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38.1 The Cache-Oblivious Model

The memory system of most modern computers consists of a hierarchy of memory levels,
with each level acting as a cache for the next; for a typical desktop computer the hierarchy
consists of registers, level 1 cache, level 2 cache, level 3 cache, main memory, and disk.
One of the essential characteristics of the hierarchy is that the memory levels get larger
and slower the further they get from the processor, with the access time increasing most
dramatically between main memory and disk. Another characteristics is that data is moved
between levels in large blocks. As a consequence of this, the memory access pattern of an
algorithm has a major influence on its practical running time. Unfortunately, the RAM
model (Figure 38.1) traditionally used to design and analyze algorithms is not capable of
capturing this, since it assumes that all memory accesses take equal time.

Because of the shortcomings of the RAM model, a number of more realistic models have
been proposed in recent years. The most successful of these models is the simple two-level
I/O-model introduced by Aggarwal and Vitter [2] (Figure 38.2). In this model the memory
hierarchy is assumed to consist of a fast memory of size M and a slower infinite memory,
and data is transfered between the levels in blocks of B consecutive elements. Computation
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FIGURE 38.2: The I/O model.
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can only be performed on data in the fast memory, and it is assumed that algorithms
have complete control over transfers of blocks between the two levels. We denote such a
transfer a memory transfer. The complexity measure is the number of memory transfers
needed to solve a problem. The strength of the I/O model is that it captures part of the
memory hierarchy, while being sufficiently simple to make design and analysis of algorithms
feasible. In particular, it adequately models the situation where the memory transfers
between two levels of the memory hierarchy dominates the running time, which is often the
case when the size of the data exceeds the size of main memory. Agarwal and Vitter showed
that comparison based sorting and searching require Θ(SortM,B(N)) = Θ(N

B logM/B
N
B )

and Θ(logB N) memory transfers in the I/O-model, respectively [2]. Subsequently a large
number of other results have been obtained in the model; see the surveys by Arge [4] and
Vitter [27] for references.

More elaborate models of multi-level memory than the I/O-model have been proposed
(see e.g.[27] for an overview) but these models have been less successful, mainly because of
their complexity. A major shortcoming of the proposed models, including the I/O-model,
have also been that they assume that the characteristics of the memory hierarchy (the
level and block sizes) are know. Very recently however, the cache-oblivious model, which
assumes no knowledge about the hierarchy, was introduced by Frigo et al. [20]. In essence,
a cache-oblivious algorithm is an algorithm formulated in the RAM model but analyzed in
the I/O model, with the analysis required to hold for any B and M . Memory transfers
are assumed to be performed by an off-line optimal replacement strategy. The beauty of
the cache-oblivious model is that since the I/O-model analysis holds for any block and
memory size, it holds for all levels of a multi-level memory hierarchy (see [20] for details).
In other words, by optimizing an algorithm to one unknown level of the memory hierarchy,
it is optimized on all levels simultaneously. Thus the cache-oblivious model is effectively
a way of modeling a complicated multi-level memory hierarchy using the simple two-level
I/O-model.

Frigo et al. [20] described optimal Θ(SortM,B(N)) memory transfer cache-oblivious algo-
rithms for matrix transposition, fast Fourier transform, and sorting; Prokop also described a
static search tree obtaining the optimal O(logB N) transfer search bound [24]. Subsequently,
Bender et al. [11] described a cache-oblivious dynamic search trees with the same search
cost, and simpler and improved cache-oblivious dynamic search trees were then developed
by several authors [10, 12, 18, 25]. Cache-oblivious algorithms have also been developed
for e.g. problems in computational geometry [1, 10, 15], for scanning dynamic sets [10], for
layout of static trees [8], for partial persistence [10], and for a number of fundamental graph
problems [5] using cache-oblivious priority queues [5, 16]. Most of these results make the
so-called tall cache assumption, that is, they assume that M > Ω(B2); we make the same
assumption throughout this chapter.

Empirical investigations of the practical efficiency of cache-oblivious algorithms for sort-
ing [19], searching [18, 23, 25] and matrix problems [20] have also been performed. The
overall conclusion of these investigations is that cache-oblivious methods often outperform
RAM algorithms, but not always as much as algorithms tuned to the specific memory hi-
erarchy and problem size. On the other hand, cache-oblivious algorithms perform well on
all levels of the memory hierarchy, and seem to be more robust to changing problem sizes
than cache-aware algorithms.

In the rest of this chapter we describe some of the most fundamental and representa-
tive cache-oblivious data structure results. In Section 38.2 we discuss two fundamental
primitives used to design cache-oblivious data structures. In Section 38.3 we describe two
cache-oblivious dynamic search trees, and in Section 38.4 two priority queues. Finally, in
Section 38.5 we discuss structures for 2-dimensional orthogonal range searching.
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38.2 Fundamental Primitives

The most fundamental cache-oblivious primitive is scanning—scanning an array with N
elements incurs Θ(N

B ) memory transfers for any value of B. Thus algorithms such as
median finding and data structures such as stacks and queues that only rely on scanning
are automatically cache-oblivious. In fact, the examples above are optimal in the cache-
oblivious model. Other examples of algorithms that only rely on scanning include Quicksort
and Mergesort. However, they are not asymptotically optimal in the cache-oblivious model
since they use O(N

B log N
M ) memory transfers rather than Θ(SortM,B(N)).

Apart from algorithms and data structures that only utilize scanning, most cache-oblivious
results use recursion to obtain efficiency; in almost all cases, the sizes of the recursive prob-
lems decrease double-exponentially. In this section we describe two of the most fundamental
such recursive schemes, namely the van Emde Boas layout and the k-merger.

38.2.1 Van Emde Boas Layout

One of the most fundamental data structures in the I/O-model is the B-tree [7]. A B-tree is
basically a fanout Θ(B) tree with all leaves on the same level. Since it has height O(logB N)
and each node can be accessed in O(1) memory transfers, it supports searches in O(logB N)
memory transfers. It also supports range queries, that is, the reporting of all K elements
in a given query range, in O(logB N + K

B ) memory transfers. Since B is an integral part
of the definition of the structure, it seems challenging to develop a cache-oblivious B-tree
structure. However, Prokop [24] showed how a binary tree can be laid out in memory in
order to obtain a (static) cache-oblivious version of a B-tree. The main idea is to use a
recursively defined layout called the van Emde Boas layout closely related to the definition
of a van Emde Boas tree [26]. The layout has been used as a basic building block of most
cache-oblivious search structures (e.g in [1, 8, 10, 11, 12, 18, 25]).

Layout

For simplicity, we only consider complete binary trees. A binary tree is complete if it has
2h − 1 nodes and height h for some integer h. The basic idea in the van Emde Boas layout
of a complete binary tree T with N leaves is to divide T at the middle level and lay out
the pieces recursively (Figure 38.3). More precisely, if T only has one node it is simply laid
out as a single node in memory. Otherwise, let h = log N be the height of T . We define the
top tree T0 to be the subtree consisting of the nodes in the topmost ⌊h/2⌋ levels of T , and
the bottom trees T1, . . . , Tk to be the Θ(

√
N) subtrees rooted in the nodes on level ⌈h/2⌉ of

T ; note that all the subtrees have size Θ(
√

N). The van Emde Boas layout of T consists of
the van Emde Boas layout of T0 followed by the van Emde Boas layouts of T1, . . . , Tk.

Search

To analyze the number of memory transfers needed to perform a search in T , that is,
traverse a root-leaf path, we consider the first recursive level of the van Emde boas layout
where the subtrees are smaller than B. As this level T is divided into a set of base trees of
size between Θ(

√
B) and Θ(B), that is, of height Ω(log B) (Figure 38.4). By the definition

of the layout, each base tree is stored in O(B) contiguous memory locations and can thus
be accessed in O(1) memory transfers. That the search is performed in O(logB N) mem-
ory transfers then follows since the search path traverses O((log N)/ log B) = O(logB N)
different base trees.
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FIGURE 38.3: The van Emde Boas layout.
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FIGURE 38.4: A search path.

Range query

To analyze the number of memory transfers needed to answer a range query [x1, x2] on
T using the standard recursive algorithm that traverses the relevant parts of T (starting
at the root), we first note that the two paths to x1 and x2 are traversed in O(logB N)
memory transfers. Next we consider traversed nodes v that is not on the two paths to x1

and x2. Since all elements in the subtree Tv rooted at such a node v are reported, and
since a subtree of height log B stores Θ(B) elements, O(K

B ) subtrees Tv of height log B are
visited. This in turn means that the number of visited nodes above the last log B levels
of T is also O(K

B ); thus they can all be accessed in O(K
B ) memory transfers. Consider

the smallest recursive level of the van Emde Boas layout that completely contain Tv. This
level is of size between Ω(B) and O(B2) (Figure 38.5(a)). On the next level of recursion
Tv is broken into a top part and O(

√
B) bottom parts of size between Ω(

√
B) and O(B)

each (Figure 38.5(b)). The top part is contained in a recursive level of size O(B) and
is thus stored within O(B) consecutive memory locations; therefore it can be accessed in
O(1) memory accesses. Similarly, the O(B) nodes in the O(

√
B) bottom parts are stored

consecutively in memory; therefore they can all be accessed in a total of O(1) memory
transfers. Therefore, the optimal paging strategy can ensure that any traversal of Tv is
performed in O(1) memory transfers, simply by accessing the relevant O(1) blocks. Thus
overall a range query is performed in O(logB N + K

B ) memory transfers.

Ω(B) and O(B2) Ω(
√

B) and O(B)
v

(b)(a)

v

Size between Size between

FIGURE 38.5: Traversing tree Tv with O(B) leaves; (a) smallest recursive van Emde Boas
level containing Tv has size between Ω(B) and O(B2); (b) next level in recursive subdivision.
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FIGURE 38.6: A 16-merger consisting of 15 binary mergers. Shaded parts represent ele-
ments in buffers.

THEOREM 38.1 Let T be a complete binary tree with N leaves laid out using the van
Emde Boas layout. The number of memory transfers needed to perform a search (traverse
a root-to-leaf path) and a range query in T is O(logB N) and O(logB N + K

B ), respectively.

The navigation from node to node in the van Emde Boas layout is straight-forward if the
tree is implemented using pointers. However, navigation using arithmetic on array indexes
is also possible [18]. This avoids the use of pointers and hence saves space.

The constant in the O(logB N) bound for searching in Theorem 38.1 can be seen to be
four. Further investigations of which constants are possible for cache-oblivious comparison
based searching appear in [9].

38.2.2 k-Merger

In the I/O-model the two basic optimal sorting algorithms are multi-way versions of Merge-
sort and distribution sorting (Quicksort) [2]. Similarly, Frigo et al. [20] showed how both
merge based and distribution based optimal cache-oblivious sorting algorithms can be de-
veloped. The merging based algorithm, Funnelsort, is based on a so-called k-merger. This
structure has been used as a basic building block in several cache-oblivious algorithms. Here
we describe a simplified version of the k-merger due to Brodal and Fagerberg [15].

Binary mergers and merge trees

A binary merger merges two sorted input streams into a sorted output stream: In one
merge step an element is moved from the head of one of the input streams to the tail of
the output stream; the heads of the input streams, as well as the tail of the output stream,
reside in buffers of a limited capacity.

Binary mergers can be combined to form binary merge trees by letting the output buffer
of one merger be the input buffer of another—in other words, a binary merge tree is a
binary tree with mergers at the nodes and buffers at the edges, and it is used to merge a set
of sorted input streams (at the leaves) into one sorted output stream (at the root). Refer
to Figure 38.6 for an example.

An invocation of a binary merger in a binary merge tree is a recursive procedure that
performs merge steps until the output buffer is full (or both input streams are exhausted); if
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Procedure Fill(v)
while v’s output buffer is not full

if left input buffer empty
Fill(left child of v)

if right input buffer empty
Fill(right child of v)

perform one merge step

FIGURE 38.7: Invocation of binary merger v.

an input buffer becomes empty during the invocation (and the corresponding stream is not
exhausted), the input buffer is recursively filled by an invocation of the merger having this
buffer as output buffer. If both input streams of a merger get exhausted, the corresponding
output stream is marked as exhausted. A procedure Fill(v) performing an invocation of a
binary merger v is shown in Figure 38.7 (ignoring exhaustion issues). A single invocation
Fill(r) on the root r of a merge tree will merge the streams at the leaves of the tree.

k-merger

A k-merger is a binary merge tree with specific buffer sizes. For simplicity, we assume
that k is a power of two, in which case a k-merger is a complete binary tree of k− 1 binary
mergers. The output buffer at the root has size k3, and the sizes of the rest of the buffers
are defined recursively in a manner resembling the definition of the van Emde Boas layout:
Let i = log k be the height of the k-merger. We define the top tree to be the subtree
consisting of all mergers of depth at most ⌈i/2⌉, and the bottom trees to be the subtrees
rooted in nodes at depth ⌈i/2⌉ + 1. We let the edges between the top and bottom trees
have buffers of size k3/2, and define the sizes of the remaining buffers by recursion on the
top and bottom trees. The input buffers at the leaves hold the input streams and are not
part of the k-merger definition. The space required by a k-merger, excluding the output
buffer at the root, is given by S(k) = k1/2 ·k3/2 +(k1/2 +1) ·S(k1/2), which has the solution
S(k) = Θ(k2).

We now analyze the number of memory transfers needed to fill the output buffer of size k3

at the root of a k-merger. In the recursive definition of the buffer sizes in the k-merger,
consider the first level where the subtrees (excluding output buffers) have size less than
M/3; if k̄ is the number of leaves of one such subtree, we by the space usage of k-mergers
have k̄2 ≤ M/3 and (k̄2)2 = k̄4 = Ω(M). We call these subtrees of the k-merger base
trees and the buffers between the base trees large buffers. Assuming B2 ≤ M/3, a base
tree Tv rooted in v together with one block from each of the large buffers surrounding it
(i.e., its single output buffer and k̄ input buffers) can be contained in fast memory, since
M/3 + B + k̄ · B ≤ M/3 + B + (M/3)1/2 · (M/3)1/2 ≤ M .

If the k-merger consist of a single base tree, the number of memory transfers used to fill its
output buffer with k3 elements during an invocation is trivially O(k3/B + k). Otherwise,
consider an invocation of the root v of a base tree Tv, which will fill up the size Ω(k̄3)
output buffer of v. Loading Tv and one block for each of the k̄ buffers just below it into
fast memory will incur O(k̄2/B + k̄) memory transfers. This is O(1/B) memory transfer for
each of the Ω(k̄3) elements output, since k̄4 = Ω(M) implies k̄2 = Ω(M1/2) = Ω(B), from
which k̄ = O(k̄3/B) follows. Provided that none of the input buffers just below Tv become
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empty, the output buffer can then be filled in O(k̄3/B) memory transfers since elements can
be read from the input buffers in O(1/B) transfers amortized. If a buffer below Tv becomes
empty, a recursive invocation is needed. This invocation may evict Tv from memory, leading
to its reloading when the invocation finishes. We charge this cost to the Ω(k̄3) elements
in the filled buffer, or O(1/B) memory transfers per element. Finally, the last time an
invocation is used to fill a particular buffer, the buffer may not be completely filled (due to
exhaustion). However, this happens only once for each buffer, so we can pay the cost by
charging O(1/B) memory transfers to each position in each buffer in the k-merger. As the
entire k-merger uses O(k2) space and merges k3 elements, these charges add up to O(1/B)
memory transfers per element.

We charge an element O(1/B) memory transfers each time it is inserted into a large buffer.
Since k̄ = Ω(M1/4), each element is inserted in O(logk̄ k) = O(logM k3) large buffers. Thus
we have the following.

THEOREM 38.2 Excluding the output buffers, the size of a k-merger is O(k2) and it

performs O(k3

B logM k3 + k) memory transfers during an invocation to fill up its output
buffer of size k3.

Funnelsort

The cache-oblivious sorting algorithm Funnelsort is easily obtained once the k-merger
structure is defined: Funnelsort breaks the N input elements into N1/3 groups of size N2/3,
sorts them recursively, and then merges the sorted groups using an N1/3-merger.

Funnelsort can be analyzed as follows: Since the space usage of a k-merger is sub-linear
in its output, the elements in a recursive sort of size M/3 only needs to be loaded into
memory once during the entire following recursive sort. For k-mergers at the remaining
higher levels in the recursion tree, we have k3 ≥ M/3 ≥ B2, which implies k2 ≥ B4/3 > B
and hence k3/B > k. By Theorem 38.2, the number of memory transfers during a merge
involving N ′ elements is then O(logM (N ′)/B) per element. Hence, the total number of
memory transfers per element is

O

(

1

B

(

1 +

∞
∑

i=0

logM N (2/3)i

))

= O ((logM N)/B) .

Since logM x = Θ(logM/B x) when B2 ≤ M/3, we have the following theorem.

THEOREM 38.3 Funnelsort sorts N element using O(SortM,B(N)) memory transfers.

In the above analysis, the exact (tall cache) assumption on the size of the fast memory
is B2 ≤ M/3. In [15] it is shown how to generalize Funnelsort such that it works un-
der the weaker assumption B1+ε ≤ M , for fixed ε > 0. The resulting algorithm incurs
the optimal O(SortM,B(N)) memory transfers when B1+ε = M , at the price of incurring
O(1

ε · SortM,B(N)) memory transfers when B2 ≤ M . It is shown in [17] that this trade-off
is the best possible for comparison based cache-oblivious sorting.
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38.3 Dynamic B-Trees

The van Emde Boas layout of a binary tree provides a static cache-oblivious version of
B-trees. The first dynamic solution was given Bender et al. [11], and later several simpli-
fied structures were developed [10, 12, 18, 25]. In this section, we describe two of these
structures [10, 18].

38.3.1 Density Based

In this section we describe the dynamic cache-oblivious search tree structure of Brodal et
al [18]. A similar proposal was given independently by Bender et al. [12].

The basic idea in the structure is to embed a dynamic binary tree of height log N + O(1)
into a static complete binary tree, that is, in a tree with 2h − 1 nodes and height h, which
in turn is embedded into an array using the van Emde Boas layout. Refer to Figure 38.8.

To maintain the dynamic tree we use techniques for maintaining small height in a binary
tree developed by Andersson and Lai [3]; in a different setting, similar techniques has also
been given by Itai et al. [21]. These techniques give an algorithm for maintaining height
log N + O(1) using amortized O(log2 N) time per update. If the height bound is violated
after performing an update in a leaf l, this algorithm performs rebalancing by rebuilding
the subtree rooted at a specific node v on the search path from the root to l. The subtree is
rebuilt to perfect balance in time linear in the size of the subtree. In a binary tree of perfect
balance the element in any node v is the median of all the elements stored in the subtree
Tv rooted in v. This implies that only the lowest level in Tv is not completely filled and the
empty positions appearing at this level are evenly distributed across the level. Hence, the
net effect of the rebuilding is to redistribute the empty positions in Tv. Note that this can
lower the cost of future insertions in Tv, and consequently it may in the long run be better
to rebuild a subtree larger than strictly necessary for reestablishment of the height bound.
The criterion for choosing how large a subtree to rebuild, i.e. for choosing the node v, is the
crucial part of the algorithms by Andersson and Lai [3] and Itai et al. [21]. Below we give
the details of how they can be used in the cache-oblivious setting.

6

4

1

3

5

8

7 11

10 13

⇓

6 4 8 1 − 3 5 − − 7 − − 11 10 13

FIGURE 38.8: Illustration of embedding a height H tree into a complete static tree of
height H , and the van Emde Boas layout of this tree.

Structure

As mentioned, our data structure consists of a dynamic binary tree T embedded into a
static complete binary tree T ′ of height H , which in turn is embedded into an array using
the van Emde Boas layout.
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In order to present the update and query algorithms, we define the density ρ(u) of a node
u as |Tu|/|T ′

u|, where |Tu| and |T ′
u| are the number of nodes in the trees rooted in u in T and

T ′, respectively. In Figure 38.8, the node containing the element 4 has balance 4/7. We also
define two density thresholds τi and γi for the nodes on each level i = 1, 2, . . . , H (where
the root is at level 1). The upper density thresholds τi are evenly space values between 3/4
and 1, and the lower density thresholds γi are evenly spaced values between 1/4 and 1/8.
More precisely, τi = 3/4 + (i − 1)/(4(H − 1)) and γi = 1/4 − (i − 1)/(8(H − 1)).

Updates

To insert a new element into the structure we first locate the position in T of the new
node w. If the insertion of w violates the height bound H , we rebalance T as follows: First
we find the lowest ancestor v of w satisfying γi ≤ ρ(v) ≤ τi, where i is the level of v. If no
ancestor v satisfies the requirement, we rebuild the entire structure, that is, T , T ′ and the
layout of T ′: For k the integer such that 2k ≤ N < 2k+1 we choose the new height H of
the tree T ′ as k + 1 if N ≤ 5/4 · 2k; otherwise we choose H = k + 2. On the other hand,
if the ancestor v exists we rebuild Tv: We first create a sorted list of all elements in Tv by
an in-order traversal of Tv. The ⌈|Tv|/2⌉th element becomes the element stored at v, the
smallest ⌊(|Tv| − 1)/2⌋ elements are recursively distributed in the left subtree of v, and the
largest ⌈(|Tv| − 1)/2⌉ elements are recursively distributed in the right subtree of v.

We can delete an element from the structure in a similar way: We first locate the node w
in T containing the element e to be deleted. If w is not a leaf and has a right subtree,
we then locate the node w′ containing the immediate successor of e (the node reached by
following left children in the right subtree of w), swap the elements in w and w′, and let
w = w′. We repeat this until w is a leaf. If on the other hand w is not a leaf but only
has a left subtree, we instead repeatedly swap w with the node containing the predecessor
of e. Finally, we delete the leaf w from T , and rebalance the tree by rebuilding the subtree
rooted at the lowest ancestor v of w satisfying satisfying γi ≤ ρ(v) ≤ τi, where i is the level
of v; if no such node exists we rebuild the entire structure completely.

Similar to the proof of Andersson and Lai [3] and Itai et al. [21] that updates are performed
in O(log2 N) time, Brodal et al. [18] showed that using the above algorithms, updates can
be performed in amortized O(logB N + (log2 N)/B) memory transfers.

Range queries

In Section 38.2, we discussed how a range query can be answered in O(logB N + K
B )

memory transfers on a complete tree T ′ laid out using the van Emde Boas layout. Since it
can be shown that the above update algorithm maintains a lower density threshold of 1/8
for all nodes, we can also perform range queries in T efficiently: To answer a range query
[x1, x2] we traverse the two paths to x1 and x2 in T , as well as O(log N) subtrees rooted in
children of nodes on these paths. Traversing one subtree Tv in T incurs at most the number
of memory transfers needed to traverse the corresponding (full) subtree T ′

v in T ′. By the
lower density threshold of 1/8 we know that the size of T ′

v is at most a factor of eight larger
than the size of Tv. Thus a range query is answered in O(logB N + K

B ) memory transfers.

THEOREM 38.4 There exists a linear size cache-oblivious data structure for storing N
elements, such that updates can be performed in amortized O(logB N +(log2 N)/B) memory
transfers and range queries in O(logB N + K

B ) memory transfers.

Using the method for moving between nodes in a van Emde Boas layout using arithmetic
on the node indices rather than pointers, the data structure can be implemented as a



38-10

single size O(N) array of data elements. The amortized complexity of updates can also
be lowered to O(logB N) by changing leaves into pointers to buckets containing Θ(log N)
elements each. With this modification a search can still be performed in O(logB N) memory
transfers. However, then range queries cannot be answered efficiently, since the O( K

log N )
buckets can reside in arbitrary positions in memory.

38.3.2 Exponential Tree Based

The second dynamic cache-oblivious search tree we consider is based on the so-called expo-
nential layout of Bender et al. [10]. For simplicity, we here describe the structure slightly
differently than in [10].

Structure

Consider a complete balanced binary tree T with N leaves. Intuitively, the idea in an
exponential layout of T is to recursively decompose T into a set of components, which are
each laid out using the van Emde Boas layout. More precisely, we define component C0

to consist of the first 1
2 log N levels of T . The component C0 contains

√
N nodes and is

called an N -component because its root is the root of a tree with N leaves (that is, T ).
To obtain the exponential layout of T , we first store C0 using the van Emde Boas layout,
followed immediately by the recursive layout of the

√
N subtrees, T1, T2, . . . , T√N , of size√

N , beneath C0 in T , ordered from left to right. Note how the definition of the exponential
layout naturally defines a decomposition of T into log log N + O(1) layers, with layer i

consisting of a number of N1/2i−1

-components. An X-component is of size Θ(
√

X) and its
Θ(

√
X) leaves are connected to

√
X-components. Thus the root of an X-component is the

root of a tree containing X elements. Refer to Figure 38.9. Since the described layout of
T is really identical to the van Emde Boas layout, it follows immediately that it uses linear
space and that a root-to-leaf path can be traversed in O(logB N) memory transfers.

...

...... Tz
...TyC√NC1 Ta Tb

C1 C√N

C0

layer

1

2

log log N
Ta Tb Ty Tz

T1 T√N

√
N

√
N

√
N

C0

√
N -components

N -component

FIGURE 38.9: Components and exponential layout.

By slightly relaxing the requirements on the layout described above, we are able to main-
tain it dynamically: We define an exponential layout of a balanced binary tree T with N
leaves to consist of a composition of T into log log N + O(1) layers, with layer i consisting
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of a number of N1/2i−1

-components, each laid out using the van Emde Boas layout (Fig-
ure 38.9). An X-component has size Θ(

√
X) but unlike above we allow its root to be root in

a tree containing between X and 2X elements. Note how this means that an X-component
has between X/2

√
X = 1

2

√
X and 2X/

√
X = 2

√
X leaves. We store the layout of T in

memory almost as previously: If the root of T is root in an X-component C0, we store
C0 first in 2 · 2

√
X − 1 memory locations (the maximal size of an X-component), followed

immediately by the layouts of the subtrees (
√

X-components) rooted in the leaves of C0 (in
no particular order). We make room in the layout for the at most 2

√
X such subtrees. This

exponential layout for T uses S(N) = Θ(
√

N)+ 2
√

N ·S(
√

N) space, which is Θ(N log N).

Search

Even with the modified definition of the exponential layout, we can traverse any root-
to-leaf path in T in O(logB N) memory transfers: The path passes through exactly one

N1/2i−1

-component for 1 ≤ i ≤ log log N + O(1). Each X-component is stored in a van
Emde Boas layout of size Θ(

√
X) and can therefore be traversed in Θ(logB

√
X) memory

transfers (Theorem 38.1). Thus, if we use at least one memory transfer in each component,
we perform a search in O(logB N)+log log N memory accesses. However, we do not actually
use a memory transfer for each of the log log N + O(1) components: Consider the traversed
X-component with

√
B ≤ X ≤ B. This component is of size O(

√
B) and can therefore

be loaded in O(1) memory transfers. All smaller traversed components are of total size
O(

√
B log

√
B) = O(B), and since they are stored in consecutively memory locations they

can also be traversed in O(1) memory transfers. Therefore only O(1) memory transfers are
used to traverse the last log log B − O(1) components. Thus, the total cost of traversing a
root-to-leaf path is O(logB N + log log N − log log B) = O(logB N).

Updates

To perform an insertion in T we first search for the leaf l where we want to perform the
insertion; inserting the new element below l will increase the number of elements stored
below each of the log log N +O(1) components on the path to the root, and may thus result
in several components needing rebalancing (an X-component with 2X elements stored below
it). We perform the insertion and rebalance the tree in a simple way as follows: We find
the topmost X-component Cj on the path to the root with 2X elements below it. Then
we divide these elements into two groups of X elements and store them separately in the
exponential layout (effectively we split Cj with 2X elements below it into two X-components
with X elements each). This can easily be done in O(X) memory transfers. Finally, we
update a leaf and insert a new leaf in the X2-component above Cj (corresponding to the
two new X-components); we can easily do so in O(X) memory transfers by rebuilding it.
Thus overall we have performed the insertion and rebalancing in O(X) memory transfers.
The rebuilding guarantees that after rebuilding an X-component, X inserts have to be
performed below it before it needs rebalancing again. Therefore we can charge the O(X)
cost to the X insertions that occurred below Cj since it was last rebuilt, and argue that
each insertion is charged O(1) memory accesses on each of the log log N + O(1) levels. In
fact, using the same argument as above for the searching cost, we can argue that we only
need to charge an insertion O(1) transfers on the last log log B − O(1) levels of T , since
rebalancing on any of these levels can always be performed in O(1) memory transfers. Thus
overall we perform an insertion in O(logB N) memory transfers amortized.

Deletions can easily be handled in O(logB N) memory transfers using global rebuilding:
To delete the element in a leaf l of T we simply mark l as deleted. If l’s sibling is also marked
as deleted, we mark their parent deleted too; we continue this process along one path to the
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root of T . This way we can still perform searches in O(logB N) memory transfers, as long
as we have only deleted a fraction of the elements in the tree. After N

2 deletes we therefore
rebuild the entire structure in O(N logB N) memory accesses, or O(logB N) accesses per
delete operation.

Bender et al. [10] showed how to modify the update algorithms to perform updates “lazily”
and obtain worst case O(logB N) bounds.

Reducing space usage

To reduce the space of the layout of a tree T to linear we simply make room for 2 log N
elements in each leaf, and maintain that a leaf contains between log N and 2 log N elements.
This does not increase the O(logB N) search and update costs since the O(log N) elements
in a leaf can be scanned in O((log N)/B) = O(logB N) memory accesses. However, it
reduces the number of elements stored in the exponential layout to O(N/ log N).

THEOREM 38.5 The exponential layout of a search tree T on N elements uses lin-
ear space and supports updates in O(logB N) memory accesses and searches in O(logB N)
memory accesses.

Note that the analogue of Theorem 38.1 does not hold for the exponential layout, i.e.
it does not support efficient range queries. The reason is partly that the

√
X-components

below an X-component are not located in (sorted) order in memory because components
are rebalanced by splitting, and partly because of the leaves containing Θ(log N) elements.
However, Bender et al [10] showed how the exponential layout can be used to obtain a
number of other important results: The structure as described above can easily be extended
such that if two subsequent searched are separated by d elements, then the second search
can be performed in O(log∗ d+logB d) memory transfers. It can also be extended such that
R queries (batched searching) can be answered simultaneously in O(R logB

N
R +SortM,B(R))

memory transfers. The exponential layout can also be used to develop a persistent B-tree,
where updates can be performed in the current version of the structure and queries can be
performed in the current as well as all previous versions, with both operations incurring
O(logB N) memory transfers. It can also be used as a basic building block in a linear space
planar point location structure that answers queries in O(logB N) memory transfers.

38.4 Priority Queues

A priority queue maintains a set of elements with a priority (or key) each under the oper-
ations Insert and DeleteMin, where an Insert operation inserts a new element in the
queue, and a DeleteMin operation finds and deletes the element with the minimum key in
the queue. Frequently we also consider a Delete operation, which deletes an element with
a given key from the priority queue. This operation can easily be supported using Insert

and DeleteMin: To perform a Delete we insert a special delete-element in the queue
with the relevant key, such that we can detect if an element returned by a DeleteMin has
really been deleted by performing another DeleteMin.

A balanced search tree can be used to implement a priority queue. Thus the existence
of a dynamic cache-oblivious B-tree immediately implies the existence of a cache-oblivious
priority queue where all operations can be performed in O(logB N) memory transfers, where
N is the total number of elements inserted. However, it turns out that one can design a pri-
ority queue where all operations can be performed in Θ(SortM,B(N)/N) = O( 1

B logM/B
N
B )
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memory transfers; for most realistic values of N , M , and B, this bound is less than 1 and
we can, therefore, only obtain it in an amortized sense. In this section we describe two
different structures that obtain these bounds [5, 16].

38.4.1 Merge Based Priority Queue: Funnel Heap

The cache-oblivious priority queue Funnel Heap due to Brodal and Fagerberg [16] is inspired
by the sorting algorithm Funnelsort [15, 20]. The structure only uses binary merging;
essentially it is a heap-ordered binary tree with mergers in the nodes and buffers on the
edges.
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FIGURE 38.10: Funnel Heap: Sequence of k-mergers (triangles) linked together using
buffers (rectangles) and binary mergers (circles).

Structure

The main part of the Funnel Heap structure is a sequence of k-mergers (Section 38.2.2)
with double-exponentially increasing k, linked together in a list using binary mergers; refer
to Figure 38.10. This part of the structure constitutes a single binary merge tree. Addi-
tionally, there is a single insertion buffer I.

More precisely, let ki and si be values defined inductively by

(k1, s1) = (2, 8) ,

si+1 = si(ki + 1) ,

ki+1 = ⌈⌈si+1
1/3⌉⌉ ,

(38.1)

where ⌈⌈x⌉⌉ denotes the smallest power of two above x, i.e. ⌈⌈x⌉⌉ = 2⌈log x⌉. We note that
si

1/3 ≤ ki < 2si
1/3, from which si

4/3 < si+1 < 3si
4/3 follows, so both si and ki grows

double-exponentially: si+1 = Θ(s
4/3
i ) and ki+1 = Θ(k

4/3
i ). We also note that by induction

on i we have si = s1 +
∑i−1

j=1 kjsj for all i.



38-14

A Funnel Heap consists of a linked list with link i containing a binary merger vi, two
buffers Ai and Bi, and a ki-merger Ki having ki input buffers Si1, . . . , Siki . We refer to Bi,
Ki, and Si1, . . . , Siki as the lower part of the link. The size of both Ai and Bi is k3

i , and
the size of each Sij is si. Link i has an associated counter ci for which 1 ≤ ci ≤ ki + 1. The
initial value of ci is one for all i. The structure also has one insertion buffer I of size s1.
We maintain the following invariants:

Invariant 1 For link i, Sici , . . . , Siki are empty.

Invariant 2 On any path in the merge tree from some buffer to the root buffer A1, elements
appear in decreasing order.

Invariant 3 Elements in buffer I appear in sorted order.

Invariant 2 can be rephrased as the entire merge tree being in heap order. It implies that
in all buffers in the merge tree, the elements appear in sorted order, and that the minimum
element in the queue will be in A1 or I, if buffer A1 is non-empty. Note that an invocation
(Figure 38.7) of any binary merger in the tree maintains the invariants.

Layout

The Funnel Heap is laid out in consecutive memory locations in the order I, link 1,
link 2, . . . , with link i being laid out in the order ci, Ai, vi, Bi, Ki, Si1, Si2, . . . , Siki .

Operations

To perform a DeleteMin operation we compare the smallest element in I with the
smallest element in A1 and remove the smallest of these; if A1 is empty we first perform an
invocation of v1. The correctness of this procedure follows immediately from Invariant 2.

To perform an Insert operation we insert the new element among the (constant number
of) elements in I, maintaining Invariant 3. If the number of elements in I is now s1, we
examine the links in order to find the lowest index i for which ci ≤ ki. Then we perform
the following Sweep(i) operation.

In Sweep(i), we first traverse the path p from A1 to Sici and record how many elements
are contained in each encountered buffer. Then we traverse the part of p going from Ai to
Sici , remove the elements in the encountered buffers, and form a sorted stream σ1 of the
removed elements. Next we form another sorted stream σ2 of all elements in links 1, . . . , i−1
and in buffer I; we do so by marking Ai temporarily as exhausted and calling DeleteMin

repeatedly. We then merge σ1 and σ2 into a single stream σ, and traverse p again while
inserting the front (smallest) elements of σ in the buffers on p such that they contain the
same numbers of elements as before we emptied them. Finally, we insert the remaining
elements from σ into Sici , reset cl to one for l = 1, 2, . . . , i − 1, and increment ci.

To see that Sweep(i) does not insert more than the allowed si elements into Sici , first
note that the lower part of link i is emptied each time ci is reset to one. This implies
that the lower part of link i never contains more than the number of elements inserted into
Si1, Si2, . . . , Siki by the at most ki Sweep(i) operations occurring since last time ci was

reset. Since si = s1 +
∑i−1

j=1 kjsj for all i, it follows by induction on time that no instance
of Sweep(i) inserts more than si elements into Sici .

Clearly, Sweep(i) maintains Invariants 1 and 3, since I and the lower parts of links
1, . . . , i− 1 are empty afterwards. Invariant 2 is also maintained, since the new elements in
the buffers on p are the smallest elements in σ, distributed such that each buffer contains
exactly the same number of elements as before the Sweep(i) operation. After the operation,
an element on this path can only be smaller than the element occupying the same location
before the operation, and therefore the merge tree is in heap order.
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Analysis

To analyze the amortized cost of an Insert or DeleteMin operation, we first consider
the number of memory transfers used to move elements upwards (towards A1) by invocations
of binary mergers in the merge tree. For now we assume that all invocations result in full
buffers, i.e., that no exhaustions occur. We imagine charging the cost of filling a particular
buffer evenly to the elements being brought into the buffer, and will show that this way an
element from an input buffer of Ki is charged O( 1

B logM/B si) memory transfers during its
ascent to A1.

Our proof of this will rely on the optimal replacement strategy keeping as many as
possible of the first links of the Funnel Heap in fast memory at all times. To analyze the
number of links that fit in fast memory, we define ∆i to be the sum of the space used by
links 1 to i and define iM to be the largest i for which ∆i ≤ M . By the space bound
for k-mergers in Theorem 38.2 we see that the space used by link i is dominated by the

Θ(siki) = Θ(ki
4) space use of Si1, . . . , Siki . Since ki+1 = Θ(k

4/3
i ), the space used by link i

grows double-exponentially with i. Hence, ∆i is a sum of double-exponentially increasing
terms and is therefore dominated by its last term. In other words, ∆i = Θ(ki

4) = Θ(si
4/3).

By the definition of iM we have ∆iM ≤ M < ∆iM+1. Using si+1 = Θ(s
4/3
i ) we see that

logM (siM ) = Θ(1).

Now consider an element in an input buffer of Ki. If i ≤ iM the element will not get
charged at all in our charging scheme, since no memory transfers are used to fill buffers
in the links that fit in fast memory. So assume i > iM . In that case the element will get
charged for the ascent through Ki to Bi and then through vj to Aj for j = i, i − 1, . . . , iM .
First consider the cost of ascending through Ki: By Theorem 38.2, an invocation of the root

of Ki to fill Bi with k3
i elements incurs O(ki + ki

3

B logM/B ki
3) memory transfers altogether.

Since M < ∆iM+1 = Θ(k4
iM+1) we have M = O(ki

4). By the tall cache assumption

M = Ω(B2) we get B = O(ki
2), which implies ki = O(ki

3/B). Under the assumption
that no exhaustions occur, i.e., that buffers are filled completely, it follows that an element
is charged O( 1

B logM/B ki
3) = O( 1

B logM/B si) memory transfers to ascend through Ki

and into Bi. Next consider the cost of ascending through vj , that is, insertion into Aj ,
for j = i, i − 1, . . . , iM : Filling of Aj incurs O(1 + |Aj |/B) memory transfers. Since B =

O(kiM +1
2) = O(kiM

8/3) and |Aj | = kj
3, this is O(|Aj |/B) memory transfers, so an element

is charged O(1/B) memory transfers for each Aj (under the assumption of no exhaustions).
It only remains to bound the number of such buffers Aj , i.e., to bound i − iM . From

s
4/3
i < si+1 we have s

(4/3)i−iM

iM
< si. Using logM (siM ) = Θ(1) we get i−iM = O(log logM si).

From log logM si = O(logM si) and the tall cache assumption M = Ω(B2) we get i −
iM = O(logM si) = O(logM/B si). In total we have proved our claim that, assuming no

exhaustions occur, an element in an input buffer of Ki is charged O( 1
B logM/B si) memory

transfers during its ascent to A1.

We imagine maintaining the credit invariant that each element in a buffer holds enough
credits to be able to pay for the ascent from its current position to A1, at the cost analyzed
above. In particular, an element needs O( 1

B logM/B si) credits when it is inserted in an input
buffer of Ki. The cost of these credits we will attribute to the Sweep(i) operation inserting
it, effectively making all invocations of mergers be prepaid by Sweep(i) operations.

A Sweep(i) operation also incurs memory transfers by itself; we now bound these. In
the Sweep(i) operation we first form σ1 by traversing the path p from A1 to Sici . Since
the links are laid out sequentially in memory, this traversal at most constitutes a linear
scan of the consecutive memory locations containing A1 through Ki. Such a scan takes
O((∆i−1 + |Ai| + |Bi| + |Ki|)/B) = O(ki

3/B) = O(si/B) memory transfers. Next we form
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σ2 using DeleteMin operations; the cost of which is paid for by the credits placed on the
elements. Finally, we merge of σ1 and σ2 into σ, and place some of the elements in buffers
on p and some of the elements in Sici . The number of memory transfers needed for this
is bounded by the O(si/B) memory transfers needed to traverse p and Sici . Hence, the
memory transfers incurred by the Sweep(i) operation itself is O(si/B).

After the Sweep(i) operation, the credit invariant must be reestablished. Each of the
O(si) elements inserted into Sici must receive O( 1

B logM/B si) credits. Additionally, the ele-
ments inserted into the part of the path p from A1 through Ai−1 must receive enough credits
to cover their ascent to A1, since the credits that resided with elements in the same positions
before the operations were used when forming σ2 by DeleteMin operations. This consti-
tute O(∆i−1) = o(si) elements which by the analysis above must receive O( 1

B logM/B si)
credits each. Altogether O(si/B) + O( si

B logM/B si) = O( si

B logM/B si) memory transfers
are attributed to a Sweep(i) operation, again under the assumption that no exhaustions
occur during invocations.

To actually account for exhaustions, that is, the memory transfers incurred when filling
buffers that become exhausted, we note that filling a buffer partly incurs at most the same
number of memory transfers as filling it entirely. This number was analyzed above to be

O(|Ai|/B) for Ai and O( |Bi|
B logM/B si) for Bi, when i > iM . If Bi become exhausted, only

a Sweep(i) can remove that status. If Ai become exhausted, only a Sweep(j) for j ≥ i
can remove that status. As at most a single Sweep(j) with j > i can take place between
one Sweep(i) and the next, Bi can only become exhausted once for each Sweep(i), and
Ai can only become exhausted twice for each Sweep(i). From |Ai| = |Bi| = ki

3 = Θ(si)
it follows that charging Sweep(i) an additional cost of O( si

B logM/B si) memory transfers
will cover all costs of filling buffers when exhaustion occurs.

Overall we have shown that we can account for all memory transfers if we attribute
O( si

B logM/B si) memory transfers to each Sweep(i). By induction on i, we can show that
at least si insertions have to take place between each Sweep(i). Thus, if we charge the
Sweep(i) cost to the last si insertions preceding the Sweep(i), each insertion is charged
O( 1

B logM/B si) memory transfers. Given a sequence of operation on an initial empty pri-
ority queue, let imax be the largest i for which Sweep(i) takes place. We have simax

≤ N ,
where N is the number of insertions in the sequence. An insertion can be charged by at most
one Sweep(i) for i = 1, . . . , imax, so by the double-exponential growth of si, the number of
memory transfers charged to an insertion is

O

( ∞
∑

k=0

1

B
logM/B N (3/4)k

)

= O

(

1

B
logM/B N

)

= O

(

1

B
logM/B

N

B

)

,

where the last equality follows from the tall cache assumption M = Ω(B2).

Finally, we bound the space use of the entire structure. To ensure a space usage linear
in N , we create a link i when it is first used, i.e., when the first Sweep(i) occurs. At that
point in time, ci, Ai, vi, Bi, Ki, and Si1 are created. These take up Θ(si) space combined.
At each subsequent Sweep(i) operation, we create the next input buffer Sici of size si.
As noted above, each Sweep(i) is preceded by at least si insertions, from which an O(N)
space bound follows. To ensure that the entire structure is laid out in consecutive memory
locations, the structure is moved to a larger memory area when it has grown by a constant
factor. When allocated, the size of the new memory area is chosen such that it will hold
the input buffers Sij that will be created before the next move. The amortized cost of this
is O(1/B) per insertion.
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THEOREM 38.6 Using Θ(M) fast memory, a sequence of N Insert, DeleteMin, and
Delete operations can be performed on an initially empty Funnel Heap using O(N) space
in O( 1

B logM/B
N
B ) amortized memory transfers each.

Brodal and Fagerberg [16] gave a refined analysis for a variant of the Funnel Heap that
shows that the structure adapts to different usage profiles. More precisely, they showed
that the ith insertion uses amortized O( 1

B logM/B
Ni

B ) memory transfers, where Ni can be
defined in any of the following three ways: (a) Ni is the number of elements present in
the priority queue when the ith insertion is performed, (b) if the ith inserted element is
removed by a DeleteMin operation prior to the jth insertion then Ni = j − i, or (c) Ni

is the maximum rank of the ith inserted element during its lifetime in the priority queue,
where rank denotes the number of smaller elements in the queue.

38.4.2 Exponential Level Based Priority Queue

While the Funnel Heap is inspired by Mergesort and uses k-mergers as the basic build-
ing block, the exponential level priority queue of Arge et al. [5] is somewhat inspired by
distribution sorting and uses sorting as a basic building block.

Structure

The structure consists of Θ(log log N) levels whose sizes vary from N to some small size c
below a constant threshold ct; the size of a level corresponds (asymptotically) to the number

of elements that can be stored within it. The i’th level from above has size N (2/3)i−1

and for convenience we refer to the levels by their size. Thus the levels from largest to
smallest are level N , level N2/3, level N4/9, . . . , level X9/4, level X3/2, level X , level X2/3,
level X4/9, . . . , level c9/4, level c3/2, and level c. In general, a level can contain any number
of elements less than or equal to its size, except level N , which always contains Θ(N)
elements. Intuitively, smaller levels store elements with smaller keys or elements that were
more recently inserted. In particular, the minimum key element and the most recently
inserted element are always in the smallest (lowest) level c. Both insertions and deletions
are initially performed on the smallest level and may propagate up through the levels.

level X
2/3

level X

level X
3/2

level X
9/4

up buffer of size X

at most X
1/3 down buffers each of size ≈ X

2/3

at most X
1/2 down buffers each of size ≈ X

up buffer of size X
3/2

FIGURE 38.11: Levels X2/3, X , X3/2, and X9/4 of the priority queue data structure.
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Elements are stored in a level in a number of buffers, which are also used to transfer
elements between levels. Level X consists of one up buffer uX that can store up to X
elements, and at most X1/3 down buffers dX

1 , . . . , dX
X1/3 each containing between 1

2X2/3

and 2X2/3 elements. Thus level X can store up to 3X elements. We refer to the maximum
possible number of elements that can be stored in a buffer as the size of the buffer. Refer
to Figure 38.11. Note that the size of a down buffer at one level matches the size (up to a
constant factor) of the up buffer one level down.

We maintain three invariants about the relationships between the elements in buffers of
various levels:

Invariant 4 At level X, elements are sorted among the down buffers, that is, elements in
dX

i have smaller keys than elements in dX
i+1, but elements within dX

i are unordered.

The element with largest key in each down buffer dX
i is called a pivot element. Pivot

elements mark the boundaries between the ranges of the keys of elements in down buffers.

Invariant 5 At level X, the elements in the down buffers have smaller keys than the ele-
ments in the up buffer.

Invariant 6 The elements in the down buffers at level X have smaller keys than the ele-
ments in the down buffers at the next higher level X3/2.

The three invariants ensure that the keys of the elements in the down buffers get larger as
we go from smaller to larger levels of the structure. Furthermore, an order exists between
the buffers on one level: keys of elements in the up buffer are larger than keys of elements
in down buffers. Therefore, down buffers are drawn below up buffers on Figure 38.11.
However, the keys of the elements in an up buffer are unordered relative to the keys of the
elements in down buffers one level up. Intuitively, up buffers store elements that are “on
their way up”, that is, they have yet to be resolved as belonging to a particular down buffer
in the next (or higher) level. Analogously, down buffers store elements that are “on their
way down”— these elements are by the down buffers partitioned into several clusters so
that we can quickly find the cluster of smallest key elements of size roughly equal to the
next level down. In particular, the element with overall smallest key is in the first down
buffer at level c.

Layout

The priority queue is laid out in memory such that the levels are stored consecutively
from smallest to largest with each level occupying a single region of memory. For level X we
reserve space for exactly 3X elements: X for the up buffer and 2X2/3 for each possible down
buffer. The up buffer is stored first, followed by the down buffers stored in an arbitrary order

but linked together to form an ordered linked list. Thus O(
∑log

3/2
logc N

i=0 N (2/3)i

) = O(N)
is an upper bound on the total memory used by the priority queue.

Operations

To implement the priority queue operations we use two general operations, push and pull.
Push inserts X elements into level X3/2, and pull removes the X elements with smallest
keys from level X3/2 and returns them in sorted order. An Insert or a DeleteMin is
performed simply by performing a push or pull on the smallest level c.

Push. To push X elements into level X3/2, we first sort the X elements cache-obliviously
using O(1 + X

B logM/B
X
B ) memory transfers. Next we distribute the elements in the sorted

list into the down buffers of level X3/2 by scanning through the list and simultaneously
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visiting the down buffers in (linked) order. More precisely, we append elements to the end

of the current down buffer dX3/2

i , and advance to the next down buffer dX3/2

i+1 as soon as

we encounter an element with larger key than the pivot of dX3/2

i . Elements with larger

keys than the pivot of the last down buffer are inserted in the up buffer uX3/2

. Scanning
through the X elements take O(1 + X

B ) memory transfers. Even though we do not scan
through every down buffer, we might perform at least one memory transfer for each of the
X1/2 possible buffers. Thus the total cost of distributing the X elements is O(X

B + X1/2)
memory transfers.

During the distribution of elements a down buffer may run full, that is, contain 2X
elements. In this case, we split the buffer into two down buffers each containing X elements
using O(1 + X

B ) transfers. We place the new buffer in any free down buffer location for the
level and update the linked list accordingly. If the level already has the maximum number
X1/2 of down buffers, we remove the last down buffer dX

X1/2 by inserting its no more than 2X

elements into the up buffer using O(1 + X
B ) memory transfers. Since X elements must have

been inserted since the last time the buffer split, the amortized splitting cost per element is
O( 1

X + 1
B ) transfers. In total, the amortized number of memory transfers used on splitting

buffers while distributing the X elements is O(1 + X
B ).

If the up buffer runs full during the above process, that is, contains more than X3/2

elements, we recursively push all of these elements into the next level up. Note that after
such a recursive push, X3/2 elements have to be inserted (pushed) into the up buffer of level
X3/2 before another recursive push is needed.

Overall we can perform a push of X elements from level X into level X3/2 in O(X1/2 +
X
B logM/B

X
B ) memory transfers amortized, not counting the cost of any recursive push

operations; it is easy to see that a push maintains all three invariants.

Pull. To describe how to pull the X smallest keys elements from level X3/2, we first
assume that the down buffers contain at least 3

2X elements. In this case the first three

down buffers dX3/2

1 , dX3/2

2 , and dX3/2

3 contain the between 3
2X and 6X smallest elements

(Invariants 4 and 5). We find and remove the X smallest elements simply by sorting these
elements using O(1 + X

B logM/B
X
B ) memory transfers. The remaining between X/2 and

5X elements are left in one, two, or three down buffers containing between X/2 and 2X
elements each. These buffers can easily be constructed in O(1 + X

B ) transfers. Thus we

use O(1 + X
B logM/B

X
B ) memory transfers in total. It is easy to see that Invariants 4–6 are

maintained.

In the case where the down buffers contain fewer than 3
2X elements, we first pull the

X3/2 elements with smallest keys from the next level up. Because these elements do not

necessarily have smaller keys than the, say U , elements in the up buffer uX3/2

, we then
sort this up buffer and merge the two sorted lists. Then we insert the U elements with
largest keys into the up buffer, and distribute the remaining between X3/2 and X3/2 + 3

2X

elements into X1/2 down buffers containing between X and X + 3
2X1/2 each (such that

the O( 1
X + 1

B ) amortized down buffer split bound is maintained). It is easy to see that
this maintains the three invariants. Afterwards, we can find the X minimal key elements
as above. Note that after a recursive pull, X3/2 elements have to be deleted (pulled) from
the down buffers of level X3/2 before another recursive pull is needed. Note also that a

pull on level X3/2 does not affect the number of elements in the up buffer uX3/2

. Since we
distribute elements into the down and up buffers after a recursive pull using one sort and
one scan of X3/2 elements, the cost of doing so is dominated by the cost of the recursive
pull operation itself. Thus ignoring the cost of recursive pulls, we have shown that a pull
of X elements from level X3/2 down to level X can be performed in O(1 + X

B logM/B
X
B )
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memory transfers amortized, while maintaining Invariants 4–6.

Analysis

To analyze the amortized cost of an Insert or DeleteMin operation, we consider the
total number of memory transfers used to perform push and pull operations during N

2
operations; to ensure that the structure always consists of O(log log N) levels and use O(N)
space we rebuild it using O(N

B logM/B
N
B ) memory transfers (or O( 1

B logM/B
N
B ) transfers

per operation) after every N
2 operations [5].

The total cost of N
2 such operations is analyzed as follows: We charge a push of X

elements from level X up to level X3/2 to level X . Since X elements have to be inserted in
the up buffer uX of level X between such pushes, and as elements can only be inserted in
uX when elements are inserted (pushed) into level X , O(N/X) pushes are charged to level
X during the N

2 operations. Similarly, we charge a pull of X elements from level X3/2 down
to level X to level X . Since between such pulls Θ(X) elements have to be deleted from the
down buffers of level X by pulls on X , O(N/X) pulls are charged to level X during the N

2
operations.

Above we argued that a push or pull charged to level X uses O(X1/2 + X
B logM/B

X
B )

memory transfers. We can reduce this cost to O(X
B logM/B

X
B ) by more carefully examining

the costs for differently sized levels. First consider a push or pull of X ≥ B2 elements into
or from level X3/2 ≥ B3. In this case X

B ≥
√

X, and we trivially have that O(X1/2 +
X
B logM/B

X
B ) = O(X

B logM/B
X
B ). Next, consider the case B4/3 ≤ X < B2, where the X1/2

term in the push bound can dominate and we have to analyze the cost of a push more
carefully. In this case we are working on a level X3/2 where B2 ≤ X3/2 < B3; there is only
one such level. Recall that the X1/2 cost was from distributing X sorted elements into the
less than X1/2 down buffers of level X3/2. More precisely, a block of each buffer may have
to be loaded and written back without transferring a full block of elements into the buffer.
Assuming M = Ω(B2), we from X1/2 ≤ B see that a block for each of the buffers can fit
into fast memory. Consequently, if a fraction of the fast memory is used to keep a partially
filled block of each buffer of level X3/2 (B2 ≤ X3/2 ≤ B3) in fast memory at all times, and
full blocks are written to disk, the X1/2 cost would be eliminated. In addition, if all of the
levels of size less than B2 (of total size O(B2)) are also kept in fast memory, all transfer
costs associated with them would be eliminated. The optimal paging strategy is able to
keep the relevant blocks in fast memory at all times and thus eliminates these costs.

Finally, since each of the O(N/X) push and pull operations charged to level X (X > B2)
uses O(X

B logM/B
X
B ) amortized memory transfers, the total amortized transfer cost of an

Insert or DeleteMin operation in the sequence of N
2 such operations is

O

( ∞
∑

i=0

1

B
logM/B

N (2/3)i

B

)

= O

(

1

B
logM/B

N

B

)

.

THEOREM 38.7 Using Θ(M) fast memory, N Insert, DeleteMin, and Delete

operations can be performed on an initially empty exponential level priority queue using
O(N) space in O( 1

B logM/B
N
B ) amortized memory transfers each.
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38.5 2d Orthogonal Range Searching

As discussed in Section 38.3, there exist cache-oblivious B-trees that support updates and
queries in O(logB N) memory transfers (e.g. Theorem 38.5); several cache-oblivious B-
tree variants can also support (one-dimensional) range queries in O(logB N + K

B ) memory

transfers [11, 12, 18], but at an increased amortized update cost of O(logB N + log2 N
B ) =

O(log2
B N) memory transfers (e.g. Theorem 38.4).

In this section we discuss cache-oblivious data structures for two-dimensional orthogonal
range searching, that is, structures for storing a set of N points in the plane such that
the points in a axis-parallel query rectangle can be reported efficiently. In Section 38.5.1
we first discuss a cache-oblivious version of a kd-tree. This structure uses linear space and
answers queries in O(

√

N/B + K
B ) memory transfers; this is optimal among linear space

structures [22]. It supports updates in O( log N
B · logM/B N) = O(log2

B N) transfers. In
Section 38.5.2 we then discuss a cache-oblivious version of a two-dimensional range tree.
The structure answers queries in the optimal O(logB N + K

B ) memory transfers but uses

O(N log2 N) space. Both structures were first described by Agarwal et al. [1].

38.5.1 Cache-Oblivious kd-Tree

Structure

The cache-oblivious kd-tree is simply a normal kd-tree laid out in memory using the van
Emde Boas layout. This structure, proposed by Bentley [13], is a binary tree of height
O(log N) with the N points stored in the leaves of the tree. The internal nodes represent
a recursive decomposition of the plane by means of axis-orthogonal lines that partition the
set of points into two subsets of equal size. On even levels of the tree the dividing lines
are horizontal, and on odd levels they are vertical. In this way a rectangular region Rv is
naturally associated with each node v, and the nodes on any particular level of the tree
partition the plane into disjoint regions. In particular, the regions associated with the leaves
represent a partition of the plane into rectangular regions containing one point each. Refer
to Figure 38.12.
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FIGURE 38.12: kd-tree and the corresponding partitioning.

Query

An orthogonal range query Q on a kd-tree T is answered recursively starting at the
root: At a node v we advance the query to a child vc of v if Q intersects the region Rvc

associated with vc. At a leaf w we return the point in w if it is contained in Q. A standard
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argument shows that the number of nodes in T visited when answering Q, or equivalently,
the number of nodes v where Rv intersects Q, is O(

√
N +K);

√
N nodes v are visited where

Rv is intersected by the boundary of Q and K nodes u with Ru completely contained in
Q [13].

If the kd-tree T is laid out using the van Emde Boas layout, we can bound the number
of memory transfers used to answer a query by considering the nodes log B levels above
the leaves of T . There are O(N

B ) such nodes as the subtree Tv rooted in one such node v
contains B leaves. By the standard query argument, the number of these nodes visited by
a query is O(

√

N/B + K
B ). Thus, the number of memory transfers used to visit nodes more

than log B levels above the leaves is O(
√

N/B + K
B ). This is also the overall number of

memory transfers used to answer a query, since (as argued in Section 38.2.1) the nodes in Tv

are contained in O(1) blocks, i.e. any traversal of (any subset of) the nodes in a subtree Tv

can be performed in O(1) memory transfers.

Construction

In the RAM model, a kd-tree on N points can be constructed recursively in O(N log N)
time; the root dividing line is found using an O(N) time median algorithm, the points are
distributed into two sets according to this line in O(N) time, and the two subtrees are
constructed recursively. Since median finding and distribution can be performed cache-
obliviously in O(N/B) memory transfers [20, 24], a cache-oblivious kd-tree can be con-
structed in O(N

B log N) memory transfers. Agarwal et al. [1] showed how to construct

log
√

N = 1
2 log N levels in O(SortM,B(N)) memory transfers, leading to a recursive con-

struction algorithms using only O(SortM,B(N)) memory transfers.

Updates

In the RAM model a kd-tree T can relatively easily be modified to support deletions
in O(log N) time using global rebuilding. To delete a point from T , we simply find the
relevant leaf w in O(log N) time and remove it. We then remove w’s parent and connect
w’s grandparent to w’s sibling. The resulting tree is no longer a kd-tree but it still answers
queries in O(

√
N + T ) time, since the standard argument still applies. To ensure that N is

proportional to the actual number of points in T , the structure is completely rebuilt after
N
2 deletions. Insertions can be supported in O(log2 N) time using the so-called logarithmic
method [14], that is, by maintaining log N kd-trees where the i’th kd-tree is either empty
or of size 2i and then rebuilding a carefully chosen set of these structures when performing
an insertion.

Deletes in a cache-oblivious kd-tree is basically done as in the RAM version. However,
to still be able to load a subtree Tv with B leaves in O(1) memory transfers and obtain the
O(
√

N/B + K
B ) query bound, data locality needs to be carefully maintained. By laying out

the kd-tree using (a slightly relaxed version of) the exponential layout (Section 38.3.2) rather
than the van Emde Boas layout, and by periodically rebuilding parts of this layout, Agarwal
et al. [1] showed how to perform a delete in O(logB N) memory transfers amortized while
maintaining locality. They also showed how a slightly modified version of the logarithmic
method and the O(SortM,B(N)) construction algorithms can be used to perform inserts in

O( log N
B logM/B N) = O(log2

B N) memory transfers amortized.

THEOREM 38.8 There exists a cache-oblivious (kd-tree) data structure for storing a
set of N points in the plane using linear space, such that an orthogonal range query can
be answered in O(

√

N/B + K
B ) memory transfers. The structure can be constructed cache-
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obliviously in O(SortM,B(N)) memory transfers and supports updates in O( log N
B logM/B N) =

O(log2
B N) memory transfers.

38.5.2 Cache-Oblivious Range Tree

The main part of the cache-oblivious range tree structure for answering (four-sided) orthog-
onal range queries is a structure for answering three-sided queries Q = [xl, xr] × [yb,∞),
that is, for finding all points with x-coordinates in the interval [xl, xr] and y-coordinates
above yb. Below we discuss the two structures separately.

Three-Sided Queries.

Structure

Consider dividing the plane into
√

N vertical slabs X1, X2, . . . , X√
N containing

√
N

points each. Using these slabs we define 2
√

N − 1 buckets. A bucket is a rectangular region
of the plane that completely spans one or more consecutive slabs and is unbounded in the
positive y-direction, like a three-sided query. To define the 2

√
N − 1 buckets we start with√

N active buckets b1, b2, . . . , b√N corresponding to the
√

N slabs. The x-range of the slabs
define a natural linear ordering on these buckets. We then imagine sweeping a horizontal
sweep line from y = −∞ to y = ∞. Every time the total number of points above the sweep
line in two adjacent active buckets, bi and bj , in the linear order falls to

√
N , we mark bi

and bj as inactive. Then we construct a new active bucket spanning the slabs spanned by
bi and bj with a bottom y-boundary equal to the current position of the sweep line. This
bucket replaces bi and bj in the linear ordering of active buckets. The total number of

buckets defined in this way is 2
√

N − 1, since we start with
√

N buckets and the number
of active buckets decreases by one every time a new bucket is constructed. Note that the
procedure defines an active y-interval for each bucket in a natural way. Buckets overlap but
the set of buckets with active y-intervals containing a given y-value (the buckets active when
the sweep line was at that value) are non-overlapping and span all the slabs. This means
that the active y-intervals of buckets spanning a given slab are non-overlapping. Refer to
Figure 38.13(a).
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FIGURE 38.13: (a) Active intervals of buckets spanning slab Xi; (b) Buckets active at yb.

After defining the 2
√

N − 1 buckets, we are ready to present the three-sided query data
structure; it is defined recursively: It consists of a cache-oblivious B-tree T on the

√
N

boundaries defining the
√

N slabs, as well as a cache-oblivious B-tree for each of the
√

N
slabs; the tree Ti for slab i contains the bottom endpoint of the active y-intervals of the
O(

√
N) buckets spanning the slab. For each bucket bi we also store the

√
N points in bi in
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a list Bi sorted by y-coordinate. Finally, recursive structures S1,S2, . . . ,S2
√

N−1 are built

on the
√

N points in each of the 2
√

N − 1 buckets.

Layout

The layout of the structure in memory consists of O(N) memory locations containing T ,
then T1, . . . , T√N , and B1, . . . ,B2

√
N−1, followed by the recursive structures S1, . . . ,S2

√
N−1.

Thus the total space use of the structure is S(N) ≤ 2
√

N · S(
√

N) + O(N) = O(N log N).

Query

To answer a three-sided query Q, we consider the buckets whose active y-interval contain
yb. These buckets are non-overlapping and together they contain all points in Q, since they
span all slabs and have bottom y-boundary below yb. We report all points that satisfy Q in
each of the buckets with x-range completely between xl and xr. At most two other buckets
bl and br—the ones containing xl and xr—can contain points in Q, and we find these points
recursively by advancing the query to Sl and Sr. Refer to Figure 38.13(b).

We find the buckets bl and br that need to be queried recursively and report the points
in the completely spanned buckets as follows. We first query T using O(logB

√
N) memory

transfers to find the slab Xl containing xl. Then we query Tl using another O(logB

√
N)

memory transfers to find the bucket bl with active y-interval containing yb. We can similarly
find br in O(logB

√
N) memory transfers. If bl spans slabs Xl, Xl+1, . . . , Xm we then query

Tm+1 with yb in O(logB

√
N) memory transfers to find the active bucket bi to the right of

bl completely spanned by Q (if it exists). We report the relevant points in bi by scanning Bi

top-down until we encounter a point not contained in Q. If K ′ is the number or reported
points, a scan of Bi takes O(1 + K′

B ) memory transfers. We continue this procedure for
each of the completely spanned active buckets. By construction, we know that every two
adjacent such buckets contain at least

√
N points above yb. First consider the part of the

query that takes place on recursive levels of size N ≥ B2, such that
√

N/B ≥ logB

√
N ≥ 1.

In this case the O(logB

√
N) overhead in finding and processing two consecutive completely

spanned buckets is smaller than the O(
√

N/B) memory transfers used to report output
points; thus we spend O(logB

√
N + Ki

B ) memory transfers altogether to answer a query,
not counting the recursive queries. Since we perform at most two queries on each level
of the recursion (in the active buckets containing xl and xr), the total cost over all levels

of size at least B2 is O(
∑log logB N

i=1 logB N1/2i

+ Ki

B ) = O(logB N + K
B ) transfers. Next

consider the case where N = B. In this case the whole level, that is, T , T1, . . . , T√B and
B1, . . . ,B2

√
B−1, is stored in O(B) contiguously memory memory locations and can thus be

loaded in O(1) memory transfers. Thus the optimal paging strategy can ensure that we
only spend O(1) transfers on answering a query. In the case where N ≤

√
B, the level and

all levels of recursion below it occupies O(
√

B log
√

B) = O(B) space. Thus the optimal
paging strategy can load it and all relevant lower levels in O(1) memory transfers. This
means that overall we answer a query in O(logB N + K

B ) memory transfers, provided that

N and B are such that we have a level of size B2 (and thus of size B and
√

B); when
answering a query on a level of size between B and B2 we cannot charge the O(logB

√
N)

cost of visiting two active consecutive buckets to the (< B) points found in the two buckets.
Agarwal et al. [1] showed how to guarantee that we have a level of size B2 by assuming that

B = 22d

for some non-negative integer d. Using a somewhat different construction, Arge et
al. [6] showed how to remove this assumption.
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THEOREM 38.9 There exists a cache-oblivious data structure for storing N points in
the plane using O(N log N) space, such that a three-sided orthogonal range query can be
answered in O(logB N + K

B ) memory transfers.

Four-sided queries.

Using the structure for three-sided queries, we can construct a cache-oblivious range tree
structure for four-sided orthogonal range queries in a standard way. The structure consists
of a cache-oblivious B-tree T on the N points sorted by x-coordinates. With each internal
node v we associate a secondary structure for answering three-sided queries on the points
stored in the leaves of the subtree rooted at v: If v is the left child of its parent then we
have a three-sided structure for answering queries with the opening to the right, and if v is
the right child then we have a three-sided structure for answering queries with the opening
to the left. The secondary structures on each level of the tree use O(N log N) space, for a
total space usage of O(N log2 N).

To answer an orthogonal range query Q, we search down T using O(logB N) memory
transfers to find the first node v where the left and right x-coordinate of Q are contained in
different children of v. Then we query the right opening secondary structure of the left child
of v, and the left opening secondary structure of the right child of v, using O(logB N + K

B )
memory transfers. Refer to Figure 38.14. It is easy to see that this correctly reports all K
points in Q.
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FIGURE 38.14: Answering a four-sided query in v using two three-sided queries in v’s
children.

THEOREM 38.10 There exists a cache-oblivious data structure for storing N points in
the plane using O(N log2 N) space, such that an orthogonal range query can be answered in
O(logB N + K

B ) memory transfers.
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