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Abstract

Point location is an extremely well-studied problem both in internal memory models
and recently also in the external memory model. In this paper, we present an I/O-
efficient dynamic data structure for point location in general planar subdivisions. Our
structure uses linear space to store a subdivision with N segments. Insertions and
deletions of segments can be performed in amortized O(logB N) I/Os and queries can
be answered in O(log2B N) I/Os in the worst-case. The previous best known linear
space dynamic structure also answers queries in O(log2B N) I/Os, but only supports
insertions in amortized O(log2B N) I/Os. Our structure is also considerably simpler
than previous structures.

1 Introduction

Planar point location is a classical problem in computational geometry: Given a planar
subdivision Π with N segments (i.e., a decomposition of the plane into polygonal regions
induced by a straight-line planar graph), the problem consists of preprocessing Π into a
data structure so that the face of Π containing an arbitrary query point p can be reported
quickly. This problem has applications in e.g. graphics, spatial databases, and geographic
information systems. The planar subdivisions arising in many applications in these areas
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are too massive to fit in internal memory and must reside on disk. In such instances the
I/O communication, rather than the CPU computation time, is the bottleneck. Most work
on planar point location, especially if we allow the edges and vertices of Π to be changed
dynamically, has focused on minimizing the CPU computation time under the assumption
that the subdivision fits in main memory (e.g., [3, 10, 12, 13, 18, 21, 23]). Only a few
results are known for I/O-efficient dynamic point location when the subdivision is stored in
external memory [1, 7]. In this paper, we improve the update bound of the previous best
known external memory dynamic structure.

1.1 Previous results

Internal memory model. Edelsbrunner et al. [17] proposed an optimal static data
structure for point location in planar monotone subdivision, i.e., subdivisions where the
intersection of any face and any vertical line is a (possibly empty) single interval. Their
data structure uses O(N) space, can be constructed in O(N) time, and supports queries
in O(log2N) time. For arbitrary planar subdivisions, linear space structures with logarith-
mic query time and O(N log2N) construction time are known; see, e.g., [21, 23]. For the
dynamic version of the problem where we allow the edges and vertices to be changed dynam-
ically, Cheng and Janardan [12] gave a structure that supports queries in O(log22N) time
and supports updates in O(log2N) time. The structure given by Baumgarten et al. [10] sup-
ports queries in O((log2N) log2 log2N) time worst case, insertions in O((log2N) log2 log2N)
time amortized, and deletions in O(log22N) time amortized. Recently, Arge et al. [3] gave a
structure that supports queries in O(log2N) time worst case, insertions in O(log1+ε

2 N) time
amortized, and deletions in O(log2+ε

2 N) time amortized, for some arbitrary fixed constant
0 < ε < 1. All three structures use linear space. They all basically store the edges of the
subdivision in an interval tree [16] constructed on their x-projection (as first suggested in
[18]) and use this structure to answer vertical ray-shooting queries, that is, the problem of
finding the first edge of Π hit by a ray emanating in the (+y)-direction from a query point
p. After answering a vertical ray-shooting query, the face containing p can be easily found
in O(log2N) time [22].

External memory model. In this paper, we are interested in the problem of dynamically
maintaining a planar subdivision on disk, such that the number of I/O operations (or I/Os)
used to perform a query or an update is minimized. We consider the problem in the standard
two-level I/O model proposed by Aggarwal and Vitter [2]. In this model, M is the number
of elements (vertices/edges) that fit in the internal memory and B is the number of elements
per disk block, where 2 ≤ B ≤ M/2. An I/O is the operation of reading (or writing) a block
from (or into) external memory. Computation can only be performed on elements in internal
memory. The measures of performance are the number of I/Os used to solve a problem and
the amount of space (disk blocks) used.

In the I/O-model, Goodrich et al. [19] designed a linear space (O(N/B) disk blocks) static
data structure to store a planar monotone subdivision so that a query can be answered in
optimal O(logB N) I/Os. Arge et al. [5] designed a structure for general subdivisions with

2



the same bounds. Goodrich et al. [19] also developed a structure for answering a batch
of Q queries in O( 1

B
(N + Q) logM/B N) I/Os for monotone subdivisions. Arge et al. [8]

extended the batched result to general subdivisions (see also [15]), and Arge et al. [6] to
an off-line dynamic setting where a sequence of queries and updates are given and all the
queries should be answered as the sequence of operations is performed. Vahrenhold and
Hinrichs [24] considered the problem under some practical assumptions about the input
data. Only two results are known for the dynamic case. Agarwal et al. [1] designed a linear
space structure for planar monotone subdivisions that supports queries in O(log2B N) I/Os in
the worst case and updates in O(log2B N) I/Os amortized. Arge and Vahrenhold [7] designed
the only previously known dynamic structure for general subdivisions. Their structure uses
linear space and supports queries in O(log2B N) I/Os in the worst case, and insertions and
deletions in O(log2B N) and O(logB N) I/Os amortized, respectively.

1.2 Our results

In this paper we describe a linear space dynamic structure for point location in general planar
subdivisions. Our structure supports queries in O(log2B N) I/Os like the previously known
structure [7] but supports both insertions and deletions in O(logB N) I/Os amortized. Our
structure is also considerably simpler.

Our main contribution is a structure (called a multislab structure) for dynamically main-
taining a set of segments with endpoints on Bε vertical lines, for some constant ε where
0 < ε ≤ 1, such that the segment immediately above a query point can be found in O(logB N)
I/Os and such that segments can be inserted and deleted in O(logB N) I/Os amortized. Such
a structure was also used in the previous I/O-efficient dynamic point location structure [7].
However, the previous structure required amortized O(log2B N) I/Os to support insertions.
Using the new multislab structure, our point location structure is obtained with essentially
the same method as the previous structures [1, 7], namely by using the multislab structure
as a secondary structure at the nodes of an interval tree over the projections of the segments
on the x-axis.

The rest of the paper is organized as follows. In the next section we outline the overall
structure of our point location data structure. In Section 3, we describe our new multislab
structure. In these sections we assume for simplicity that the base interval tree is static.
Section 4 describes how to rebalance the base interval tree during updates, and how to
handle the resulting reorganization of the secondary structures.

2 Overall structure

In the following, we will concentrate on developing a dynamic structure for answering the
vertical ray-shooting queries, i.e., maintain the set of segments S in Π, under insertions and
deletions, such that the first segment hit by a ray emanating from a query point in the
(+y)-direction can be found efficiently. It is easy to realize that a point location query with
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p can be answered in an additional O(logB N) I/Os once a vertical ray shooting query with
p has been answered [7].

We will make frequent use of (a, b)-trees [20]. In (a, b)-trees objects are stored in the
leaves of the tree. All leaves are on the same level of the tree, and all internal nodes have
between a and b children, except possibly the root which has between 2 and b children. In this
paper, all (a, b)-trees will satisfy that a, b ∈ Θ(Bε), for some constant 0 < ε ≤ 1; and each
leaf stores Θ(B) objects. This way each node can be stored in O(1) blocks (assuming that
the space required for a node is linear in the number of its children); a tree storing N objects
has height O(logBε(N/B)) = O(logB N), and it uses linear space. We refer to an (a, b)-tree
with a = cBε and b = Bε, for some 0 < c ≤ 1/2 as a Bε-tree. (A normal B-tree [11, 14],
or rather B+-tree, is such a structure with ε = 1.) Assuming the objects are stored in the
sorted order of their keys in the leaves (as in a normal B-tree), key-based searches can be
performed in O(logB N) I/Os. Insertions and deletions can also be performed in O(logB N)
I/Os using O(logB N) split and fuse operations on the nodes on a root-leaf path [20].

2.1 Overview of the data structure

The basic idea in our structure is the same as previously applied by Agarwal et al. [1]
and Arge and Vahrenhold [7], and is similar to the one used in several internal memory
structures [10, 12, 18]. The set of edges/segments S of Π is stored in a two-level tree
structure, with the first level being an interval tree—here an external interval tree [9]—
on their x-projection: the base (interval) tree is a Bε-tree T over the x-coordinates of the
endpoints of the segments in S (a possible value for ε is ε = 1/5); the segments in S are
stored in secondary structures associated with the nodes of T , such that each segment is
stored at exactly one node of T . Each node v of T is associated with a vertical slab sv; the
root is associated with the whole plane. For each internal node v, the slab sv is partitioned
into Bε vertical slabs s1, . . . , sBε corresponding to the children of v, separated by vertical
lines called slab boundaries (the dashed lines in Figure 1(a)). A segment t of S is stored in
the secondary structures associated with the highest node v of T , where t intersects one of
the slab boundaries partitioning the slab sv.

For simplicity, in the following we assume that the endpoints of the segments in S have
distinct x-coordinates, such that each leaf stores O(B) segments in O(1) blocks. Our struc-
ture can be easily modified to work without this assumption. Let v be an internal node of T
and let Sv ⊆ S be the set of segments associated with v. Let t ∈ Sv be one of the segments
associated with v, and suppose that the left endpoint of t lies in the slab sℓ and the right
endpoint of t lies in the slab sr associated with the ℓ-th and r-th children of v, respectively.
We call the subsegment t ∩ sℓ the left subsegment of t, t ∩ sr the right subsegment, and the
portion of t lying in the slabs sℓ+1, . . . , sr−1 the middle subsegment. Refer to Figure 1(a).
Let M denote the set of middle subsegments of segments in Sv. For each i, 1 ≤ i ≤ Bε, let
Li (resp., Ri) denote the set of left (resp., right) subsegments that lie in si. We store the
following secondary structures at v:

(i) A multislab structure ∆ on the set of middle segments M.
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Figure 1: (a) A node in the base tree T . The left subsegment of t is in slab s1, the right
subsegment in slab s4, and the middle subsegment spans s2 and s3. (b) Answering a query.

(ii) For each slab si, 1 ≤ i ≤ Bε,

– a left structure on all segments of Li, and

– a right structure on all segments of Ri.

A segment in Sv is thus stored in at most three secondary structures: a multislab struc-
ture, a left structure, and a right structure. For example, the segment t in Figure 1(a) is
stored in the multislab structure ∆, the left structure of s1, and in the right structure of s4.
The secondary structures are constructed to use linear space so that each internal node v
requires O(|Sv|/B) disk blocks. This in turn means that overall the data structure requires
O(N/B) disk blocks.

Query algorithm. Let ρ+ be the ray emanating from a point p in the (+y)-direction. To
find the first segment of S hit by ρ+, we search T along a path of length O(logB N) from the
root to the leaf z where the slab sz contains p. At each internal node v visited, we compute
the first segment of Sv hit by ρ+. In particular, at node v we first search ∆ to find the first
segment of M hit by ρ+. Next, we find the vertical slab si that contains p and search the
left and right structures for si to find the first segments of Li and Ri, respectively, hit by
ρ+. Refer to Figure 1(b). At the leaf z, the first segment of Sz hit by ρ+ is computed by
testing all segments of Sz explicitly. The query is then answered by choosing the segment
with lowest intersection with ρ+ among the O(logB N) segments found this way.

Based on ideas due to Cheng and Jarnadan [12], Agarwal et al. [1] showed how the left
and right structures can be implemented efficiently, basically using B-trees:

Lemma 1 (Agarwal et al. [1, Lemma 3]) A set of K non-intersecting segments all of
whose right (left) endpoints lie on a single vertical line can be stored in a linear space data
structure such that a vertical ray-shooting query can be answered in O(logB K) I/Os. Updates
can be performed in O(logB K) I/Os. If the set of segments is sorted by the right (left) y-
coordinates of the endpoints, then the structure can be constructed in O(K/B) I/Os.
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Figure 2: The search for the successor of x in Lj . Crosses indicate elements from Lj .
Underbraces show the intervals spanned by the nodes in the Bc-tree.

In the next section, we prove the following lemma, which is used to implement all the
multislab structures efficiently.

Lemma 2 For a constant 0 < ε ≤ 1/5, a set of K non-intersecting segments with endpoints
on Bε+1 vertical lines can be stored in a linear space data structure such that a vertical ray-
shooting query can be answered in O(logB K) I/Os. Updates can be performed in amortized
O(logB K) I/Os.

Lemma 1 and Lemma 2 together imply that our overall structure can answer queries
in O(log2B N) I/Os since we use O(logB N) I/Os to query the secondary structures at each
of the O(logB N) nodes on a root-leaf path of T . Ignoring updates in the base tree T
(insertion/deletion of endpoints and rebalancing), updates can be performed in O(logB N)
I/Os simply by searching down a root-to-leaf path of T to find the relevant node v and then
updating the appropriate left and right structures and the multislab structure associated
with v. In Section 4 we discuss how the base tree can also be updated in amortized O(logB N)
I/Os. Combining these, we obtain our main result:

Theorem 1 A set S of N non-intersecting segments in the plane can be stored in a linear
space data structure, such that a vertical ray-shooting query can be answered in O(log2B N)
I/Os, and such that updates can be performed in amortized O(logB N) I/Os.

3 Multislab structure

Let M be a set of K non-intersecting segments in the plane with endpoints on Bε+1 vertical
lines b1, . . . , bBε+1. For each i, 1 ≤ i ≤ Bε, let si be the vertical slab bounded by bi and bi+1.
In this section we consider the problem of maintaining M in a structure using O(K/B)
disk blocks that supports vertical ray shooting queries in O(logB K) I/Os and updates in
amortized O(logB K) I/Os.

Our data structure will actually consist of two different data structures for the two cases:
(i) B2ε = O(logB K), and (ii) logB K = O(B2ε), for some constant ε, 0 < ε < 1/5. In
Case (i), discussed in Section 3.3, we maintain sorted lists of segments for every pair of
slab boundaries. Since the number of these lists is bounded by B2ε = O(logB K), we can
support queries efficiently. In Case (ii), we use the logarithmic method [7] to reduce the
problem to O(logB K) deletion-only problems, and show how to support deletions efficiently
using the fact that the number of structures created by the logarithmic method is bounded by
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O(logB K) = O(B2ε). For this case, we first describe a deletion-only structure in Section 3.2,
and then we describe how to use the logarithmic method to obtain a fully-dynamic structure
in Section 3.4. In both cases we utilize a structure that supports efficient simultaneous
searching in O(B1−c) sorted lists of total size K, for some positive constant 0 < c < 1, in
O(logB K) I/Os. This structure is described in Section 3.1.

In fact, we will implement all multislab structures at the nodes of the base tree T by
either the data structure of Section 3.3 when B2ε = O(logB N), or by the data structure of
Section 3.4 otherwise (when logB N = O(B2ε)). Here N is the total number of segments
stored. This increases the I/O bound for queries to a multislab structure storing K segments
from O(logB K) to O(logB N) in the first case (see Corollary 1)—all other I/O bounds remain
unchanged. In order to ensure that we always implement the multislab structures using the
correct case (Section 3.3 or Section 3.4), we rebuild all multislab structures whenever N/2
operations have been performed to the structure. This only adds amortized O(logB N) I/Os
to the update bounds.

3.1 Searching in multiple sorted lists

In this section we describe a structure supporting efficient simultaneous searching inm sorted
lists L1, L2, . . . , Lm of total size K, assuming m = O(B1−c) for some constant c, 0 < c < 1.
We assume that the elements in the lists come from a total order and the aim is to maintain
the lists under insertions and deletions such that searching in all the lists simultaneously is
supported in O(logB K) I/Os. The structure is based on an idea utilized in [7] to search in
a single deletion-only multislab structure. The main idea used is to store the merged lists in
a single Bc-tree where each internal node stores the minimum and maximum elements from
each list among all the elements in its subtree.

Consider the sorted list L = ∪1≤j≤mLj stored in O(K/B) blocks, where each element
is augmented with information about the list Lj it belongs to. Our structure consists of a
Bc-tree over the list L. For an internal node u of the Bc-tree, let minj,u and maxj,u be the
minimum and maximum elements that belong to the list Lj among all the elements that are
stored in the subtree rooted at u; if the subtree does not contain any element from Lj we let
minj,u = ∞ and maxj,u = −∞. For each node v in the Bc-tree, we store for each child u of
v, and for each list Lj , the elements minj,u and maxj,u. Since B

c ·m = O(B), these elements
can be stored in O(1) blocks associated with v, i.e., the tree can be stored in O(K/B) blocks.

Query algorithm. To find the successor in Lj of a query element x in each of the m lists
Lj , 1 ≤ j ≤ m, we search for x along a path v1, v2, . . . vh from the root (v1) to a leaf (vh)
of the augmented Bc-tree on L. The leaf vh is uniquely determined by the element x (it is
the block to which x would belong, had it been in one of the Lj lists). If x > maxj,v1, we
know that x > maxLj and we return ∞ for the list Lj (where maxLj denotes the maximum
element in the list Lj). Otherwise, we find the answer for list Lj at node vi that satisfies the
condition: maxj,vi+1

< x ≤ maxj,vi; and the answer in this case is the successor of x among
all minj,u stored at vi, where u ranges over the children of vi. Refer to Figure 2. If no such
node exists, i.e., if we reach the leaf vh without having answered the query for list Lj, then
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we have x ≤ maxj,vh, and we simply return the successor of x among the elements from Lj

stored in vh. It is easy to verify that this correctly finds the successor of x in Lj . Since the
successors of x in all the lists Lj , 1 ≤ j ≤ m, can be found in one traversal of the root-to-leaf
path, the query is answered in O(logB K) I/Os.

Supporting updates. Updates are performed in a straightforward manner similar to a
B-tree. To insert/delete an element x into/from a list Lj , we first search for x in the Bc-tree
over L to find the leaf block spanning the interval containing x and perform the update.
Then we traverse the path back to the root while updating the minj,v and maxj,v values.
This takes O(logB K) I/Os since minj,v and maxj,v can be updated in O(1) I/Os in a node
v. Finally, we rebalance the tree as in the case of a standard B-tree update, i.e., we split
and fuse nodes on the root-to-leaf path as required. As the minj,v and maxj,v values can
also easily be maintained in O(1) I/Os during a split or fuse, the rebalancing is performed
in O(logB K) I/Os.

Construction. Our data structure can be constructed from a set of sorted lists L1, . . . , Lm

by first forming the list L = ∪1≤j≤mLj by pairwise merging the Lj lists in a binary tree
fashion. Assuming that the lists are stored in memory in sorted order, this can be done in
O(m+(K/B) log2m) I/Os. (This follows from the fact that we spend O(m+(K/B)) I/Os to
read all the lists and merge them pairwise; then in the next iteration, spend O(m/2+(K/B))
I/Os for pairwise merging, and so on.) We then construct the Bc-tree over L bottom-up
using O(K/B) I/Os. In total the construction requires O(m + (K/B) log2B) I/Os, since
m = O(B1−c). The additive O(m) I/O term for accessing the first block of each of the m lists
can be avoided in the construction time if the lists are stored consecutively in the memory
in O(K/B) blocks.

Lemma 3 Let L1, L2, . . . , Lm be m = O(B1−c) sorted lists, for some constant 0 < c <
1, of total size K whose elements come from a total order. There exists a linear space
data structure that supports the simultaneous search for the successor of a query element
x in each of the m lists in O(logB K) I/Os, and supports the insertion and deletion of an
element from a list Lj in O(logB K) I/Os. The data structure can be constructed in O(m+
(K/B) log2B) I/Os, provided each list Li is stored in sorted order. Moreover, if the lists are
stored consecutively in O(K/B) blocks, then the construction time is O((K/B) log2B) I/Os.

3.2 Deletion-only structure

In this section we describe a structure that supports I/O-efficient ray-shooting queries and
deletions on a set M of K segments in the plane with endpoints on Bε + 1 vertical lines,
where 0 < ε ≤ 1. In Section 3.4 we will use this structure to develop a fully-dynamic
structure for the case where logB K = O(B2ε). The main idea is to construct a samplig of
segments over the blocks of the lists, and maintain it under deletions.

Our structure utilizes a partial order on non-intersecting segments in the plane [7].
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Figure 3: Deletion-only structure. The numbers next to the segments are the ranks of the
segments in the sorted list L. The shaded areas show the blocking of L into 3 blocks. The
thick lines are samples for the slabs. Note that segment 7 is sampled twice.

Definition 1 A segment x in the plane is above a segment y in the plane, denoted as y ≺ x,
if there exists a vertical line λ intersecting both x and y such that the intersection between λ
and x is above the intersection between λ and y.

Two segments are incomparable if they cannot be both intersected by any vertical line.
The segment sorting problem is the problem of extending the partial order ≺ to a total order.
Arge et al. [8, Lemma 3] showed how to solve the segment sorting problem on K segments
in O(K

B
logM/B

K
B
) I/Os.

Let L be the sorted list of segments in M under the above total ordering stored in a list
of blocks. The sorted order remains valid under deletions of segments from M. In fact, we
will let the blocking of L remain unchanged during deletions of segments, that is, segments
are simply deleted from the blocks storing L. For each slab sk we also generate a list Lk ⊆ L
of segments crossing the slab sk, by sampling exactly one segment crossing the slab sk from
each block b of L if block b contains at least one such segment. If at most Bε segments
in block b cross the slab sk, then we pick the sample arbitrarily. Note that in this case,
a segment can be sampled for several slabs (as segment 7 in Figure 3). If more than Bε

segments in block b cross the slab sk, then we make sure to pick a sample that is not used
as a sample for any other slab. Each Lk list is represented by a B-tree and we store pointers
between the same segments in Lk and L. Our structure uses linear space, since the total size
of the Lk lists is O(K

B
Bε). Using the I/O-efficient segment sorting algorithm [8] the structure

can be constructed in O(K
B
logM/B

K
B
) I/Os.

Query algorithm. To perform a vertical ray-shooting query we first find the slab sk
containing the query point p, using O(1) I/Os (by storing the O(Bε) slab boundaries in O(1)
blocks). Next we use the B-tree on Lk to find the answer x to the query with respect to
the segments in Lk in O(logB K) I/Os. Finally, we answer the query with respect to the
segments in L in an additional O(1) I/Os simply by inspecting the segments in the blocks
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of L containing x and the predecessor of x in Lk. Refer to Figure 3. In total we answer the
query in O(logB K) I/Os.

Deletion. To delete a segment x from block b of L we simply delete x from b, and also
from each list Lk where x appears as a sample, while replacing x in Lk with a new sample
segment from b crossing sk (if there is at least one). If at most Bε segments in b cross sk we
pick the sample arbitrarily; otherwise we make sure to pick a segment that is not used as a
sample for any other slab.

Amortized analysis of deletion. We now analyze the cost of performing d deletions on
our structure. To bound the total number of updates to the Lk lists during the deletions we
need the following two observations: 1) a sampled segment in a list Lk continues to serve as
a sample until it is deleted from the structure; 2) if a segment x in a block b is used as a
sample for several slabs, at most one slab sk can be spanned by more than Bε segments in b.
The latter follows from the fact that we never sample a segment for a slab if: (i) the segment
is already a sample for another slab, and (ii) there are more than Bε alternative segments
to sample from. A sampled segment x from block b for slab sk is now denoted a sparse
sample if at most Bε segments in block b span slab sk. By the second observation above,
a sequence of d deletions can at most delete d samples that are not sparse samples. (Even
though a single deletion could delete O(Bε) sparse samples, it can only delete one non-sparse
sample). Furthermore, during the sequence of deletions each of the O(K/B) blocks can have
at most Bε distinct sparse samples for each of the Bε slabs. It follows that the total number
of samples that need to be updated during a sequence of d deletes is O(d+ K

B
BεBε). Since

each update to an Lk list requires an update to the corresponding B-tree using O(logB K)
I/Os, the d deletions require a total of O((d+ K

B
B2ε) logB K) I/Os

Lemma 4 For a constant 0 < ε ≤ 1, a set of K non-intersecting segments with endpoints on
at most Bε+1 vertical lines can be maintained in a linear space data structure under deletion
of segments, such that vertical ray-shooting queries can be answered in O(logB K) I/Os. The
construction of the structure and d deletions take O(K

B
logM/B(K/B) + (d + K

B
B2ε) logB K)

I/Os in total.

3.3 Case (i) B2ε = O(logB K)

In this section we describe a structure for maintaining a setM ofK non-intersecting segments
in the plane with endpoints on Bε + 1 vertical lines, for a constant 0 < ε < 1/2, such
that vertical ray-shooting queries can be answered I/O-efficiently when B2ε = O(logB K),
assuming (w.l.o.g.) that Bε ≤ B/4. The main idea is to construct a multislab list for each
pair of slabs, and maintain a sampling of these multislab lists using the structure of Lemma 3.

We first partition the segments in M into O(B2ε) multislab lists Lℓ,r, for 1 ≤ ℓ < r ≤
Bε + 1, such that Lℓ,r contains all the segments of M whose left and right endpoints are on
the vertical lines bℓ and br, respectively. All the segments in each multislab list Lℓ,r are sorted
in increasing order with respect to their left endpoint and stored in order (in a B-tree) on
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b1 b2 b3 b4 b5 b6
s1 s2 s3 s4

b7
s6s5

p

Figure 4: The multislab list L2,5. The dashed lines show the partition of the segments into
blocks. The sampled segments for the slabs s2, s3 and s4 are emphasized with thick lines.

disk. We maintain the blocks of each Lℓ,r so that they contain between B/4 and B segments.
We call a block full if it contains B segments and sparse if it contains B/4 segments.

For each slab sk and pair of vertical lines bℓ and br, where 1 ≤ ℓ ≤ k < r ≤ Bε + 1, let
Lk
ℓ,r be the list obtained by picking one (arbitrary) segment from each block of Lℓ,r. We call

Lk
ℓ,r the sampling list of Lℓ,r for slab sk. If |Lℓ,r| < B, we define Lk

ℓ,r to be the empty list. We
maintain pointers between the same segments in the multislab and sampling lists, and keep
the sampling lists Lk

ℓ,r disjoint under insertions and deletions of segments in the multislab
list Lℓ,r, i.e., a segment in Lℓ,r can be sampled for at most one of the slabs sℓ, . . . , sr−1. Refer
to Figure 4. To maintain the sampling lists disjoint, we label a segment in Lℓ,r with k if it
is sampled in sk, and for each slab sk, we construct a structure for simultaneously searching
in the O(B2ε) sampling lists Lk

ℓ,r, for 1 ≤ ℓ ≤ k < r ≤ Bε + 1. Since each multislab list Lℓ,r

can at most span Bε ≤ B/4 slabs and each block of Lℓ,r contains at least B/4 segments,
there will always be at least one unmarked segment in each block. Also, since we have a
total order on the segments in the Lk

ℓ,r lists (which is same as the order of the intersections
between the segments and the vertical line bk), by choosing c = 1 − 2ε we can utilize the
linear space structure of Lemma 3 for constructing this simultaneous-search structure.

Query algorithm. To answer a vertical ray-shooting query we first find the slab sk
containing the query point p. This takes O(1) I/Os if we store the slab boundaries of the
Bε slabs in a block. Next we use the structure of Lemma 3 to answer the query in each of
the sample lists Lk

ℓ,r in O(logB K) I/Os. Finally, for each of the O(B2ε) multislab lists Lℓ,r,
1 ≤ ℓ < r ≤ Bε + 1, we in turn use the result x of the query in Lk

ℓ,r to answer the query in
Lℓ,r. We can do so in O(1) I/Os since the answer is either in the block of Lℓ,r containing
x or in its predecessor block; in the case where |Lℓ,r| < B (such that Lk

ℓ,r is empty) we
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simply search directly in Lℓ,r using O(1) I/Os. Refer to Figure 4. Overall we answer the
ray-shooting query in O(B2ε + logB K) I/Os.

Insertion. To insert a segment t spanning slabs sℓ through sr, we first insert t in the
multislab list Lℓ,r using O(logB K) I/Os. If the block containing t is now full (with B seg-
ments in it), then we split it into two blocks, each containing roughly B/2 segments from the
original block. This creates the need for updating the pointers between at most Bε existing
samples and the sampling of at most Bε new segments to be inserted in the Lk

ℓ,r sample lists,
ℓ ≤ k < r, and thus in the corresponding Lemma 3 structures. Since each insertion (an up-
date of pointers between the same segments in multislab and sample lists) takes O(logB K)
I/Os, the total cost of the split is O(Bε· logB K) I/Os. Amortizing this cost over the Θ(B)
insertions in the full block since its creation, the split is handled in amortized O(logB K) I/Os.

Deletion. Deletions are handled in a similar way, by fusing a sparse block with an adja-
cent block and splitting the fused block again if necessary (as in the case of standard B-tree
operations), to guarantee that the resulting blocks contain between 3

8
B and 3

4
B segments.

Furthermore, when a sampled segment for slab sk is deleted from Lℓ,r, we replace it with an
unsampled segment in the same block of Lℓ,r. This requires a deletion and an insertion on
a Lemma 3 structure. Overall, deletions can also be performed in amortized O(logB K) I/Os.

Construction. To construct the structure from the set of O(B2ε) sorted multislab lists
Lℓ,r, where 1 ≤ ℓ < r ≤ Bε + 1, we first scan each of the multislab lists, Lℓ,r, and construct
the O(Bε) sorted sampling lists Lk

ℓ,r, for 1 ≤ k ≤ Bε as follows: after reading a block
from Lℓ,r, for some ℓ and r, we pick O(Bε) samples from the block, one for each of the
Bε slabs such that no segment is picked for two different slabs. These sampled segments
are first written to the main memory, and whenever number of sampled segments in the
main memory exceeds B, we append them to the O(Bε) partially generated lists Lk

ℓ,r, for
1 ≤ k ≤ Bε, using O(Bε) I/Os. Thus for a multislab list consisting of I blocks, we spend
O(I+z·(Bε/B)) I/Os to generate its sampled lists, where z is the size of the output generated
for the multislab list. Over all the multislab lists, I sums up to O(B2ε +K/B) blocks, and
z sums up to O((K/B) ·Bε). Hence the total time required to generate all the sampled lists
is O(B2ε +K/B + (K/B) · Bε · (Bε/B)) = O(B2ε +K/B) I/Os.

Next, for each slab sk, for 1 ≤ k ≤ Bε, we generate a simultaneous searching structure
using construction algorithm of Lemma 3 from the sampled lists Lk

ℓ,r, where 1 ≤ ℓ < r ≤
Bε + 1. If z is the number of segments sampled for slab sk, then all the sampled lists for k
can be stored in O(1 + z/B) blocks. Since z sums up to O((K/B) · Bε) over all the slabs,
the total construction time for generating the simultaneous searching structures for all the
slabs is O(Bε + (K/B)Bε

B
log2B) = O(Bε +K/B) I/Os. Thus, the total construction time for

the data structure is O(B2ε +K/B) I/Os.

Lemma 5 For a constant 0 < ε < 1/2, a set of K non-intersecting segments with endpoints
on Bε + 1 vertical lines can be stored in a linear space data structure such that a vertical
ray-shooting query can be answered in O(B2ε + logB K) I/Os. Updates can be performed in
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amortized O(logB K) I/Os. The data structure can be constructed in O(B2ε +K/B) I/Os,
provided the K segments are given in O(B2ε) sorted multislab lists.

Note that when k ≤ N and B2ε = O(logB N) the query bound in Lemma 5 is O(logB N)
I/Os. Also when K/B < B2ε, we simply maintain the segments in O(K/B) blocks, on which
queries and updates can be supported in K/B = O(B2ε) = O(logB N) I/Os, by scanning all
the segments. Thus we have:

Corollary 1 When B2ε = O(logB N), for a constant 0 < ε < 1/2, a set of K non-
intersecting segments with endpoints on Bε+1 vertical lines, given as O(B2ε) sorted multislab
lists, can be stored in a linear space data structure such that a vertical ray-shooting query can
be answered in O(logB N) I/Os. Updates can be performed in amortized O(logB K) I/Os.
The data structure can be constructed in O(K/B) I/Os.

3.4 Case (ii) logB K = O(B2ε)

In this section we describe a structure for maintaining a setM ofK non-intersecting segments
in the plane with endpoints on Bε + 1 vertical lines, where K satisfies logB K = O(B2ε),
and 0 < ε ≤ 1/5, such that vertical ray-shooting queries can be answered I/O-efficiently.
The main idea is to partition the set of segments into O(logB N) sets, each of which is
maintained as a deletion-only structure. We then use the external version of the logarithmic
method to efficiently support insertions. To support queries on the deletion-only structures,
we maintain them using the simultaneous searching structure of Lemma 3.

We use the deletion-only structure described in Section 3.2. For the case when logB K =
O(B2ε) and 0 < ε ≤ 1/5 we can restate the I/O bounds of Lemma 4 as follows:

Corollary 2 For a constant 0 < ε ≤ 1/5 and logB K = O(B2ε), a set of K non-intersecting
segments with endpoints on at most Bε +1 vertical lines can be maintained in a linear space
data structure, such that vertical ray-shooting queries can be answered in O(logB K) I/Os
and such that deletions can be performed in amortized O(logB K) I/Os. The structure can
be constructed in amortized O(K/Bε) I/Os.

The preprocessing bound of Corollary 2 follows from the following derivation:

O
(

K

B
logM/B(K/B) +

K

B
B2ε logB K

)

= O
(

K

B
logB K · log2B +

K

B
B4ε

)

= O
(

K

B
B2ε ·Bε +

K

B1−4ε

)

= O
(

K

B1−4ε

)

= O
(

K

Bε

)

.
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To obtain our structure, we use the external version of the logarithmic method de-
scribed in [7]. More precisely, we partition M into O(logB K) sets S0, S1, S2, . . ., such that
|Si| ≤ B1+iε, and store each set Si in the deletion-only structure of Section 3.2. We will en-
sure that the number of deletion-only structures is always O(logB K). However, in order to
be able to efficiently answer the same ray-shooting query on all the deletion-only structures
(i.e., on the sets Si) simultaneously, we slightly modify the deletion-only structures. More
precisely, for each slab sk we replace the B-trees on the Lk-lists of all O(logB K) deletion-only
structures with the linear space structure of Lemma 3 (Section 3.1). This way we can simul-
taneously search in the O(logB K) = O(B2ε) Lk-lists. We can do so since we have a total
order on the segments in the Lk-lists (the order of the intersections between the segments
and the vertical line bk) and by choosing c = 1−2ε. The overall space usage of our structure
is linear, since each of the deletion-only structures (Lemma 4) and simultaneous searching
structures (Lemma 3) use linear space.

Query algorithm. To answer a vertical ray-shooting query we first find the slab sk con-
taining the query point p using O(logB K) I/Os. Next we use the simultaneous searching
structure for slab sk to answer the query in the Lk-list of each of the deletion-only structures
using O(logB K) I/Os. Finally, we answer the query on each of the deletion-only structures
(using O(1) I/Os on each of the O(logB K) structures) as described in Section 3.2. Overall
we answer a query in O(logB K) I/Os.

Insertion. In order to insert a new segment x we first determine the smallest i such
that

∑i
j=0 |Si| < B1+iε. If i = 0 we simply insert x in S0. This takes O(1) I/Os since

|S0| ≤ B. Otherwise, we discard the structures S0, S1, S2, . . . , Si−1 and replace the structure
Si with a new deletion-only structure S ′

i = {x}∪
⋃

j≤i Sj of size |S
′
i| = 1+

∑i
j=0 |Sj| ≤ B1+iε.

The construction of S ′
i also requires updating the simultaneous search structure on the Lk

lists. More precisely, we need to delete the O(
|S′

i
|

B
Bε) segments in the old Lk lists and

insert O(
|S′

i
|

B
Bε) new segments in the new lists. Each such update requires O(logB K) I/Os

(Lemma 3). By Corollary 2 we then have that in total the insertion of segment x requires
amortized

O

(

|S ′
i|

Bε
+

|S ′
i|

B
Bε logB K

)

= O

(

|S ′
i|

Bε

)

I/Os (since logB K = O(B2ε) and 0 < ε ≤ 1/5). We charge this cost to the segments in the
sets S0, S1, . . . , Si−1, which are moved to S ′

i. Since there are at least B
1+(i−1)ε ≥ |S ′

i|/B
ε such

segments, it is sufficient to charge O(1) I/Os to each of the 1
2
|S ′

i|/B
ε most recently inserted

segments in S0, . . . , Si−1. This way a segment x is only charged when it moves from a set Sj

to a set Si, with j < i; this in turn happens only if the number of segments Kx in M at
the time when x is inserted is at least 1

2
B1+(i−1)ε. It follows that x can be charged at most

O(logB Kx) times. Thus an insertion requires amortized O(logB K) I/Os.

Deletion. To delete a segment we first perform a query to locate the deletion-only struc-
ture storing the segment. Then we simply delete the segment from the relevant deletion-only
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structure as described in Section 3.2. This may result in many (sampled) segments being
deleted from or inserted into Lk lists. For each such update we also update the corresponding
simultaneous search structure using O(logB K) I/Os (Lemma 3). Since we already charged
O(logB K) I/Os to each update to an Lk list (in the analysis of the deletion-only structure
in Section 3.2), it follows that we have already accounted for the cost of updating the simul-
taneous search structures. Thus a deletion requires amortized O(logB K) I/Os.

Construction. To construct our structure on an initial set M of K segments we simply
create a single additional deletion-only structure S−1 on M using O(K/Bε) I/Os (Corol-
lary 2). The structure for S−1 is never merged with the other deletion-only structures and
is queried and updated separately.

Finally, to limit the number of deletion-only structures to O(logB K) we periodically
rebuild the structure when half of the inserted segments have been deleted. The rebuilding
cost of O(K/Bε) I/Os is charged to the Θ(K) deleted segments.

Lemma 6 For a constant 0 < ε ≤ 1/5 and logB K = O(B2ε), a set of K non-intersecting
segments with endpoints on Bε+1 vertical lines can be stored in a linear space data structure
such that a vertical ray-shooting query can be answered in O(logB K) I/Os. Updates can
be performed in amortized O(logB K) I/Os. The structure can be constructed in amortized
O(K/Bε) I/Os.

By combining Corollary 1 and Lemma 6, we obtain Lemma 2, from which our main
result, Theorem 1 follows as explained in Section 2.

4 Rebalancing the base tree

In this section we discuss how to handle updates in the base interval tree T . We use a weight
balanced Bε-tree [9] as the Bε-tree used for the base interval tree T . Each leaf in the tree
stores at most B segment-endpoints. In such a tree a node v at height h has X = Θ(B ·Bhε)
elements at the leaves in its subtree, and if rebalancing (split or fuse) of v (or rather the
reorganization of its secondary structures) can be performed in O(X) I/Os, one can obtain
an amortized O(logB N) update bound [9, Theorem 3.8]. Below we discuss how to perform
rebalancing of a node v when it splits as a result of insertion of new segments. Deletions are
handled in a standard way by a periodical global rebuilding whenever half of the inserted
elements have been deleted.

Splitting a node. Consider a node v at height h whose subtree stores X = Θ(B · Bhε)
segment-endpoints and needs to be split into two nodes v1 and v2. Let u be the parent of
v. The number of segment-endpoints stored in the secondary structures of v and u is O(X)
and O(XBε), respectively. Figure 5 illustrates how the slabs associated with v are affected
by the split: all the slabs to the left of a slab boundary b get associated with v1, the slabs
to the right of b get associated with v2, and b becomes a new slab boundary in u. As a
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v
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b

b

Figure 5: Splitting a node v along b into two nodes v1 and v2. The boundary b becomes a
new boundary in the parent u.

result, all segments in the secondary structures of v containing b need to be inserted into the
secondary structures of u (namely, into the right and left structures for the new slabs sv1
and sv2). The rest of the segments need to be stored in the secondary structures of v1 and
v2. Furthermore, as a result of the addition of the new boundary b, some of the segments in
u containing b also need to be moved to new secondary structures of u. Refer to Figure 6.

Constructing the left and right structures for the children. We first consider the
segments in the secondary structures of v and the construct the secondary structures for v1
and v2. Since each segment is stored in at most one left structure and at most one right
structure, we can collect all segments containing b (to be moved to u) from v’s left and right
structures. We use O(X/B) I/Os to scan through the left structure of each slab sk in turn,
while constructing a list of segments that should stay in the left structure of sk in v1 or v2
and a list of segments that should be inserted in the left structure of the slab in u with right
boundary b. The segments in each list are automatically sorted by the y-coordinate of their
intersection with the right boundary of sk. Note that the O(Bε) lists of segments that should
be inserted in the new left structure in u are also automatically sorted by the y-coordinate
of the intersection with b. We can therefore merge these lists into one list in a binary tree
fashion using O((X/B) log2B

ε) = O(X) I/Os. Similarly, in O(X) I/Os we can construct a
sorted list of segments that should stay in right structures of each slab sk in v1 or v2, as well
as a sorted list of segments to be inserted in the right structure of the slab in u with left
boundary b. Next we construct the left and right structures for v1 and v2 from the O(Bε)
sorted lists of segments that should not move to u; we can do so in O(X/B) I/Os in total
by Lemma 1.
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bi

b

bi+1

v

Figure 6: The top part shows some of the slabs partitioning the slab su, and the bottom
part shows the slab sv corresponding to the i-th child of u. When a new slab boundary b
is inserted into the slab boundaries at u, all solid segments need to move: Segments in v
containing b (solid segments in the bottom part) move to the parent u and some segments
(solid segments in the top part) move within the parent u.

Constructing the multislab structures for the children. To construct the multislab
structures for v1 and v2 we distinguish between two cases. In the case where B2ε = O(logB N)
we simply construct the multislab structures from the relevant (already sorted) multislab
lists from v in O(X/B) I/Os (Corollary 1); note that all multislab lists containing b are just
deleted. In the case where logB N = O(B2ε) we simply construct the multislab structures
for v1 and v2 from the relevant segments in v using O(N/Bε) I/Os (Lemma 6). Overall, we
can construct all the secondary structures of v1 and v2 in O(X) I/Os as required.

Next, consider the segments in u. Some of the O(X) segments stored in the left structure
of the slab in u containing b need to be moved to a new left structure for the new slab sv1
to the left of b. We therefore scan through the O(X) segments in the left structure using
O(X/B) I/Os and construct a list of segments that should stay in the old left structure
(which will become the new left structure for sv1 and a list of segments for the new left slab
structure (for slab sv2), both sorted by the y-coordinate of the intersection with the relevant
slab boundary. We merge the first list with the segments collected in v using O(X/B) I/Os,
and then we construct the two left structures in another O(X/B) I/Os (Lemma 1). Similarly,
we can construct the two relevant right structures from the segments in the right structure
of the slab containing b in u and the segments collected in v in O(X/B) I/Os.

Finally, since u gets a new slab, the multislab structure of u also needs to be reconstructed.
Again we distinguish between two cases. In the case where B2ε = O(logB N), we simply
scan through each of the multislab lists for u and compute the new (sorted) multislab lists
in O(XBε/B) = O(X) I/Os. Then we construct the new multislab structure for u in
O(XBε/B) = O(X) I/Os (Corollary 1). In the case where logB N = O(B2ε), we directly
construct the new multislab structures from the segments in the old multislab structure of
u using O(XBε/Bε) = O(X) I/Os (Lemma 6). Overall, we can construct all the secondary
structures of u in O(X) I/Os as required.
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5 Conclusions

We have presented an I/O-efficient dynamic point location data structure that stores a pla-
nar subdivision of size N using linear space (O(N/B) disk blocks), and supports insertions
and deletions in amortized O(logB N) I/Os and queries in O(log2B N) I/Os in the worst-case.
This improves the insertion bound of the previous best known structure [7]. Our structure
is also considerably simpler than previous structures. It remains open to improve the query
time to O(logB N) I/Os.

Acknowledgments. We thank the anonymous referees for their helpful comments.
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