
Teaching Package

Mjølner Informatics Report
MIA 91−17
March 2004

Copyright © 1991−2004 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

1 Introduction ...1

2 Lecture Series 1:The BETA Programming Language ...2
2.1 Topics..2
2.2 Lectures...2

2.2.1 Introduction to Object−Oriented Programming..2
2.2.2 Objects, Repetitions, and Patterns..2
2.2.3 Imperatives..3
2.2.4 Subpatterns...3
2.2.5 Virtual Procedure Patterns..3
2.2.6 Block Structure and Part Objects..3
2.2.7 Virtual Class Patterns..3
2.2.8 Pattern Variables...4
2.2.9 Procedural Programming in BETA..4
2.2.10 Co−routine Aspects...4
2.2.11 Concurrency Aspects..4
2.2.12 Non−deterministic Aspects..4
2.2.13 Conceptual Framework for Object−Oriented Programming..............................4

3 Lecture Series 2: Programming−in−the−large in the Mjølner System.......................................6
3.1 Topics..6
3.2 Lectures...6

3.2.1 The Fragment System (Basics)...6
3.2.2 The Fragment System (Advanced)...6
3.2.3 Exceptional Computation and Overview of Language Constructs......................7
3.2.4 Exception Handling...7

4 Lecture Series 3:Overview of the Mjølner System ..8
4.1 Topics..8
4.2 Lectures...8

4.2.1 Mjølner System Overview...8
4.2.2 Compiler and Basic Library...8
4.2.3 Containers Library...8
4.2.4 Persistent Objects...9
4.2.5 Distributed Objects..9
4.2.6 Process Communication...9
4.2.7 The Mjølner System Tools..9

5 Lecture Series 4:The Mjølner System Tools ..10
5.1 Topics..10
5.2 Lectures...10

5.2.1 Ymer: the Mjølner Source Browser and Editor..10
5.2.2 Sif: the Mjølner Source Browser and Editor..10
5.2.3 Valhalla: the Mjølner Source−level Debugger...10
5.2.4 Frigg: the User Interface Editor for BETA...11
5.2.5 Freja: the CASE Tool for BETA...11
5.2.6 The Object Browser..11
5.2.7 The other tools..11

6 Lecture Series 5:Platform−independent User Interface Construction Using the Mjølner System2
6.1 Topics..12

 Teaching Package

i

Table of Contents

6.2 Lectures...12
6.2.1 Event−based programming...12
6.2.2 Lidskjalv Introduction: Purpose, Overview and Structure of a Lidskjalv Application2
6.2.3 Lidskjalv Patterns..12
6.2.4 Bifrost Graphics System..13
6.2.5 Frigg: the User Interface Editor for BETA...13

7 Course Assignments ..14
7.1 Assignment..14
7.2 Assignment..14

7.2.1 Question A:...14
7.2.2 Question B:...14
7.2.3 Question C:...15

7.3 Assignment..16
7.3.1 Question A Modelling the customer's address...16
7.3.2 Question B: Modelling bank accounts having several owners.........................16
7.3.3 Question C: ..16

7.4 Assignment..16
7.4.1 Question A:...17
7.4.2 Question B:...17
7.4.3 Question C: ..17

7.5 Assignment..17
7.6 Assignment..17

7.6.1 Question A:...18
7.6.2 Question B:...18
7.6.3 Question C:...18
7.6.4 Question D:...18

7.7 Assignment..18
7.8 Assignment..19
7.9 Assignment..19
7.10 Assignment..19
7.11 Assignment..20
7.12 Assignment..20
7.13 Assignment..20
7.14 Assignment..20
7.15 Assignment..21
7.16 Assignment..21

7.16.1 Question A:...21
7.16.2 Question B:...22
7.16.3 Question C:...22
7.16.4 Question D:...22
7.16.5 Question E:...22
7.16.6 Tips on using DrawEnv.bet...22

7.17 Assignment..23
7.18 Assignment..23
7.19 Assignment..23

7.19.1 Question A: Hammer windows...23
7.19.2 Question B: Multiple text editor windows...23
7.19.3 Question C: Catching an event in a text editor window..................................23

7.20 Assignment..24
7.21 Assignment..24

 Teaching Package

ii

Table of Contents

8 Course Projects ..25
8.1 Topics..25
8.2 Project I: Subways in Århus...25

8.2.1 Modelling a subway system in BETA..25
8.2.2 Question A: Placing the subway stations..25
8.2.3 Question B: The shortest path between two subway stations...........................25

8.3 Project II: Simulation Environment...26
8.3.1 Part 1: Simulation of a group of machines...27
8.3.2 Part 2: Development of general abstractions for simulation.............................27
8.3.3 Part 3: Development of an interface for simulation..28
8.3.4 Remarks:...28

8.4 Project III: Vehicle Registration Office...28
8.4.1 Remarks:...29

9 Course Materials...30

Index ...31
B...31
C..31
D..31
E...31
F...31
I..31
L...31
M..32
N..32
O..32
P...32
S...32
T...32
V...32
Y...32

 Teaching Package

iii

1 Introduction

This document contains material to be used by lecturers, who are involved in the preparation of
courses using the Mjølner System. The intended audience of this material is Bachelor, Master, and
Ph.D. level students.

The course material is presented in the form of six Lecture Series involving the Mjølner System in
different ways:

♦ The BETA Programming Language
♦ Programming−in−the−large in the Mjølner System
♦ Overview of the Mjølner System
♦ The Mjølner System Tools
♦ Platform−independent User Interface Design using the Mjølner System

The Lecture Series are introduced by a general description, a list of topics, and a list of lectures.
Each lecture is described by its topic, related readings, related examples, and possibly with
additional notes. Any particular course should cover aspects of the first three Lecture Series.

The first Lectures Series focus primarily on the BETA language, and should be accompanied with
lectures from the third series of lectures, which contains lectures on the different tools in the
Mjølner System such as the compiler, the debugger and the editor. Furthermore, lectures from the
second series should be covered since they focus on programming in the large (i.e. issues for
modularization of large programs and exception handling. The fourth Lecture Series focus on the
tools of the Mjølner System and should be covered, if the students are expected to produce major
assignments in the BETA language. The last Lecture Series deals with issues specific for user
interface programming using the platform−independent user interface framework

You will find enclosed a number of assignments to be used for the courses. You will also find
enclosed a number of project descriptions that are intended to be used for major course
assignments or separate student projects. Finally, you will find enclosed a list of books, manuals,
etc. to be used during the lectures.

1 Introduction 1

2 Lecture Series 1:
The BETA Programming Language

The purpose of this Lecture Series is to learn the BETA language. The lectures will present all
aspects of the language with special emphasis on the language constructs supporting
object−oriented programming.

2.1 Topics

• BETA history and BETA language perspective
• Language overview
• Objects
• Patterns
• Attributes
• Enter/Exit
• Object Creation (Static/dynamic)
• Object references (static/dynamic)
• Variables, types, procedures, functions, ...
• Control patterns
• Basic types / basic patterns
• Evaluations
• Scoping
• Subpatterns
• Virtuals (basics/virtual classes(generics))
• Co−routine aspects
• Non−deterministic aspects
• Concurrency aspects

2.2 Lectures

2.2.1 Introduction to Object−Oriented Programming

Readings: [MMN 93, chap. 1, 2], [Knudsen 94, chap. 6]

Notes: It is important to identify object−oriented not just as yet another set of features of
programming languages. It is also important to stress that object−oriented programming is not the
solution to all software problems. Object−oriented programming is a very important supplement to
the other perspectives on programming.

2.2.2 Objects, Repetitions, and Patterns

Readings: [MMN 93, chap. 3, 4]

Notes: Emphasis should be placed on the concept of singular objects, references (static and
dynamic), self reference, repetitions and patterns as the general abstraction mechanism. Emphasis
must also be placed on the different construction modes for objects (inserted, static and dynamic).

2 Lecture Series 1: The BETA Programming Language 2

#mmn93
#knudsen94
#mmn93

2.2.3 Imperatives

Readings: [MMN 93, chap. 5]

Notes: Special emphasis should be placed on the generality of evaluations, object kinds and
construction modes, and computed references and computed remote.

At this time it is appropriate to start on covering the lectures in the third Lecture Series. At least the
lecture on compiler and basic libraries. Later in this Lecture Series (when the students begin writing
non−trivial programs, it will be appropriate to start on the second Lecture Series on
programming−in−the−large. This Lecture Series should be covered before starting the students on
one of the major assignments.

2.2.4 Subpatterns

Readings: [MMN 93, chap. 6]

Notes: Emphasis should be placed on patterns and subpatterns as the unique abstraction
mechanism for classes, types, procedures, functions, etc. Specifically, emphasis must be places of
specialisation of actions, enter/exit parts for subpatterns, qualifications, and the Object pattern.
Please emphasise polymorphism in combination with dynamic references.

2.2.5 Virtual Procedure Patterns

Readings: [MMN 93, chap. 7]

Notes: Since specialisation of actions, and the combination with the virtual mechanism is important
for the understanding of many libraries, and for the construction of elegant and efficient BETA
applications, emphasis must be placed on learning these essential constructs. Remember to
illustrate the consequences of combining dynamic references and virtual procedure patterns with
enter/exit parts.

2.2.6 Block Structure and Part Objects

Readings: [MMN 93, chap. 8, 10]

Notes: Since block structure is one of the other corner stones of object−oriented programming in
the BETA language, emphasis must be placed on learning this essential construct. Especially to
students, not previously exposed to block−structured languages. Special emphasis must be placed
on multi−nested blocks (patterns within patterns, etc.).

2.2.7 Virtual Class Patterns

Readings: [MMN 93, chap. 9]

Notes: Virtual class patterns are the means for constructing generic abstractions in the BETA
language, and leads to many possibilities for elegant modelling.

 Teaching Package

2.2.3 Imperatives 3

#mmn93
#mmn93
#mmn93
#mmn93
#mmn93

2.2.8 Pattern Variables

Readings: [MMN 93, chap. 11]

Notes: Pattern variables allows for manipulation of patterns at run−time, giving possibilities for very
flexible programming. Please emphasis that pattern variables should be used with care due to their
very dynamic nature. Many modelling aspects are best handled by virtual patterns instead.

2.2.9 Procedural Programming in BETA

Readings: [MMN 93, chap. 12]

Notes: Procedural programming is still an important programming style; even after the introduction
of object−oriented programming. This chapter illustrates the use of BETA language constructs in
procedural programming, and how they augment the facilities for procedural programming as well
as object−oriented programming.

2.2.10 Co−routine Aspects

Readings: [MMN 93, chap. 13]

Notes: Naturally, emphasis should be placed on the importance of the modelling capabilities of the
action−part as describing the behaviour of components and the attribute part as describing the
states of components. Emphasis should also be placed on the construction modes of objects (items
vs. components).

2.2.11 Concurrency Aspects

Readings: [MMN 93, chap. 14]

Notes: Illustrates the power of the abstraction mechanisms of the BETA languages, allowing the
definition of powerful synchronisation and communication mechanisms to be defined within the
language itself, based on a few very basic concurrency facilities (fork and semaphores).

2.2.12 Non−deterministic Aspects

Readings: [MMN 93, chap. 15]

Notes:

2.2.13 Conceptual Framework for Object−Oriented Programming

Readings: [MMN 93, chap. 18]

Notes: Here the underlying conceptual framework for object−orientation is presented. The
framework offers a frame of understanding which can be applied to analysis, design and
implementation, leading to an understanding of object−oriented analysis, object−oriented design

 Teaching Package

2.2.8 Pattern Variables 4

#mmn93
#mmn93
#mmn93
#mmn93
#mmn93
#mmn93

and object−oriented programming. This material might be split into two lectures, or alternatively
also used as some of the justifications for the BETA language constructs.

 Teaching Package

2.2.8 Pattern Variables 5

3 Lecture Series 2:
Programming−in−the−large in the Mjølner System

The purpose of this series of lectures is to present the constructs for programming−in−the−large in
the Mjølner System. The BETA language does deliberately not include any facilities for
modularization, encapsulation, separation of interface and implementation, etc. However, the
Mjølner System includes a fragment system which makes modularization, encapsulation,
separation of interface and implementation, separate compilation, etc. possible for BETA programs.
Furthermore, this Lecture Series will present how exceptions can be dealt with in the BETA
language.

3.1 Topics

• Overview of modularization, encapsulation and separation of interface and implementation
• Introduction of grammar−based program modularization
• The fragment system

♦ Fragments and slots
♦ Origin
♦ Include
♦ Body

• Modularization using the fragment system
• Encapsulation using the fragment system
• Separation of interface and implementation using the fragment system
• Exceptions
• Overview of language constructs
• Exception handling in BETA

3.2 Lectures

3.2.1 The Fragment System (Basics)

Readings: [MMN 93, chap. 17 (17.1)]

Notes: This lecture presents the general grammar−based approach to program modularization, and
its realisation in the BETA fragment system.

It is important to emphasise, that the fragment system is orthogonal to the BETA language.
Emphasis that the fragment system controls slots, fragment forms, fragment groups, and the
binding of fragments to slots (and the visibility of these bindings).

3.2.2 The Fragment System (Advanced)

Readings: [MMN 93, chap. 17 (17.2−17.6)]

Notes: This lecture discusses the facilities for separating interface and implementation, for making
abstract data structures, for creating program variants, etc.

3 Lecture Series 2: Programming−in−the−large in the Mjølner System 6

#mmn93
#mmn93

3.2.3 Exceptional Computation and Overview of Language Constructs

Readings: [JLK84,87], [Borgida85]

Notes: Exception handling is an important part of programming large robust systems. This lecture
will present the issues involved and a taxonomy for exception handling.

3.2.4 Exception Handling

Readings: [MMN 93, chap. 16]

Notes: Presentation the power of BETA, allowing exception handling to be handled within the
language itself.

 Teaching Package

3.2.3 Exceptional Computation and Overview of Language Constructs 7

#mmn93

4 Lecture Series 3:
Overview of the Mjølner System

The purpose of this Lecture Series is to introduce the students to the Mjølner System. The lectures
will present the BETA compiler, the various basic libraries, the persistent object system, the
debugger, and the hyper structure editor. This Lecture Series should be accompanied with one of
the following Lecture Series on using the Mjølner System on the specific platform (Macintosh or
UNIX).

4.1 Topics

• Overview
• Compiler introduction
• Libraries

♦ Basiclib
♦ Containers

• Persistent Objects
• Distributed Objects
• Process Communication
• The Mjølner System Tools

4.2 Lectures

4.2.1 Mjølner System Overview

Readings: [MMN 93, app.. B], [Knudsen 94, chap. 2]

Notes: This lecture is meant as an introduction to the entire Mjølner System. It presents the general
architecture of the system and discusses several of the Mjølner tools.

4.2.2 Compiler and Basic Library

Readings: [MIA 90−2], [MIA 90−8], [Knudsen 94, chap. 26]

Notes: This lecture can be avoided since it only deals with the specifics of how to invoke the
compiler, how to invoke BETA applications and how to understand the compiler and run−time error
messages. This lecture also describes the layout and facilities of the basic BETA library, that any
BETA program utilises. This library offers ordinary data types such as integers, boolean, etc., as
well as several useful file access patterns.

4.2.3 Containers Library

Readings: [MIA 92−22]

Notes: The Containers libraries can be used as an example of a library family with extensive usage
of the abstraction mechanisms of the BETA language (virtual class patterns and specialised control

4 Lecture Series 3: Overview of the Mjølner System 8

#mmn93
#knudsen94
#mia90-2
#mia90-8
#knudsen94
#mia92-22

structure patterns).

4.2.4 Persistent Objects

Readings: [MIA 91−20], [Knudsen 94, chap. 11, 12]

Notes: The persistent store is designed for storage of BETA objects and is highly useable for
"small−scale" external data storage (i.e. not designed for heavy database applications). An
object−oriented database system for BETA objects is under development.

4.2.5 Distributed Objects

Readings: [MIA 94−25]

Notes: The distributed object system for BETA is designed and inplemented to enable BETA
objects to be located anywhere on a network. Objects located on the network are accessed
transparently from the other hosts on the network. Access to distributes objects are obtained
through a naming service, implemented by the ensembles, who are the BETA abstractions for
network hosts.

4.2.6 Process Communication

Readings: [MIA 94−29]

Notes: The process library implements process communication facilities for BETA programs,
enabling them to communicate with other programs using operation system level communication
means (such at TCP/IP).

4.2.7 The Mjølner System Tools

Readings: The different man−pages

Notes: In this lecture, you should present the individual tools in the Mjølner System: the source
browser and editor, the debugger, the user interface editor, and the CASE tool. If these tools are
used extensively in the courses, it would be a good idea to introduce the individual tools more
extensively by accompanying this Lecture Series with the Lecture Series entirely devoted to the
tools..

 Teaching Package

4.2.4 Persistent Objects 9

#mia91-20
#knudsen94
#mia94-25
#mia94-29

5 Lecture Series 4:
The Mjølner System Tools

The purpose of this Lecture Series is to introduce the students to the tools in the Mjølner System.
The lectures assumes that the students have been previously presented to the BETA compiler.
This Lecture Series will present the source browser and editor, the debugger, the user interface
editor, and the CASE tool, along with a few small utility tools. It is usually beneficial if these lectures
could be conducted in an auditorium, where the tools at the same time can be demonstrated live
using screen projection techniques to make the students follow a live demonstration.

5.1 Topics

• Sif: the Source Code Browser and Editor for BETA
• Valhalla: the Source−lever Debugger for BETA
• Frigg: the User Interface Editor for BETA
• Freja: the CASE Cool for BETA
• Other tools

5.2 Lectures

5.2.1 Ymer: the Mjølner Source Browser and Editor

Readings: [MIA 99−34, chapters on the browser]

Notes: Ymer is the source browser, used in all major Mjølner System tools. Ymer is described in
the Sif (see later) tutorial and referce manual, but is available as a componemt also in Valhalla,
Frigg and Freja. Using Ymer, you can browse the directory structure and the dependency structure.

5.2.2 Sif: the Mjølner Source Browser and Editor

Readings: [MIA 99−34]

Notes: Use the editor on some program, utilising all editor facilities to get a feel for the different
facilities. The advanced features for abstract presentation, browsing and linking should be
presented and the facilities for integration of program and documentation demonstrated.

5.2.3 Valhalla: the Mjølner Source−level Debugger

Readings: [MIA 99−34]

Notes: This is a presentation of the BETA debugger. Using the debugger you can control the
execution of BETA programs, inspect the runtime stack, and the state of the objects in the
debugged program. The object inspection facilities are actually implemented using the object
browser (see later).

5 Lecture Series 4: The Mjølner System Tools 10

#mia99-34
#mia99-34

5.2.4 Frigg: the User Interface Editor for BETA

Readings: [MIA 99−34]

Notes: This is a presentation of the BETA user interface editor. This editor is an extension of the Sif
editor, enabling direct manipulation editing of the user interface aspects of the application being
edited..

5.2.5 Freja: the CASE Tool for BETA

Readings: [MIA 99−34]

Notes: This is a presentation of the BETA CASE tool. This CASE tools enables you to create
design diagrams for your application. Freja is also implemented as an extension of the Sif editor,
and in this case with a design diagram editor, in which the design is created, using a graphical
design notation, slightly similar to the OMT design notation..

5.2.6 The Object Browser

Readings: The manual page for psbrowser

Notes: The object browser is a library, implementing object inspection facilities. The object browser
is used in Valhalla to inspect the objects in the debugged program. The object browser can also be
linked into your application, augmenting it with inspection facilities of the objects in the application
itself.

A special variant of the object browser exists for inspecting persistent stores. This variant is called
the psbrowser. The psbrowser is a very useful toll to introduce to programmers, using the
persistent store, since it gives them good facilities for browsing the object structures that are stored
in a given persistent store.

5.2.7 The other tools

Readings: The manual pages for these tools

Notes: You might want to introduce the small utility tools: betawc, betatar, and betafs.

 Teaching Package

5.2.4 Frigg: the User Interface Editor for BETA 11

#mia99-34
#mia99-34

6 Lecture Series 5:
Platform−independent User Interface Construction
Using the Mjølner System

The purpose of this Lecture Series is to learn how design and implement platform−independent
user interfaces using the Lidskjalv user interface framework.

6.1 Topics

• Event−based programming
• Lidskjalv

♦ Patterns, Fragments
♦ Philosophy of Lidskjalv
♦ Structure of a application
♦ Event handling in guienv
♦ Presentation of guienv patterns

• Bifrost Graphics System
• Frigg: the User Interface Editor

6.2 Lectures

6.2.1 Event−based programming

Readings: ...

Notes: If the students have not previously been confronted with event−based programming, they
should have a short introduction to this, before starting user interface programming. If they have
been used to sequential programming, user interface programming is somewhat 'upside−down',
since they are no longer in full control of the sequence of actions being executed in the program,
due to the non−deterministic nature of user interfaces.

6.2.2 Lidskjalv Introduction: Purpose, Overview and Structure of a Lidskjalv
Application

Readings: [MIA 95−30]

Notes: Lidskjalv is a set of libraries, containing an object−oriented BETA framework for the
construction of advanced user interfaces for BETA programs. In this lecture, the architecture of
Lidskjalv is presented along with the general approach to handling events etc. from the user
interface. Furthermore, the patterns of Lidskjalv are shortly presented.

6.2.3 Lidskjalv Patterns

Readings: [MIA 94−27]

6 Lecture Series 5: Platform−independent User Interface Construction Using the Mjølner System 12

#mia95-30
#mia94-27

Notes: This lecture will present the various Lidskjalv patterns in details, and present several
applications using the guienv interface. The examples are found in e.g. [MIA 95−30].

6.2.4 Bifrost Graphics System

Readings: [MIA 91−13], [MIA 91−19], [Knudsen 94, chap. 16]

Notes: Dependent on the previous graphics knowledge among the students, it might be advisable
to split this lecture into two lectures, with the first lecture focusing on the basic graphics model
(Stencil & Paint) and the second focusing on the graphics modelling and object−oriented structures
in Bifrost.

6.2.5 Frigg: the User Interface Editor for BETA

Readings: [MIA 99−34]

Notes: This is a presentation of the BETA user interface editor. This editor is an extension of the Sif
editor, enabling direct manipulation editing of the user interface aspects of the application being
edited..

 Teaching Package

6.2.4 Bifrost Graphics System 13

#mia95-30
#mia91-13
#mia91-19
#knudsen94
#mia99-34

7 Course Assignments

The following is a series of assignments complementing the exercises found in [Madsen93]. Please
do not expect these assignments to be complete in any sense. You should see them as proposals,
that should be supplemented, depending on the style of the course and the background of the
students.

Currently, the order of the assignments is somewhat random, not expressing any levels in difficulty,
etc.

7.1 Assignment

Write a BETA program, that converts UNIX file names to Macintosh file names. I.e. converts the
string:

"/home/saturn/kurt/hello.bet"

to:

"home:saturn:kurt:hello.bet"

Note, that this assignment is based on knowledge about the text patterns in betaenv.

7.2 Assignment

The idea here is to build a search program which, given a line of text, can find occurrences of
characters and of other (smaller) strings of text. Here are the relevant commands:

T (* Text: input new "base" text string *)
<text>
C (* Char: count occurrences of a char *)
<char>
O (* Occurs: check if some text occurs as a substring (Yes/No) *)
<text>
N (* Number of occurrences: count occurrences of a substring *)
<text>
F (* First: first location of a substring *)
<text>
L (* Last: last location of a substring *)
<text>
Q (* Quit *)

7.2.1 Question A:

Sketch the search algorithms you want to use.

7.2.2 Question B:

Implement a search program (search) in BETA that supports the above commands. You may test
your program using the given sample interaction. User typing is printed in underlined. This is only
an example − feel free to choose your own style for the interface.

7 Course Assignments 14

7.2.3 Question C:

How well does your code separate the search functionality from the handling of the user interface?
For example, do you think it would be easy to reuse your search patterns in a different environment
(say, where the text appears in a window and commands come via menus and dialogues)? Do you
have any general reactions to line−oriented interfaces like these?

search
Commands:
T. input new "base" text string
C. count occurrences of a char
O. check if some text occurs as a substring
N. count occurrences of a substring
F. first location of a substring
L. last location of a substring
Q. quit

Be sure to end each line of input with <enter>

T
New "base" text string:
abcdefg
Next command:
C
Char to search for:
g
 1 occurrences of "g" in "abcdefg":
Next command:
T
New "base" text string:
abc def ghi def de
Next command:
O
Substring to search for:
f g
Yes − there are some occurrences of "f g" in "abc def ghi def de"
Next command:
O
Substring to search for:
fg
No occurrences of "fg" in "abc def ghi def de"
Next command:
N
Substring to search for:
def
 2 occurrences of "def" in "abc def ghi def de"
Next command:
F
Substring to search for:
de
 5 is the first location of "de" in "abc def ghi def de"
Next command:
L
Substring to search for:
de
 17 is the last location of "de" in "abc def ghi def de"
Next command:
L
Substring to search for:
cd
No location of "cd" in "abc def ghi def de"
Next command:
N

 Teaching Package

7.2.3 Question C: 15

Substring to search for:
 d
 3 occurrences of " d" in "abc def ghi def de"
Next command:
Q
So long!

7.3 Assignment

This assignment is a review of concepts like dynamic references and repetitions. Consider the bank
example in [Madsen93].

7.3.1 Question A Modelling the customer's address

Change the address attribute of Customer from a simple text attribute to be a structured object
consisting of three text attributes: streetAndNumber, postalCode, city. That is, in the object
descriptor of Customer, instead of "Address: @text", you'll have "Address: @(# ... #)". Also, give
Address its own Print attribute which can print the three parts of an address. The Print attribute for
Customer should (among other things) now invoke the print for Address. You'll probably want to
change the Initialize pattern of Customer to set the new Address fields.

The Account pattern shouldn't need to be modified. Again, test your code by creating an account
and a customer and printing the balance. Do you agree that Address should be declared this way
instead of as a dynamic reference to a separate object?

7.3.2 Question B: Modelling bank accounts having several owners

An account might have several owners (e.g. husband and wife). Change the owner attribute to
"owners" and make it be a repetition of dynamic references to Customer. PrintBalance should print
the information of all customers before printing the account balance. You'll need a way to add new
owners, say, an AddOwner procedure attribute.

Test your code by creating several customers for the same account and printing the balance.

7.3.3 Question C:

Modify the bank system such that it includes a procedure pattern that deletes the account of a
specific costumer.

7.4 Assignment

You must design and implement a very simple soda machine which "dispenses" just two kinds of
drinks, cola and juice.

Your soda machine should include a current total of money. (You can assume you'll only get 1
dollar coins or larger so it can be an integer.) You must manage two other totals: the current
number of colas and the current number of juices. Your soda machine should support transactions
where the user puts in money and gets back a cola or a juice plus change. But you'll also need to
support the soda machine maintainer who refills the machine and checks the current totals.

Here's a sample user interaction which your program should be able to support. ("R" stands for
refill, "C" for buy a cola, "J" for buy a juice, "T" for print totals, "Q" for quit.) What the user types are
underlined. Colas cost 8 dollars and juices 7 dollars each.

 Teaching Package

7.3 Assignment 16

T
Current totals: 0 colas, 0 juices, 0 dollar.

R
How many colas to add?
15
How many juices to add?
20
How many dollars should we start with?
100

T
Current totals: 15 colas, 20 juices, 100 dollars.

C
A cola costs 8 dollars. How much money are you inserting?
10
Thanks. Your change is 2 dollars.

J
A juice costs 7 dollars. How much money are you inserting?
20
Thanks. Your change is 13 dollars.

T
Current totals: 14 colas, 19 juices, 115 dollars.

Q
Goodbye.

7.4.1 Question A:

Identify the objects in the example. What patterns will you need to define? What attributes will they
have?

7.4.2 Question B:

Implement the soda machine in BETA and test it.

7.4.3 Question C:

What happens in your program if the number of colas goes down to zero before a refill? What
happens if the user puts in less money than the drink costs? Suppose you needed to change the
costs of colas and juices? Are those numbers easily adjustable or are they "hard−wired"?

7.5 Assignment

Make a BETA program, which reads a number of numbers (terminated by 0), and outputs the
largest and smallest number.

Then modify the program such that it outputs all numbers sorted (use whatever sorting method you
want).

7.6 Assignment

Consider the following BETA program:

 Teaching Package

7.4.1 Question A: 17

(# Ptn: (# i: @integer;
 t: @text
 enter (i, t)
 do ' ' −> t.put;
 i −> t.putInt
 exit t[]
 #);
 j: @integer;
 s: @text;
 p: @Ptn
do (* first sequence *)
 17 −> j;
 's:' −> s;
 (j,s) −> p;
 p −> putline;

 (* second sequence *)
 17 −> j;
 's:' −> s;
 (j,s) −> &Ptn;
 p −> putline
#)

The program consists of a declaration of a pattern: Ptn, and some static items: j, s, and p. The
action−part contains two nearly identical sequences of imperatives.

7.6.1 Question A:

Explain the object−structure of this program (i.e. which objects are allocated, and when).

7.6.2 Question B:

Explain the results of executing the first sequences of imperatives.

7.6.3 Question C:

Explain the results of executing the second sequences of imperatives.

7.6.4 Question D:

Explain the difference between the results of the two sequences.

7.7 Assignment

This assignment is a chance to play with the notions of inheritance, specialisation and
generalisation. Recall that specialisation involves creating a new subpattern that specialises an
existing pattern, that is, it inherits attributes from the existing pattern and (usually) adds new ones
of its own. (The subpattern can also extend the superpattern's action part.) Generalisation is when
you create a new superpattern by gathering common attributes from several existing patterns.

Starting from the bank example in [Madsen93], write two new subpatterns, CheckingAccount and
SavingsAccount, which specialise the Account pattern. Your SavingsAccount pattern should
include a new part attribute, interestRate, and a procedure attribute CalculateInterest which can be
called at the end of every working day to increment the balance according to the current interest
rate.

 Teaching Package

7.6.1 Question A: 18

Your CheckingAccount pattern should model the US system where customers are charged a fixed
(small) price for every check they write unless the balance exceeds a certain threshold, in which
case writing checks is free. What new part attributes do you need? Add a new procedure attribute
ProcessCheck which reduces the current balance by the amount of the check plus the
check−writing charge if applicable.

7.8 Assignment

Construct a BETA program that calculates the natural number square root of a number: n >0.

The natural number square root is the number r, such that:

Implement this program and test it.

7.9 Assignment

Starting from your own soda−machine code, generalise your SodaMachine pattern by
implementing a superpattern called VendingMachine. Also, make another subpattern of
VendingMachine called CandyMachine. (A CandyMachine is like a SodaMachine except that
instead of juices and colas, you can get chewing gum, chocolate bars, and M&Ms.) Think about
which attributes are common to both SodaMachine and CandyMachine; these are candidates for
moving up into VendingMachine.

In your original SodaMachine pattern was a procedure attribute that printed the totals, let's call it
PrintTotals. Move this procedure attribute up to VendingMachine and specialise it for SodaMachine
and CandyMachine. (Don't forget that your definition of PrintTotals in VendingMachine should
include an inner imperative.) So SodaMachine and CandyMachine will have new attributes called
SMPrintTotals and CMPrintTotals, respectively, which specialise VendingMachine's PrintTotals
pattern.

You probably also had a procedure attribute that refilled the machine, let's call it Refill. Make a new
Refill attribute in VendingMachine which takes one enter parameter, a number of dollars, and adds
this money to the current total. Then specialise Refill in each of SodaMachine and CandyMachine
to take extra enter parameters corresponding to the number of items to add (either juices and
colas, or chewing gum, chocolate bars, and M&M bags). So SodaMachine and CandyMachine will
have new attributes called SMRefill and CMRefill, respectively, which specialise VendingMachine's
Refill pattern.

Modify the do−part of your soda−machine code to test your new patterns and attributes.

7.10 Assignment

This assignment is a chance to play with virtuals.

In Assignment 9, you modified your soda machine code to include two new patterns,
VendingMachine and CandyMachine. Among the procedure attributes of VendingMachine, were
two called Refill and PrintTotals. You also made specialisations of these in SodaMachine and
CandyMachine called SMRefill, CMRefill, SMPrintTotals, and CMPrintTotals.

Change these specialised attributes to be virtuals. That is, Refill and PrintTotals should be declared
as virtuals in VendingMachine and (the same names) further bound in SodaMachine and
CandyMachine. Note that this should be easy! Very little of your other code should need to be

 Teaching Package

7.8 Assignment 19

changed.

Add a new virtual called Empty which simply resets to zero the money in the machine and the
amounts of all items. (A handy procedure for thieves!) Again, you'll be declaring Empty to be a
virtual in VendingMachine and specialising it in SodaMachine and CandyMachine. What part of the
work should be done in each pattern?

As usual, be sure to test all your changes using the do−part of the program.

7.11 Assignment

Design a Dictionary pattern with the operations: associate, disassociate, lookup and scan:

• Associate: takes two arguments: entry and element, where element is the lookup−key, and
element is the associated element. Associate makes a new association in the dictionary,
connecting entry and element.

• Disassociate: takes two arguments: entry and element, and removes their associating in the
dictionary.

• Lookup: takes one argument: entry, and returns the associated element.
• Scan: runs the entire dictionary, executing inner for each association. During inner, the two

dynamic references entry and element references the entry, respectively element, of the
current association.

Discuss the consequences of allowing more than one element for each entry.

Make the dictionary as general as possible, using inheritance and virtual attributes as much as
possible.

7.12 Assignment

Modulize the Dictionary pattern from exercise 11 such that the users of the dictionary cannot gain
access to the implementation of it.

7.13 Assignment

Extend the Dictionary pattern from exercise 12 such that exceptions are defined taking care of the
many different exceptional cases which may occur during the lifetime of a dictionary object.

7.14 Assignment

Make use of the Dictionary from exercise 13 to implement a phone book.

Use the Persistent Store to make it possible to save the phone book between program executions.

Make two distinct programs (e.g. an update and a query program), both using the same phone
book saved in the Persistent Store. Its OK to assume that these programs never are running at the
same time.

Use the exceptions defined e.g. for dictionary in the phone book and phone book programs to
make the programs more fault−tolerant.

 Teaching Package

7.11 Assignment 20

7.15 Assignment

Dining philosophers. Five philosophers spend their lives thinking and eating. The philosophers
share a common dining room where there is a circular table surrounded by five chairs, each
belonging to one philosopher. In the center of the table there is a large bowl of spaghetti, and the
table is laid with five forks. On feeling hungry, a philosopher enters the dining room, sits in his own
chair, and picks up the fork on the left of his place. Unfortunately, the spaghetti is so tangled that he
needs to pick up and use the fork on his right as well. When he has finished, he puts down both
forks, and leaves the room. The room should keep a count of the number of philosophers in it.

The problem is to prevent any philosopher from dying from starvation due to the philosopher on his
right always using the right fork. It is assumed, that the philosophers only are eating in a limited
period of time.

7.16 Assignment

The following questions require writing a few small programs which draw various geometric figures.
The programs should be written in a programming language with the following syntax:

command −> drawN | drawW | drawS | drawE |

moveN | moveW | moveS | moveE |

command newline command |

thickness thickness |

color color

repeat number newline command newline end repeat

thickness −> "thick" | "thin"

color −> "black" | "red"| "blue"

number −> #an integer greater than 0#

newline −> #a line−feed/carriage−return#

These programs can be realised by implementing a drawing environment using either GuiEnv or
Bifrost.

7.16.1 Question A:

Write and test a program that draws the above figure.

 Teaching Package

7.15 Assignment 21

7.16.2 Question B:

Write and test a program that draws the above figures. Write one or more algorithms that draw the
same figures. Are there any essential differences between the algorithms?

7.16.3 Question C:

Write and test a program that draws the above figure. Write one or more algorithms that draw the
same figure. Are there any essential differences between the algorithms?

7.16.4 Question D:

Write and test a program that draws the above figure. Write one or more algorithms that draw the
same figure. Are there any essential differences between the algorithms?

7.16.5 Question E:

In this assignment, you've used draw−primitives like drawN and moveE. Based on your experience
with questions A) through D), suggest other draw primitives. Try writing algorithms with your new
primitives. Are yours an improvement? Why?

7.16.6 Tips on using DrawEnv.bet

The BETA implementation of this application can be constructed along the following guidelines.
You should have two windows called Drawings and Commands. (There's also a partially hidden
Console window which you can ignore.) Choosing an item off the Commands menu adds a line of
text with that command (followed by a newline) at the current cursor position in the Commands
window. You can also type commands into the window manually. The repeat command menu item
works in a slightly special way. If some number of lines in the Commands window are currently
selected (i.e. highlighted), then the repeat command will "bracket" those lines. The repeat n part of
the repeat statement will be inserted before the selection and the endrepeat after the selection. Be
sure to change the number n to be the desired number of iterations. Using the Actions menu, you
can reset the current position in the Drawings window back to the upper left corner of the window
(for the next draw or move command), clear the contents of both windows, and "run" or "execute"

 Teaching Package

7.16.2 Question B: 22

the current selection in the Commands window. Note: you can copy/paste a saved set of
commands into the Commands window from another file (say, a Microsoft word file).

7.17 Assignment

Make a text editor with a menu using MacEnv/AwEnv/MotifEnv. Each time the menu is selected, a
beep sound should be made. Compile and run the program.

7.18 Assignment

Write an application with one graphical window, one menu and one dialog box. The menu contains
the following entries: Rect, Oval, RoundRect. When one of these are selected, a corresponding
shape is drawn in the window. The menu also contains a shape entry. When that entry is selected,
a dialog box appears with three radio buttons (Rect, Oval, RoundRect), and four text fields (height,
width, X, Y) and two buttons (OK, CANCEL). The radio buttons selects the shape type, height and
width defines the size of the shape, and X and Y defines the position of the shape in the window.

Implement the system in MacEnv, AwEnv or MotifEnv and test it.

7.19 Assignment

This assignment is an introduction to MacEnv. Each question asks you to modify one of the small
MacEnv demo programs. This require understanding part of the source code for the particular
demo program and that in turn means that you'll be referring to the MacEnv documentation . Don't
forget to use the index as well as the table of contents when looking up the various MacEnv
patterns and attributes.

Notice that for each of the applications, the Close and Quit items on the file menu are automatically
enabled. (Close is only enabled if there's a window belonging to the application currently open on
the screen.)

7.19.1 Question A: Hammer windows

The Hammer program puts up a window containing a picture of Thor's famous hammer "Mjølner."
The window "handles refresh", that is, if the window is activated (clicked in) after having been
covered up by another window, it redraws its contents. (Find the part of the code that does this!)
The program also allows you to create new hammer windows using the New item on the File menu.
Trouble is, these new windows come up in the same place on the screen. Change the code so that
the new windows are positioned at different places on the screen, but still have the same
dimensions.

7.19.2 Question B: Multiple text editor windows

The program TextEditors lets you create multiple text editor windows using the New item on the
File menu. The new windows are positioned successively down and to the right, each one
overlapping the previous. Change the program so that new windows are opened next to each
other. That is, so they are positioned side−by−side, that is, their edges just touch. (How many new
windows can you make before running out of screen space?)

7.19.3 Question C: Catching an event in a text editor window

The EventDemo program creates a text editor window and beeps whenever the mouse is clicked
inside the window. Change the program so that it also inserts the text string 'beep' at the current

 Teaching Package

7.17 Assignment 23

position. If the user double−clicks in the window, insert the string 'double−beep'. (This gives you a
way to experiment with the difference between two successive clicks and a single double−click.)

7.20 Assignment

Make a Matrix data structure with hidden implementation. Make a Vector data structure, such that
Vector is able to utilise the implementation of Matrix, without revealing the Matrix implementation to
the rest of the program (e.g. to the users of the Vector data structure.

7.21 Assignment

Implement the so−called futures in BETA using the concurrency facilities. A future is a value,
returned as the result of an operation, but where the results of the operation may not have been
completely calculated yet (e.g. a concurrent computation has not yet completed). References to
futures may be passed around like any other object even though the result still isn't available. If
some system object evaluates the future, it should be blocked until the result of the computation
becomes available, in which case the result(s) are exited from the future object.

 Teaching Package

7.20 Assignment 24

8 Course Projects

8.1 Topics

• Project I: Subways in Århus
• Project II: Simulation Environment
• Project III: Vehicle Registration Office

8.2 Project I: Subways in Århus

What?? Subways in her form of public transportation to a system that's already working fine? And
by the way, has anyone talked to the potential users about this crackpot idea?

Imagine that it's 15 years hence and the ign of a new subway system. The designers would like to
try out various placements of subway stations and lines connecting them − without digging up any
streets just yet. Your job is to build a computer−based environment in which they can experiment
with locations of subway stations and compare the distances between stations along various
routes. You'll be able to reuse bits of your old code (e.g. linked lists and dragable objects), play with
a new data structure (the graph), and design "friendly" user interfaces for the city planners.

8.2.1 Modelling a subway system in BETA

A subway station together with its connecting lines is an example of a data structure called a graph.
Unlike the tree (see exercise 34), there is no privileged "root" node, nor are there rules requiring
that the nodes be organised in a hierarchy (with "parent"/"child" relationships). Rather a general
graph is simply a network of nodes and connecting links. You can use a graph to model ng graph
nodes model the subway stations and links model the lines that connect stations. So in BETA you
could have separate SubwayNode and SubwayLink patterns as well as a SubwayGraph pattern to
model the whole system. Then SubwayGraph has two attributes whose values are lists of all the
SubwayNodes and all the SubwayLinks, respectively. You'll also want to be sure that each node
"knows" about its connecting links and that each link "knows" about the two nodes at its endpoints.
You might consider reusing the old LinkedList pattern to represent lists of nodes and links.

8.2.2 Question A: Placing the subway stations

We have to scan a map of enever the user clicks in this window, a new subway station is created
with a single character name (starting with A, then B, etc.). A text object is placed in the window at
the point of the mouse click displaying that name. If the user subsequently clicks on the name, the
station can be dragged to a new location.

Particularly during experimentation with early versions of the system, it might be a good idea to
have a menu item which refreshes the window. Another approach would be to implement a first
version of this part of the application in a plain window, i.e. with no map on the background.

8.2.3 Question B: The shortest path between two subway stations

Designers of subway systems know that certain routes are more heavily used than others. For
example, on a Saturday morning there's always lots of traffic between Gellerup and the market at
Ingerslevs Boulevard. If there were stations at those two points, then the subway designer might
want to highlight the shortest route between them and be sure that it's direct enough. To support

8 Course Projects 25

such experimentation, you need to implement the calculation and display of the shortest path
between two stations chosen by the user. The user would select two nodes which are the start and
end nodes respectively. Then, with a single menu selection, the shortest route between those
nodes is highlighted in the window. (For example, the links along the route could be redrawn with
thicker lines.)

How do you compute the shortest path between two nodes in a graph? Here's a textual description
of one possible algorithm: The idea is to let each node in the graph calculate the total distance of
the shortest route to it from the start node. Then, starting at the end node, you can work your way
back to the start node highlighting each link along the shortest path. So there's two steps.

Step 1: Let's first consider how nodes calculate their shortest distance. It's a recursive,
object−oriented algorithm. At any given time during the algorithm, each node has a current shortest
distance (initially −1 indicating that no calculations have been performed). The start node can
immediately improve its current shortest distance to 0 to indicate that the optimal route between a
node and itself has 0 length. Now the start node communicates with each of its neighbours along
their connecting links. Each neighbour sees whether it can improve on its current value by using
the value sent from the start node together with the distance along the connecting link. If this
results is a smaller value for the shortest distance to the neighbour node, then it decreases its
current shortest distance and starts the same process up with its neighbours. On the other hand, if
this does not result in an improved shortest distance, then the neighbour does nothing and does
not "pass the baton" along to its neighbours. (Despite the fact that nodes can be visited more than
once, you should convince yourself that this recursive algorithm does in fact stop eventually, no
matter how complex the graph is.)

Notes:

1. Instead of the actual distance between two points, (which requires computing the square
root), you can just use the square of the distance, namely, (y2−y1)^2 + (x2−x1)^2.

2. In addition to remembering the current shortest distance, each node should also remember
which incoming link (call it say, PreferredLink) was responsible for that shortest distance.

3. Before running the algorithm you should be sure that any information from previous
calculations is deleted. Thus SubwayGraph should have a "cleanup" procedure that runs
down all the SubwayNodes and sets all their values to −1 and throws away the reference to
the PreferredLink.

Step 2: Now that each node knows the shortest distance from it to the start node and each also
knows which incoming link is first along that shortest path (to the start node), it's a simple matter to
highlight the shortest path. Just starting at the end node, find the preferred link and highlight it.
Then, "pass the baton" (recursively) to the node at the other end of the preferred link. If there is no
preferred link, then stop. You should now be at the start node (which will never have a preferred
link).

(Note that both of these algorithms are object−oriented and recursive. They are object−oriented
because the work is done in procedure attributes that belong locally to each node with the node
"handing off" control (i.e. message passing) to the neighbour nodes. They are recursive because
these procedures call themselves.)

8.3 Project II: Simulation Environment

This project consists of two parts: Simulation of a group of machines and development of general
abstractions for simulation.

 Teaching Package

8.3 Project II: Simulation Environment 26

8.3.1 Part 1: Simulation of a group of machines

The goal of this part is to construct a model, that makes it possible to simulate a collection of
machines, making it possible to evaluate the capacity of the machines in relation to a given flow of
production orders.

The system consists of a number of machine groups. Each machine group consists of a number of
identical machines. A single machine can handle part of an order.

A production order is characterised by a sequence of machine groups MG1, MG2, ..., MGi and an
associated sequence of manufacturing times T1, T2, ..., Ti. The order must therefore be fulfilled by
one machine in group MG1 for a time period of T1, followed by a machine in machine group MG2
in T2 period, etc.

New production orders are placed in the system at irregular times. At any given time, the system
will have a number of orders under manufacturing. This may cause queues to build at certain
machine groups if there is not sufficient manufacturing capacity in the machine group.

The simulation model must simulate arrival and manufacturing of a sequence of production orders
for a given period of time. In the simulated period of time, the system must at regular intervals print
the number of orders, waiting at each machine group.

8.3.2 Part 2: Development of general abstractions for simulation

As a part of the project, a number of general abstractions (patterns) must be developed. These
patterns must enable simulation of discrete events. Describe events is one method for studying the
behaviour of large systems of coordinating objects, and for evaluating the effects of changes, that
may be too costly to test in practice. The following concepts are characteristic of such systems:

1. A varying number of processes are active simultaneously and gives rise to discrete events
at irregular times.

2. Queues may build up when an object must wait to be served by another object, that is
serving some other object.

It is not always necessary to deal with real concurrency in the simulation in order to represent
processes, that are concurrent in the system we want to make a simulation model for. It is most
often sufficient to maintain a sequence of objects with markings of the time of the next time they
need to be activated.

An order in the model can e.g. be represented as a process, that wanders from machine to
machine, requesting for service. If the machine is idle, the order can immediately be effectuated
and the machine can simulate busy for the period of time, it takes to deal with the order. If the
machine is busy, the order must wait in a queue of orders, waiting to be serviced by that particular
machine. When the machine is finished dealing with an order, it can fetch another order from the
queue.

The simulation model will use the concept of simulated time that often is represented by a variable
time that denoted the current time and which is updated at certain occasions. The active phases of
a process is usually dealt with instantaneously with respect to the simulated time, since it is difficult
to simulate a contiguous span of time.

The passing of time is often simulated by the active process suspending execution for some period
of time T and the process will then be resumed, when the global time variable have been increased
with T.

 Teaching Package

8.3.1 Part 1: Simulation of a group of machines 27

The general abstraction mechanisms must therefore include:

1. A process concept for simulation of simultaneous processes.
2. A queue mechanism that allows processes to wait. This will imply an operation, e.g.

wait(Q)
where Q is a queue and where the result is that the calling process is suspended and
entered into the Q. There must also be an operation, e.g.
activate(X)
where X is a suspended process, that is removed from the queue, where it is waiting and
then resumed.

3. A concept of time. This may be a variable time and a operation , e.g.
hold(T)
hat suspends an active process for T time units.

4. An operation to start the simulation, e.g.
simulate(startProcess, endTime)
where startProcess is the first active process and endTime is the time, where the simulation
is to stop (it is assumed, that the simulation starts at time 0).

8.3.3 Part 3: Development of an interface for simulation

Finally, this project can be extended with demands for constructing an interface, either for the
specification of a simulation, or for visualising the dynamics of a running simulation. This interface
construction can be realised using GuiEnv or using Bifrost.

8.3.4 Remarks:

It is not expected that this project will result in a full−fledged simulation system. It is part of the
project to restrict the project properly and to make the more informal parts of the project formulation
precise. The main effort must be places on development and implementation of the general
abstractions for simulation.

The design of the system should cover all important aspects of the project. Restrictions must be
stated precisely. The implementation should also cover all important aspects. It should be relatively
easy to add missing functionality (e.g. without making major changes in the program).

8.4 Project III: Vehicle Registration Office

This project deals with the development of a system for handling the registration of vehicles at the
central vehicle registration office.

The register must be able to register different types of vehicles, such as cars, busses, trucks,
motorbikes, etc. For each vehicle type, relevant properties such as registration number, owner,
weight, cargo, number of passengers, tax, etc. must be registered.

The user of the register must be able to make the following operations:

• Registration of a new vehicle.
• Deregistration of a vehicle
• Change of owner
• Search for vehicles, based on more or less complete informations, such as registration

number, owner, etc.
• Printing of statistics for vehicles, such as the distribution of cars by age.

 Teaching Package

8.3.3 Part 3: Development of an interface for simulation 28

• Printing of receipts for payment of tax and registration of payment of tax.

It is to be expected, that the user may pose additional requirements for functionality, and the design
must be prepared of such requests.

The design should argue for the choice of phenomena. The design should also give arguments for
the measurable properties and transformations considered for each phenomena. There should also
be a discussion of the concepts used for organising the phenomena.

8.4.1 Remarks:

It is not expected that this project will result in a full−fledged vehicle registration system. It is part of
the project to restrict the project properly and to make the more informal parts of the project
formulation precise.

The design of the system should cover all important aspects of the project. Restrictions must be
stated precisely. The implementation should also cover all important aspects. It should be relatively
easy to add missing functionality (e.g. without making major changes in the program).

 Teaching Package

8.4.1 Remarks: 29

9 Course Materials

The material, used in the different lectures are listed here. This list contains all material mentioned
in at least one lecture.

[Borgida85]
A. Borgida: Language Features for Flexible Handling of Exceptions in Information Systems,
ACM Transactions on Database Systems, Dec. 1985.

[JLK84,87]
J.L. Knudsen: Exception Handling − A Static Approach, Software Practice and Experience,
May 1984.
J.L. Knudsen: Better Exception Handling in Block−Structured Systems, IEEE Software, May
1987.

9 Course Materials 30

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B

Bifrost Graphics System
Block Structure and Part
Objects

C

Co−routine Aspects
Compiler and Basic Library
Conceptual Framework for
Object−Oriented Programming

Concurrency Aspects
Containers Library
Course Assignments

Course Materials
Course Projects

D

Distributed Objects

E

Event−based programming Exception Handling
Exceptional Computation and
Overview of Language
Constructs

F

Freja: the CASE Tool for BETA
Frigg: the User Interface
Editor for BETA [2]

I

Imperatives
Introduction to
Object−Oriented Programming

Introduction

L

Lectures [2] [3] [4] [5] Lidskjalv Introduction:
Purpose, Overview and

Lidskjalv Patterns

Index 31

Structure of a Lidskjalv
Application

M

Mjølner System Overview Mjølner System Tools

N

Non−deterministic Aspects

O

Objects, Repetitions, and
Patterns

Overview of the Mjølner
System

P

Pattern Variables
Persistent Objects
Platform−independent User
Interface Construction Using
the Mjølner System

Procedural Programming in
BETA
Process Communication
Programming−in−the−large in
the Mjølner System

Project I: Subways in Århus
Project II: Simulation
Environment
Project III: Vehicle
Registration Office

S

Sif: the Mjølner Source
Browser and Editor

Subpatterns

T

The BETA Programming
Language
The Fragment System
(Advanced)
The Fragment System (Basics)

The Mjølner System Tools
The Object Browser
The other tools

Topics [2] [3] [4] [5]

V

Valhalla: the Mjølner
Source−level Debugger

Virtual Class Patterns Virtual Procedure Patterns

Y

Ymer: the Mjølner Source
Browser and Editor

 Teaching Package

M 32

	Table of Contents
	1 Introduction
	2 Lecture Series 1:The BETA Programming Language
	2.1 Topics
	2.2 Lectures
	2.2.1 Introduction to Object-Oriented Programming
	2.2.2 Objects, Repetitions, and Patterns
	2.2.3 Imperatives
	2.2.4 Subpatterns
	2.2.5 Virtual Procedure Patterns
	2.2.6 Block Structure and Part Objects
	2.2.7 Virtual Class Patterns
	2.2.8 Pattern Variables
	2.2.9 Procedural Programming in BETA
	2.2.10 Co-routine Aspects
	2.2.11 Concurrency Aspects
	2.2.12 Non-deterministic Aspects
	2.2.13 Conceptual Framework for Object-Oriented Programming

	3 Lecture Series 2: Programming-in-the-large in the Mjølner System
	3.1 Topics
	3.2 Lectures
	3.2.1 The Fragment System (Basics)
	3.2.2 The Fragment System (Advanced)
	3.2.3 Exceptional Computation and Overview of Language Constructs
	3.2.4 Exception Handling

	4 Lecture Series 3:Overview of the Mjølner System
	4.1 Topics
	4.2 Lectures
	4.2.1 Mjølner System Overview
	4.2.2 Compiler and Basic Library
	4.2.3 Containers Library
	4.2.4 Persistent Objects
	4.2.5 Distributed Objects
	4.2.6 Process Communication
	4.2.7 The Mjølner System Tools

	5 Lecture Series 4:The Mjølner System Tools
	5.1 Topics
	5.2 Lectures
	5.2.1 Ymer: the Mjølner Source Browser and Editor
	5.2.2 Sif: the Mjølner Source Browser and Editor
	5.2.3 Valhalla: the Mjølner Source-level Debugger
	5.2.4 Frigg: the User Interface Editor for BETA
	5.2.5 Freja: the CASE Tool for BETA
	5.2.6 The Object Browser
	5.2.7 The other tools

	6 Lecture Series 5:Platform-independent User Interface Construction Using the Mjølner System
	6.1 Topics
	6.2 Lectures
	6.2.1 Event-based programming
	6.2.2 Lidskjalv Introduction: Purpose, Overview and Structure of a Lidskjalv Application
	6.2.3 Lidskjalv Patterns
	6.2.4 Bifrost Graphics System
	6.2.5 Frigg: the User Interface Editor for BETA

	7 Course Assignments
	7.1 Assignment
	7.2 Assignment
	7.2.1 Question A:
	7.2.2 Question B:
	7.2.3 Question C:

	7.3 Assignment
	7.3.1 Question A Modelling the customer's address
	7.3.2 Question B: Modelling bank accounts having several owners
	7.3.3 Question C:

	7.4 Assignment
	7.4.1 Question A:
	7.4.2 Question B:
	7.4.3 Question C:

	7.5 Assignment
	7.6 Assignment
	7.6.1 Question A:
	7.6.2 Question B:
	7.6.3 Question C:
	7.6.4 Question D:

	7.7 Assignment
	7.8 Assignment
	7.9 Assignment
	7.10 Assignment
	7.11 Assignment
	7.12 Assignment
	7.13 Assignment
	7.14 Assignment
	7.15 Assignment
	7.16 Assignment
	7.16.1 Question A:
	7.16.2 Question B:
	7.16.3 Question C:
	7.16.4 Question D:
	7.16.5 Question E:
	7.16.6 Tips on using DrawEnv.bet

	7.17 Assignment
	7.18 Assignment
	7.19 Assignment
	7.19.1 Question A: Hammer windows
	7.19.2 Question B: Multiple text editor windows
	7.19.3 Question C: Catching an event in a text editor window

	7.20 Assignment
	7.21 Assignment

	8 Course Projects
	8.1 Topics
	8.2 Project I: Subways in Århus
	8.2.1 Modelling a subway system in BETA
	8.2.2 Question A: Placing the subway stations
	8.2.3 Question B: The shortest path between two subway stations

	8.3 Project II: Simulation Environment
	8.3.1 Part 1: Simulation of a group of machines
	8.3.2 Part 2: Development of general abstractions for simulation
	8.3.3 Part 3: Development of an interface for simulation
	8.3.4 Remarks:

	8.4 Project III: Vehicle Registration Office
	8.4.1 Remarks:

	9 Course Materials
	Index
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	S
	T
	V
	Y

