
JWIG: Yet Another Framework for

Maintainable and Secure Web Applications

Anders Møller and Mathias Schwarz

Department of Computer Science, Aarhus University, Denmark

amoeller@cs.au.dk, schwarz@cs.au.dk

Abstract

Although numerous frameworks for web application programming have

been developed in recent years, writing web applications remains a challeng-

ing task. Guided by a collection of classical design principles, we propose

yet another framework. It is based on a simple but flexible server-oriented

architecture that coherently supports general aspects of modern web applica-

tions, including dynamic XML construction, session management, data per-

sistence, caching, and authentication, but it also simplifies programming of

server-push communication and integration of XHTML-based applications

and XML-based web services. The resulting framework provides a novel

foundation for developing maintainable and secure web applications.

1 Introduction

Web applications build on a platform of fundamental web technologies, in partic-

ular, XHTML, HTTP, and JavaScript. Although these are relatively manageable

technologies, it is generally regarded as difficult to write and maintain nontrivial,

secure applications. The programmer must master not only the fundamental tech-

nologies but also techniques for session management, caching, data persistence,

form input validation, and rich user interfaces. In addition, most web applications

are exposed to all hackers in the world, so the programmer must also consider

potential security problems, such as, injection attacks, cross site scripting, and in-

sufficient authentication or encryption.

In recent years, a multiplicity of web application frameworks have emerged,

all claiming to make web application development easier. Among the most widely

known are Struts (McClanahan et al., 2008), Spring MVC (Johnson et al., 2008),

Google Web Toolkit (Google, 2008), Ruby on Rails (RoR) (Hansson et al., 2008),

1

PHP (Lerdorf et al., 2008), and ASP.NET (Microsoft, 2008). These frameworks

represent different points in the design space, and choosing one for a given task is

often based on subjective arguments. However, a general limitation is the lack of

a simple unified communication model that supports both the traditional server-

oriented structure and the more modern style using AJAX1, server-push2 , and

JSON or XML-based web services (Crockford, 2006; W3C, 2008).

In this paper, we try to take a fresh view on the problem. Based on essential de-

sign principles, we exhibit some of the limitations of existing frameworks, propose

yet another web application framework, and compare it with the existing ones. The

main contributions of this paper can be summarized as follows:

• First, we identify and argue for a small collection of requirements and design

principles for creating a web application framework.

• In Section 2 we propose a simple architecture that supports the basic features

of receiving HTTP client input and producing XHTMLoutput, in accordance

with the design goals.

• In Sections 3–9 we demonstrate the flexibility of the architecture by showing

how it can smoothly handle other important aspects that can be challenging

to work with in other frameworks, including server-push communication,

session state, persistence, and authentication.

• The resulting framework provides a clear structure of both control and data,

which makes the application program code amenable to specialized static

analysis. For example, one analysis checks—at compile-time—that only

valid XHTML 1.0 data is sent to the clients during execution.

• The new framework is evaluated through a series of short but nontrivial ex-

ample programs and a case study that demonstrate the resulting system in

relation to the requirements and design principles, in comparison with alter-

native frameworks.

Premises and Requirements

To specify the aims of our task and narrow the design space, we begin by formu-

lating the basic premises and requirements:

• We focus on Java, for the simple reasons that this language is well-known

to most programmers, especially those developing web applications, and it

1http://en.wikipedia.org/wiki/Ajax (programming)
2http://en.wikipedia.org/wiki/Comet (programming)

2

comes with a massive collection of useful, open source libraries that we and

the application programmers can build on. An immediate consequence of

this choice is that we cannot benefit from, for example, general higher-order

functions, closures and continuations, as known from functional languages

and frameworks such as Seaside (Ducasse et al., 2007) and the PLT Scheme

Web Server (Krishnamurthi et al., 2007). Such features can be emulated in

Java, but not elegantly. On the other hand, we can exploit Java’s reflection

capabilities. We permit simple syntactic extensions of Java, in particular to

support XML processing.

• We assume that the browsers are capable of rendering XHTML and execut-

ing JavaScript code, as in Internet Explorer 8 and Firefox 3, but the frame-

work cannot use browser plugins. This means that the applications will be

readily deployable to all users with modern browsers.

• We postulate that a majority of web applications do not require massive scal-

ability and have less than a thousand concurrent uses. Our framework design

should focus on this category.

• The framework must uniformly support both XHTML applications (where

the clients are browsers) and XML-based web services (where the clients

are other types of software). It should be possible to statically check that

only valid XML output is produced, relative to a given XML schema. This

requires a clear flow of control and data in the code. For the back-end, the

framework must integrate with existing object-relational mapping (ORM)

systems, e.g. Hibernate (O’Neil, 2008), such that data persistence can be

obtained with minimal effort to the programmer, but without being tied to

one particular system.

• Representational state transfer (REST) is a collection of network architec-

ture principles that the Web is based on (Fielding and Taylor, 2002). We

focus on its use of URLs for addressing resources with generic interfaces

as HTTP methods (GET, POST, etc.) and caching. In contrast, the remote

procedure call (RPC) approach encourages the use of URLs for addressing

operations, not resources, which sometimes fits better with the abstractions

of the programming language in use. Both approaches should be uniformly

supported by the framework.

Design Principles

To guide the design of the framework, we adhere to the following key principles:

3

High cohesion and low coupling Cohesion is a measure of how strongly related

and focused the responsibilities of a software unit is. The related concept

of coupling is a measure of how strongly dependent one software unit is on

other software units. It is common knowledge in software engineering that

high cohesion and weak coupling are important to maintainability and reli-

ability of the software (Stevens et al., 1974). Nevertheless, many web pro-

gramming frameworks fail in these measures when considering, for exam-

ple, handling of form data and asynchronous client–server communication.

Examples of this are shown in Sections 4 and 5.

Secure by design Buffer overruns are an example of a security concern that has

largely been eliminated by the use of languages that are secure by design,

for example Java or C# instead of C or C++. However, injection attacks,

cross-site scripting, insecure direct object references, broken session man-

agement, and failure to restrict URL access remain among the most serious

classes of web application vulnerabilities (OWASP, 2007). We believe that

the principle of ‘secure by design’ should be applied at the level of web

application frameworks to address those classes of vulnerabilities.

Convention over configuration All configuration should have sensible defaults,

in order to minimize the number of detailed decisions that developers need

to make for the common cases. This principle was popularized by Ruby on

Rails.

In the following sections, we give examples of how existing frameworks violate

these principles and explain our proposal for a solution. We omit discussions of

how our framework handles input validation and XHTML extensions for making

catchy user interfaces, and we only briefly touch upon the relations to other frame-

works.

2 Architecture

Web clients in general cannot be trusted, and essentially all web applications con-

tain sensitive data, so according to the ‘secure by design’ principle and for sim-

plicity our starting point is a classical server-oriented approach where the applica-

tion code is executed on the server rather than on the client. This means that we

avoid many of the security considerations that programmers have if using a client-

oriented architecture, as e.g. GWT. (A concrete example of this advantage is shown

in section 10.2.) One of the typical arguments in favor of a client-oriented approach

is the opportunity to create rich user interfaces—however, such effects are possible

4

SERVER CLIENT

request

response

web application

web methods

event handlers
XML producers

page event

page update

XML pageDispatcher

Database

ORM

Figure 1: The framework architecture. The boxes and circles represent the main static

components, and the arrows show the dynamic interactions between the components.

also in server-oriented frameworks using tag libraries containing JavaScript code.

Also, pushing computation to the client-side may imply a decreased load on the

server, but, on the other hand, it often conflicts with the use of ORM systems: It is

difficult to ensure high performance if the application code is physically separated

from the ORM system.

Figure 1 illustrates the basic architecture. As in many other newer server-

oriented frameworks, a dispatcher on the server receives the client HTTP requests

and invokes the appropriate server code, here called web methods. Many frame-

works rely on separate configuration files for mapping from request URLs to appli-

cation code. To decrease coupling, our web methods are instead discovered using

introspection of the web application code, as in e.g. CherryPy. The web methods

have formal parameters for receiving arguments from the clients and return values

to be sent as response.

As an example, the tiny web application shown in Figure 2 accepts HTTP

GET requests of the form http://example.org/Main/hello?what=World and

returns a small XHTML page as response. The class Main is a web application

that contains a single web method hello. We explain the XML construction and

the [[...]] notation in Section 3. Following the ‘convention over configuration’

principle, no application specific configuration is required to make this run—unlike

the situation in, for example, Struts or RIFE (Bevin, 2007).

The architecture is a variant of the Model-View-Controller pattern that many

other frameworks also apply. Most importantly, the model (the database) is sep-

5

public class Main extends WebApp {

public XML hello(String what) {

return [[

<html>

<head><title>Example</title></head>

<body>

<p>Hello <{ what }></p>

</body>

</html>

]];

}

}

Figure 2: A “hello world” web application.

arated from the main web application code. However, we propose a less rigid

division between the view and the controller than used in other frameworks, as we

explain in Section 3.

In the following sections, we go into more details and extend this basic ar-

chitecture to fulfill the requirements we defined, which includes introducing the

notions of XML producers and event handlers and the page event and page update

actions appearing in Figure 1.

3 Generating XML Output

A common approach to generating XHTML output dynamically in web applica-

tion frameworks is to use a template system, either where templates contain code

for dynamic construction of content (as in e.g. ASP.NET, PHP, or RoR) or where

templates contain placeholders where the code can insert content (as in e.g. RIFE).

Another approach is to use GUI components that are assembled programatically

(as e.g. GWT or Wicket). Web services, on the other hand, need the ability to also

receive and decompose XML data, which is often done completely differently in a

DOM-style fashion.

All those systems lack the ability to ensure, at compile time, that output is

always well-formed and valid XML data. This is known to affect reliability and

may lead to, for example, cross site scripting vulnerabilities.

We propose a solution that (1) unifies the template approach and the DOM-

style approach, (2) permits static validation analysis, and (3) avoids many security

issues by design.

We build on a new version of the XACT system (Kirkegaard et al., 2004). XML

6

data is represented as well-formed XML fragments that are first-class values, mean-

ing that they can be stored in variables and passed between methods (unlike most

other template systems). Figure 2 shows an XML value constant (enclosed by

[[...]], using a simple syntax extension to Java) that contains a snippet of code

(enclosed by <{...}> in XML content or {...} in attribute values), which at run-

time evaluates to a value that gets inserted. The syntax extension reduces the bur-

den of working with XML data inside Java programs and is desugared to ordinary

Java code.

XML values may also contain named gaps where other XML values or strings

can be inserted, which makes it easy to reuse them. As an example, the following

code defines a wrapper for XHTML pages and stores it in a variable w:

XML w = [[

<html>

<head><title>My Pink Web App</title></head>

<body bgcolor="pink"><[BODY]></body>

</html>

]];

This wrapper can then be used whenever a complete page needs to be generated,

for example in this web method:

XML time() {

return w.plug("BODY", [[

<p>The time is: <{ new Date() }></p>

]]);

}

To obtain separation of concerns between programmers and web page design-

ers, XML values can also be stored in separate files. In fact, contracts can be

established to formalize and verify this separation, as explained in the article by

Böttget et al. (2006).

XML values can also be decomposed and transformed with operations inspired

by JDOM and XPath. By design, XML values are always well-formed (i.e. tags are

balanced, etc.). When inserting text strings into fragments, special characters are

automatically escaped, which eliminates a significant class of security vulnerabili-

ties. In addition, variables can be annotated with XML Schema type information,

and a program analysis can perform type checking to ensure that output is always

valid according to a given schema (Kirkegaard and Møller, 2005).

As an example (from the CourseAdmin system described in Section 11) in the

RPC-style web service category, the following web method uses the features of

XACT to produce an XML document describing the status of hand-in exercises for

a given student:

7

XML<c:handins> getHandins(XML<c:student> s) {

String sid =

db.getStudents().get(s.getAttribute("id"));

List<Handin> hs = db.getHandins().get(sid);

if (hs == null)

throw new NotFoundException();

XML x = [[<c:handins> <[H]> </c:handins>]];

for (Handin h : hs)

x = x.plug("H", [[

<c:handin number={ h.getNumber() }

status={ h.getStatus() } />

<[H]>

]]);

return x;

}

We here assume that the underlying model is represented by a data structure db.

By default, web methods react only on HTTP GET requests. This can be changed

using an annotation, for example @POST for web methods that are unsafe in the

HTTP sense.

4 XML Producers and Page Updates

The response of a web method is generally a view of some data from the underlying

database. When the data changes, the view should ideally be updated automatically

while only affecting the relevant parts of the pages to avoid interfering with form

data being entered by the user. With many frameworks, this is a laborious task that

requires many lines of code and insight into the technical details of JavaScript and

AJAX, so many web application programmers settle with the primitive approach

of requiring the user to manually reload the page to get updates.

We propose a simple solution that hides the technical details of the server-push

techniques (aka. Comet) and integrates well with the XACT system. An XML pro-

ducer is an object that can produce XML data when its runmethod is called. When

the object is constructed, dependencies on the data model are registered according

to the observer pattern. An XML producer can be inserted into an XHTML page

such that whenever it is notified through its dependencies, run is automatically

called and the resulting XML value is pushed to all clients viewing the page. All

the technical details involving AJAX and Comet are hidden inside the framework,

and it scales well to hundreds of concurrent uses.

Typically, the XML producer is created as an anonymous inner class within the

web method that generates the XHTML page. This ensures high cohesion for that

software component and low coupling by only depending on the model of the data

that is shown to the client. An example is shown in Section 6.

8

5 Forms and Event Handlers

Forms constitute the main mechanism for obtaining user input in web applications.

With most frameworks, the code that generates the form is separate from the code

that reacts on the input being submitted, and these pieces of code are connected

only indirectly via the URLs being generated and the configuration mapping from

URLs to code. This violates the principle of high cohesion and low coupling, and

the flow of control and data becomes unclear.

Our solution is to extend the architecture with event handlers as a general

mechanism for reacting to user input. We here focus on forms although the mech-

anism also works for other kinds of DOM events. The technique is related to the

use of action callbacks in Seaside.

Forms are created by building XML documents that contains a form tag with

relevant input fields. A specialized event handler, called a submit handler, is

plugged into the action attribute. The submit handler contains a method that

can react when the form is submitted and read the form input data. (An exam-

ple is shown in Section 6.) As with XML producers, event handlers are typically

anonymous classes located within the web methods.

The consequence of this structure is a high degree of code cohesion. Also, it

becomes possible by static analysis to verify consistency between the input fields

occurring in the form and the code that receives the input field data.

6 Example: MicroChat

The following example shows a tiny chat application that uses the features ex-

plained in the previous sections. It shows a list of messages and a text field where

users can write new messages (see Figure 3).

public class MicroChat extends WebApp {

List<String> messages =

new ArrayList<String>();

public XML chat() {

return [[

<html>

<head><title>MicroChat</title></head>

<body>

<{ new XMLProducer(messages) {

XML run() {

if (!messages.isEmpty())

return [[

9

Figure 3: The running MicroChat application.

<{ [[<[MSG]>]]

.plugWrap("MSG", messages) }>

]];

else

return [[]];

}

} }>

<form method="post" action=[SEND]>

<p>

<input type="text" name="msg"/>

<input type="submit" value="Send"/>

</p>

</form>

</body>

</html>

]]

.plug("SEND", new SubmitHandler() {

void run(String msg) {

messages.add(msg);

update(messages);

}

});

}}

For simplicity, the application state is here represented as a field messages in the

application class; we discuss persistence in Section 8. The XHTML document

being created when the user invokes the run web method contains an instance of

an XMLProducer that declares itself to be an observer of messages and writes the

messages in the document. The plugWrap method here builds a list of items

10

containing the messages. Secondly a submit handler is plugged into the action

attribute of the form. The handler method reads the form field msg, adds it to the

list of messages, and then invoke update to notify all observers of the list, in this

case the XML producer. The effect is that whenever a user posts a new message,

the list of messages is automatically updated in all browsers viewing the page.

Notice the high degree of cohesion within the chat web method. In most other

frameworks (with Seaside and as a notable exception) the equivalent code would

be more fragmented and hence less maintainable.

7 Parameters and References to Web Methods

Web methods and event handlers can be parameterized, as shown in the previous

examples. Any Java class that contains a static method valueOf can be used for

such parameters for deserializing values, as known from the basic Java library.

Conversely, serialization for output is performed using toString (for strings) or

toXML (for XML values). The dispatcher then transparently handles the serializa-

tion and deserialization. For example, JSON data is trivial to transfer with this

mechanism.

The URL format used in requests to web methods can be controlled by an anno-

tation, to support REST-style addressing of resources. As an example, the follow-

ing annotation could be placed on the hello web method from Figure 2 to override

the default format, such that it can be invoked by URLs like http://example.org

/foo/World:

@URLPattern("foo/$what")

Links between pages can be created using the method makeURL:

XML my_link = [[

click here

]];

The web method name is passed as a constant string (since methods are not first-

class values in Java), but it is straightforward to statically type check that it matches

one of the web methods within the application. Parameters are serialized as ex-

plained above, and the resulting URL is generated according to the URL pattern of

the web method.

This approach ensures that the coupling between web pages becomes explicit in

the application source code, in contrast to frameworks that involve URL mappings

in separate configuration files. As we explain in the next section, it additionally

provides a novel foundation for managing session state and shared state.

11

8 Session State and Persistence

A classical challenge in web application programming is how to represent session

state on top of the inherently stateless HTTP protocol. Although REST prescribes

the use of stateless communication, without ever storing session state on the server,

we believe that the benefits of allowing session state on the server outweigh the

disadvantages—a concrete example is shown in section 10.2.

Many frameworks track clients using, for example, cookies or URL rewriting

and provide a string-to-object map for each client for storing session state. Using

cookies in this way conflicts with the REST principle that resources should be

addressable by URIs: With cookie-based session management, one client cannot

participate simultaneously in several sessions of the same web application, and it

is difficult to transfer a session from one client to another.

Our approach is to store session state in objects derived from an abstract class

named Session. Using a class instead of a map means that the ordinary Java

type checker will check that expected properties are present when a web method

accesses the session state. The class defines the valueOf and toString methods

so the objects can be given as parameters to web methods using the mechanism

described in Section 7. Serialization assigns a long random key to each session

object, and deserialization finds the session object using this key.

The following example extends the “Hello World” example from Section 2 so it

now saves the what parameter in a newly created session object and then redirects

to the sayHimethod, which reads the session data and embeds it in its XML output:

URL hello(String what) {

return makeURL("sayHi", new HelloSession(what));

}

class HelloSession extends Session {

String name;

public HelloSession(String s) { name = s; }

}

public XML sayHi(HelloSession s) {

return [[

<html>

<head><title>Example</title></head>

<body><p>Hello <{ s.name }></p></body>

</html>]];

}

Session state is here encapsulated in the HelloSession objects, and it is clear

from the signature of the sayHi web method that it requires the client to provide a

session key. This way of tracking clients is effectively a variant of URL rewriting

that is integrated with the dispatching mechanism of the framework.

12

A session garbage collector thread takes care of removing session objects that

are not accessed by a client within a certain period of time. As a convenient ex-

tra feature, the generated XHTML pages automatically (using AJAX) inform the

server that the relevant session objects are alive as long as the pages are being

viewed in a browser.

All web applications and web services, beyond the level of toy examples, en-

compass a database for data persistence. As mentioned in the introduction, we

focus on ORM systems. To this end, we utilize the same pattern as for session

state: Persistable data must implement the Persistable interface, which requires

it to define an ID string for each object. This ID can be used to query the object

from the database during deserialization. It can be passed around in the URLs

in a call-by-reference style via the makeURL mechanism or hidden inside session

objects.

Among the currently most serious web application vulnerabilities is insecure

direct object references, i.e. situations where malicious users can modify data ref-

erences passed in URLs with insufficient authentication on the server (OWASP,

2007). Employing the ‘safe by default’ principle, our framework requires that per-

mission must explicitly be given to use an ID of a persistable object. This is done

coherently by defining a method named access that returns true when the use of

the given ID is allowed in the context of the HTTP request concerned. Other issues

related to authentication are discussed in the next section.

9 Caching and Authentication

We propose a notion of filters that uniformly handles caching, authentication, and

logging following the design principles from Section 1. The dispatcher permits a

given request URL to match multiple web methods, which are then processed in

turn until one produces a response. The order can be controlled by a @Priority

annotation. A filter is a web method with return type void and by default has

higher priority than ordinary web methods.

The class WebApp, from which all web applications are derived, has a filter

named cachewith a URL pattern that matches all requests. This filter transparently

performs server-side caching by storing a number of responses generated by the

ordinary web methods. It also handles conditional GET requests to support client-

side caching.

The cache can be connected by the observer pattern to the underlying data

for removal of stale pages. This currently requires the programmer to specify the

dependencies: For example, invoking addPageInvalidator(x) ensures that the

current page gets invalidated when update(x) is invoked. Obviously, this violates

13

the ‘secure by default’ principle since the programmer may forget to specify all

dependencies, in which case the users may get stale data. To our knowledge, no

existing web programming framework solves this problem; we currently investi-

gate the use of static dependency analysis to address this.

Filters can also be used for decoupling authentication from the application

logic:

@URLPattern("restricted/**")

public void authenticate() {

if (!isSecure())

throw new AccessDeniedException();

User u = getUser();

if (u == null ||

!u.getUsername().equals("jdoe") ||

!u.getPassword().equals("42"))

throw new

AuthorizationRequiredException("MyRealm");

else

next();

}

This filter restricts access to all resources with URLs matching the pattern

restricted/** relative to the base URL of the web application. If the connec-

tion is insecure (i.e. not using SSL/TLS), a 403 Forbidden response is made. The

getUser method returns the credentials provided via HTTP Basic authentication.

If the user is not authorized, a 401 Unauthorized response is made to request the

client for acceptable credentials. Otherwise, control is passed to the next web

method in line using the next method.

10 Additional Examples

This section provides a two examples showing how the techniques are used to

build an small web application. The QuickPoll example demonstrates the use of the

server push techniques and the GuessingGame example demonstrates how sessions

can be used to curb the control flow in a web application. The source code of these

two examples can be found in the appendix.

10.1 QuickPoll

The first example, QuickPoll, is a poll system. The web method main produces a

menu page; init is used by the poll administrator to set the question to be asked;

vote produces a page containing the question and a yes/no form and processes the

14

Figure 4: Voting in QuickPoll.

user’s choice; and finally, results shows an overview of the votes. It uses all the

framework features covered by Sections 2–7—in particular, two submit handlers

and one XML producer. The application state could easily be made persistent, as

explained in Section 8, and authentication could be added as in Section 9.

10.2 GuessingGame

The second example, GuessingGame, is the classical toy where each user must

guess a number between 1 and 100 in as few attempts as possible. The start web

method creates a new session object, corresponding to a user starting a new game,

and immediately redirects to play. The session object contains the secret number

to be guessed, the number of attempts, and also a snapshot of the current XHTML

page. The play web method simply shows the page of the given session. The main

functionality is located in the constructor of the session object: it first creates the

initial XHTML page and then uses submit handlers together with the features of

XACT (that we shall not explain in detail here) to modify the page contents when

the users provides input. Finally, record shows the total number of plays and the

current record holder. The global game state is stored in a persistable GameState

object. The source code for the GameState class it not included here, since it

belongs to the data model and does not contain any web-specific functionality.

Note that all the web methods react on GET requests whereas the submit han-

dlers use POST, reflecting the fact that the former are safe (in the HTTP sense)

15

Figure 5: Playing the GuessingGame.

unlike the latter which have side-effects. In particular, a URL for the play method,

which contains a session key as parameter, can always be used to get the current

page of the session.

We here omit a thorough comparison of how web applications with similar

functionality could be programmed with other frameworks. However, we claim

that the benefits discussed in the previous sections regarding code structure and

maintainability also apply to these examples. In particular, the functionality of

GuessingGame is cumbersome to express without storing session state on the server

since it is crucial that the users are not able to manipulate it or backtrack during a

game.

11 Case Study: CourseAdmin

To evaluate the framework in a more realistic setting and to test it for program-

ming applications beyond toy examples we have used it to develop the application

CourseAdmin. This is a medium sized web application (more than 20,000 lines

of code) for handling course administration at our institute. The application in-

cludes management of assignments, a webboard, and attendance counting. The

application has close to 1200 users with about 200 daily unique users. A part of

the system is written using the XML syntactic sugar while the rest is written in

pure Java, and even without the extra convenience of the syntactic extension, the

XML model remains usable.

CourseAdmin is structured as four distinct web applications with a common

model layer: the public web pages of classes and students, the course configura-

16

tion application for course staff, an application for students to view their status

and upload assignments, and finally a configuration application for creating new

courses. High cohesion exists in this architecture because the web applications

share common web methods, including authentication filters, by inheriting from

common abstract super classes, and the division of the system into multiple web

applications results in low coupling between unrelated program parts. This indi-

cates that the patterns presented in the small example programs in this paper can

be used to build much larger systems.

The main XML templates are located in separate files, and layout is controlled

using CSS, which makes the page design consistent and easy to modify.

The ‘convention over configuration’ approach means that CourseAdmin only

needs a handful of configuration lines for database credentials and email server

names.

The ‘secure by default’ principle is important in CourseAdmin, since user pro-

vided content in the webboard is shared between the clients, and the system con-

tains confidential data about student grades. By the use of the access mechanism

for protecting data in the model layer as explained in Section 8 and authentication

filters as in Section 9, all necessary security checks are collected in one cohesive

component, and new functionality can be added to the system without risking vio-

lations of the existing policies.

12 Conclusion

We have presented a novel minimalistic Java-based framework that provides uni-

form support for common tasks in web programming. By the use of a reflection-

based dispatcher, XACT for XML processing, XML producers for server-push

communication, event handlers for user input processing, and filters for caching

and authentication, we obtain a framework for making maintainable and secure

web applications with high cohesion, low coupling, and security-by-design.

As ongoing and future work, we aim to provide a more detailed analysis of

the capabilities and limitations of other frameworks and their relation to the one

we have presented here. Also, we remain to show how the framework can handle

user input validation through a combination of XML producers and event handlers

and rich user interfaces by integrating existing JavaScript libraries using tag-like

XHTML extensions.

17

REFERENCES

Bevin, G. (2007). RIFE. http://rifers.org/.

Crockford, D. (2006). JavaScript Object Notation (JSON). RFC4627.

http://tools.ietf.org/html/rfc4627.

Ducasse, S., Lienhard, A., and Renggli, L. (2007). Seaside: A flexible environment for

building dynamic web applications. IEEE Software, 24(5):56–63.

Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modern web architecture.

ACM Transactions on Internet Technology, 2(2):115–150.

Google (2008). Google Web Toolkit. http://code.google.com/webtoolkit/.

Hansson, D. H. et al. (2008). Ruby on Rails. http://www.rubyonrails.org/.

Johnson, R. et al. (2008). Spring MVC. http://www.springframework.org/.

Kirkegaard, C. and Møller, A. (2005). Type checking with XML Schema in XACT. Tech-

nical Report RS-05-31, BRICS. Presented at Programming Language Technologies

for XML, PLAN-X ’06.

Kirkegaard, C., Møller, A., and Schwartzbach, M. I. (2004). Static analysis of XML trans-

formations in Java. IEEE Transactions on Software Engineering, 30(3):181–192.

Krishnamurthi, S., Hopkins, P. W., McCarthy, J. A., Graunke, P. T., Pettyjohn, G., and

Felleisen, M. (2007). Implementation and use of the PLT Schemeweb server. Higher-

Order and Symbolic Computation, 20(4):431–460.

Lerdorf, R. et al. (2008). PHP. http://www.php.net/.

McClanahan, C. R. et al. (2008). Struts. http://struts.apache.org/.

Microsoft (2008). ASP.NET. http://www.asp.net/.

O’Neil, E. J. (2008). Object/relational mapping 2008: hibernate and the entity data model

(edm). In Proc. ACM SIGMOD International Conference on Management of Data,

SIGMOD ’08.

OWASP (2007). The ten most critical web application security vulnerabilities.

http://www.owasp.org/index.php/Top 10 2007.

Stevens, W. P., Myers, G. J., and Constantine, L. L. (1974). Structured design. IBM Systems

Journal, 13(2):115–139.

W3C (2008). Web services activity. http://www.w3.org/2002/ws/.

18

APPENDIX

This appendix contains the source code for the GuessingGame and QuickPoll ex-

ample web applications programmed with our framework. A couple of screenshots

are shown in Fig. 4 and 5. Our primary interest here is code maintainability, so

we settle for a primitive design of the XHTML pages. (As explained in Section 3,

separation of concerns between XHTML page design and Java code can be accom-

plished by moving the XML templates into separate files.)

Example: QuickPoll

public class QuickPoll extends WebApp {

private XML wrapper = [[

<html>

<head><title>QuickPoll</title></head>

<body>

<h1>QuickPoll</h1>

<[BODY]>

</body>

</html>

]];

class State {

String question;

int yes;

int no;

}

State state = new State();

public XML main() {

return wrapper.plug("BODY", [[

Initialize

Vote

View results

]]);

}

19

public XML init() {

return wrapper.plug("BODY", [[

<form method="post" action=[INIT]>

<p>What is your question?</p>

<p>

<input name="question" type="text" size="40"/>?

<input type="submit" value="Register my question"/>

</p>

</form>

]]).plug("INIT", new SubmitHandler() {

XML run(String question) {

state.question = question;

state.yes = state.no = 0;

update(state);

return wrapper.plug("BODY", [[

<p>Your question has been registered.</p>

<p>Let the vote begin!</p>

]]);

}

});

}

public XML vote() {

if (state.question == null)

throw new AccessDeniedException

("QuickPoll not yet initialized");

addResponseInvalidator(state);

return wrapper.plug("BODY", [[

<{state.question}>?<p/>

<form method="post" action=[VOTE]>

<p>

<input name="vote" type="radio" value="yes"/>

yes

<input name="vote" type="radio" value="no"/>

no<p/>

<input type="submit" value="Vote"/>

</p>

</form>

]]).plug("VOTE", new SubmitHandler() {

XML run(String vote) {

if ("yes".equals(vote))

state.yes++;

else if ("no".equals(vote))

state.no++;

update(state);

return wrapper.plug("BODY", [[

<p>Thank you for your vote!</p>

]]);

20

}

});

}

public XML results() {

return wrapper.plug("BODY",

new XMLProducer(state) {

XML run() {

synchronized (state) {

int total = state.yes + state.no;

if (total == 0)

return [[<p>No votes yet...</p>]];

else

return [[

<p><{state.question}>?</p>

<table border="0">

<tr>

<td>Yes:</td>

<td><{drawBar(300*state.yes/total)}></td>

<td><{state.yes}></td>

</tr>

<tr>

<td>No:</td>

<td><{drawBar(300*state.no/total)}></td>

<td><{state.no}></td>

</tr>

</table>

]];

}

}

});

}

private XML drawBar(int length) {

return [[

<table>

<tr>

<td bgcolor="black" height="20"

width={length}/>

</tr>

</table>

]];

}

}

21

Example: GuessingGame

public class GuessingGame extends WebApp {

private XML wrapper = [[

<html>

<head><title>The Guessing Game</title></head>

<body style="background-color: aqua">

<[BODY]>

</body>

</html>

]];

Random rnd = new Random();

class UserState extends Session {

int number;

int guesses;

XML page;

UserState() {

number = rnd.nextInt(100)+1;

guesses = 0;

page = wrapper.plug("BODY", [[

<p id="MSG">

Please guess a number between 1 and 100:

</p>

<form method="post" action=[GUESS]>

<p>

<input name="guess" type="text" size="3"/>

<input type="submit" value="continue"/>

</p>

</form>

]]).plug("GUESS", new SubmitHandler() {

void run(int guess) {

guesses++;

if (guess != number)

page = page.setContentOfID("MSG", [[

That is not correct. Try a

<{guess>number?"lower":"higher"}>

number:

]]);

else {

boolean record =

game.getHolder() != null &&

guesses >= game.getRecord();

final XML thanks = [[

<p>

22

Thank you for playing

this exciting game!

</p>

]];

page = wrapper.plug("BODY", [[

<p>

You got it, using

<{guesses}> guesses.

</p>

<{ !record ? thanks : [[

<p>

That makes you the new

record holder!

</p>

<p>

Please enter your name for

the hi-score list:

</p>

<form method="post" action=[RECORD]>

<p>

<input name="name" type="text" size="20"/>

<input type="submit" value="continue"/>

</p>

</form>

]].plug("RECORD", new SubmitHandler() {

void run(String name) {

synchronized (GuessingGame.class) {

GameState game = GameState.load();

if (guesses < game.getRecord())

game.setRecord(guesses, name);

}

page = wrapper.plug("BODY", thanks);

}

})

}>

]]);

}

};

});

}

public URL start() {

GameState.load().incrementPlays();

return makeURL("play", new UserState());

}

public XML play(UserState s) {

return s.page;

}

23

public XML record() {

GameState game = GameState.load();

return wrapper.plug("BODY", new XMLProducer(game) {

XML run() {

synchronized (GuessingGame.class) {

if (game.getHolder() != null)

return [[

<p>

In <{game.getPlays()}> plays of this game,

the record holder is <{game.getHolder()}>

with <{game.getRecord()}> guesses.

</p>

]];

else

return [[

<p>

<{game.getPlays()}> plays started.

No players finished yet.

</p>

]];

}

}

});

}

}}

24

