1
i ̸=j

wih(i) ≤ 0, wjrj ≤ −α′β

 ≥ 1/4

which follows from the h(i)’s being biased towards minus so if we changed them to i.i.d. uniform
{−1, 1}-variables the above probability would be lower and equal to 1/4.
Thus, we may assume that ∥w∥∞ ≤ α′β, i.e. the largest entry in w is less than α′β. We now introduce

the random variables ηi and h̃(i) where h̃(i) are i.i.d. uniform {−1, 1}-variables and the ηi’s have the

distribution P
[
ηi = 1|h̃(i) = −1

]
= 1, P

[
ηi = −1|h̃(i) = 1

]
= 2α̃β and P

[
ηi = 1|h̃(i) = 1

]
= 1 − 2α̃β.

We immediately get

P
[
ηih̃(i) = −1

]
= 1/2 + 1/2(2α̃β) = 1/2 + α̃β and

P
[
ηih̃(i) = 1

]
= 1/2(1− (2α̃β)) = 1/2− α̃β

thus ηih̃(i) has the same distribution as h(i). Using this decomposition of the h(i)’s we get that

P

[
d∑

i=1

wih(i) ≤ −α′β

]

= P

[
d∑

i=1

wiηih̃(i) ≤ −α′β

]

= P

[
d∑

i=1

wih̃(i) +
d∑

i=1

wi(ηi − 1)h̃(i) ≤ −α′β

]

≥ P

[
d∑

i=1

wih̃(i) ≤ 0,
d∑

i=1

wi(ηi − 1)h̃(i) ≤ −α′β

]

≥ 1− 1

2
− P

[
d∑

i=1

wi(ηi − 1)h̃(i) > −α′β

]
(30)

where the last inequality follows from P [A ∩B] ≥ 1− P [A]− P [B] and the 1/2-term by a weighted sum
of i.i.d. uniform {−1, 1}-variables being symmetric around 0. We now notice that (ηi − 1)h̃(i) has the
same distribution as a random variable −2xi where xi follows P [xi = 0] = 1− α̃β and P [xi = 1] = α̃β.
We also see that E [

∑n
i=1−2wixi] = −2α̃β and by independence of the xi’s

Var

(
n∑

i=1

−2wixi

)
= 4

d∑
i=1

w2
i

(
E
[
x2i
]
− E [xi]

2
)
≤ 4

d∑
i=1

(α′β wi)
(
α̃β − (α̃β)2

)
= 4α̃α′β2 (1− α̃β)

24

where the inequality follows from ∥w∥∞ ≤ α′β and the last equality uses
∑d

i=1wi = 1. Using that the
h̃(i)’s follow the same distribution as −2xi we get from Chebyshev’s inequality, the above calculation of
the expected value of

∑n
i=1−2wixi, and the upper bounds on its variance that

P

[
d∑

i=1

wi(ηi − 1)h̃(i) > −α′β

]
= P

[
d∑

i=1

wi(−2xi) > −α′β

]
= P

[
d∑

i=1

2wi(−xi + α̃β) > (2α̃− α′)β

]

≤ 4α̃α′β2(1− α̃β)

(2α̃− α′)2β2
≤ 4α̃α′

(2α̃− α′)2

where the last inequality uses that β < 1/(2α̃).
Thus, we conclude by the above and Equation (30) that in the case that ∥w∥∞ ≤ α′β we have

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ 1

2
− 4α̃α′

(2α̃− α′)2
.

Together with the case that ∥w∥∞ ≥ α′β the claim follows.

We now restate and prove Lemma 3.3

Lemma 3.3. Let ζm/ ln (m/r) be the number of coupons where m ≥ 4r, r ≥ 1, and ζ ≥ 8. Let X denote
the number of samples with replacement from the coupons before seeing ζm/ ln (m/r)− 2r distinct coupons,
then P [X ≤ m] ≤ 1

2

Proof. First, notice that seeing a new item in the next sample after having seen i distinct items happens
with probability

pi =
ζm/ ln (m/r)− i

ζm/ ln (m/r)
.

Now if we use Xi to denote the number of samples between having seen i distinct items and i+ 1 distinct

items, we can write X as
∑ζm/ ln(m/r)−2r−1

i=0 Xi, i.e. as sum of independent geometric random variables
with success probability pi. By Theorem 3.1 in [6] for 0 < λ ≤ 1 it holds that

P [X ≤ λE [X]] ≤ exp

(
− min

i=0,...,ζm/ ln(m/r)−2r−1
(pi)E [X] (λ− 1− ln (λ))

)
. (31)

We now notice that

min
i=0,...,ζm/ ln(m/r)−2r−1

(pi) =
2r + 1

ζm/ ln (m/r)
≥ 2r

ζm/ ln (m/r)

and that

E [X] =

ζm/ ln(m/r)−2r−1∑
i=0

ζm/ ln (m/r)

ζm/ ln (m/r)− i

= ζm/ ln (m/r)

ζm/ ln(m/r)∑
i=2r+1

1

i

≥ ζm/ ln (m/r)

∫ ζm/ ln(m/r)

2r+1

1

x
dx

= ζm/ ln (m/r) ln

(
ζm/ ln (m/r)

2r + 1

)
≥ ζ(m/ ln (m/r)) ln

(
ζm/ ln (m/r)

4r

)
(32)

25

where the first inequality follows from 1/x being monotonically decreasing. Using that x/ lg(x) ≥
√
x for

x ≥ 1 and ζ ≥ 8 we get that E [X] ≥ ζ (m/ ln (m/r)) ln
(
ζ
√
m/r/4

)
≥ ζm/2.

We can now combine all those ingredients. By choosing λ = 2/ζ and using ζ ≥ 8 we get that
λ−1−ln(λ) ≥ 1/2. First notice that, this choice of λ with E [X] ≥ ζm/2 implies P[X ≤ m] ≤ P[X ≤ λE[X]].
Together with the bound on the minimum of the pi and the lower bound on E[X] from Equation (32) we
get from Equation (31) that

P [X ≤ m] ≤ P [X ≤ λE [X]] ≤ exp

(
−2rE [X] (λ− 1− ln (λ))

ζm/ ln (m/r)

)
≤ exp

(
−r ln

(
ζm/ ln (m/r)

4r

))
Fromm ≥ 4r we get that (m/r)/ ln(m/r) ≥ 1. Together with ζ ≥ 8 we get that ln ((ζm/ ln (m/r))/ (4r)) ≥
1 and since r ≥ 1 we conclude that P [X ≤ m] ≤ 1/2 as claimed which concludes the proof.

5 Conclusion

We have presented a lower bound on the sample complexity of AdaBoost, establishing that AdaBoost
is sub-optimal by at least one logarithmic factor. In the proof, we make use of an adversarial weak
learner that accumulates errors outside of the training set. Technically, this is achieved by relying on
concentration and anti-concentration bounds to show that a random hypothesis set will be able to achieve
both an advantage within the training set and a negative advantage on a small subset of points outside of
it. In order to work, the weak learner needs to know the training set S, which happens to be the case
in AdaBoost and many of its variants. This makes our lower bound applicable to a variety of boosting
algorithms, showing that they are all sub-optimal.

In contrast, the optimal weak-to-strong learner from Larsen & Ritzert [10] precisely calls the weak learner
on subsets of S, avoiding the lower bound. One key question here is whether a generalization of their idea
allows to reach optimal generalization performance with a simple majority vote as in AdaBoost instead of
their two-level majority scheme. Another interesting open question is the exact sample complexity of
AdaBoost which currently has a logarithmic gap between our lower bound and the best known upper
bound.

Acknowledgements

Supported by Independent Research Fund Denmark (DFF) Sapere Aude Research Leader grant No
9064-00068B.

References

[1] Breiman, L. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517, 1999.

[2] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[3] Grønlund, A., Kamma, L., Green Larsen, K., Mathiasen, A., and Nelson, J. Margin-based generaliza-
tion lower bounds for boosted classifiers. Advances in Neural Information Processing Systems, 32,
2019.

[4] Grove, A. J. and Schuurmans, D. Boosting in the limit: Maximizing the margin of learned ensembles.
In AAAI/IAAI, pp. 692–699, 1998.

[5] Hanneke, S. The optimal sample complexity of pac learning. The Journal of Machine Learning
Research, 17(1):1319–1333, 2016.

26

[6] Janson, S. Tail bounds for sums of geometric and exponential variables. Statistics and Probability
Letters, 135:1–6, 2018.

[7] Kearns, M. Learning boolean formulae or finite automata is as hard as factoring. Technical Report
TR-14-88 Harvard University Aikem Computation Laboratory, 1988.

[8] Kearns, M. and Valiant, L. Cryptographic limitations on learning boolean formulae and finite
automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

[9] Larsen, K. G. Bagging is an optimal PAC learner. arXiv preprint, arXiv/2212.02264, 2022.

[10] Larsen, K. G. and Ritzert, M. Optimal weak to strong learning. Advances in Neural Information
Processing Systems (NeurIPS 2022), 2022. To appear.

[11] Montgomery-Smith, S. J. The distribution of rademacher sums. Proceedings of the American
Mathematical Society, 109(2):517–522, 1990.

[12] Rätsch, G. and Warmuth, M. K. Maximizing the margin with boosting. In International Conference
on Computational Learning Theory, pp. 334–350. Springer, 2002.

[13] Rätsch, G., Warmuth, M. K., and Shawe-Taylor, J. Efficient margin maximizing with boosting.
Journal of Machine Learning Research, 6(12), 2005.

[14] Shalev-Shwartz, S. and Ben-David, S. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

27

	Introduction
	Preliminaries and Notation

	Proof Overview
	AdaBoost is not Optimal
	Proof of Lemmas
	Conclusion

